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Biflatness and Pseudo-Amenability of
Segal Algebras

Ebrahim Samei, Nico Spronk, and Ross Stokke

Abstract. We investigate generalized amenability and biflatness properties of various (operator) Segal

algebras in both the group algebra, L1(G), and the Fourier algebra, A(G), of a locally compact group G.

Barry Johnson introduced the important concept of amenability for Banach alge-

bras in [17], where he proved, among many other things, that a group algebra L1(G) is

amenable precisely when the locally compact group G is amenable. For other Banach

algebras, it is often useful to relax some of the conditions in the original definition

of amenability, and a popular theme in abstract harmonic analysis has been to find,

for various classes of Banach algebras associated to locally compact groups, a “cor-

rect notion” of amenability in the sense that it singles out the amenable groups. For

example, the measure algebra M(G) is amenable if and only if G is both amenable

and discrete [5]; however, M(G) is Connes-amenable (a definition of amenability for

dual Banach algebras) exactly when G is amenable [28]. As another example, the

Fourier algebra, A(G), can fail to be amenable even for compact groups [19] but is

operator amenable (a version of amenability that makes sense for Banach algebras

with an operator space structure) if and only if G is amenable [27].

The purpose of this paper is to examine the amenability properties of Segal al-

gebras in both L1(G) and A(G). All of the aforementioned versions of amenabil-

ity imply the existence of a bounded approximate identity (or identity in the case

of Connes-amenability); however, a proper Segal algebra never has a bounded ap-

proximate identity [2]. Ghahramani, Loy, and Zhang have introduced several no-

tions of “amenablility without boundedness”, including approximate and pseudo-

amenability, which do not a priori imply the existence of bounded approximate

identities [13, 15]. It is thus natural to try to determine when a Segal algebra is

approximately/pseudo-amenable. Indeed, this has already been considered in [13]

and [15]. In particular, Ghahramani and Zhang showed that if S1(G) is a Segal al-

gebra in L1(G) with an approximate identity which “approximately commutes with

orbits” (this includes all [SIN]-groups) and G is amenable, then S1(G) is pseudo-

amenable and that when G is compact, S1(G) is pseudo-contractible [15, Propos-
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tion 4.4 and Theorem 4.5] (also see [13, Corollary 7.1]). At present, there is no

known example of an approximately amenable Banach algebra without a bounded

approximate identity, so in our study of Segal algebras we will only consider pseudo-

amenability and pseudo-contractibility. We note that the approximate and pseudo-

amenability of L1(G), M(G), and A(G) are studied in [13–15].

An important property that is related to amenability is the homological notion

of biflatness (see, for example, [4, Theorem 2.9.65]). In Section 2, we provide a

natural generalization of biflatness, in the spirit of the definitions of approximate

and pseudo-amenability: approximate biflatness. Our definition is inspired by A.Yu.

Pirkovskii’s recent characterization of biflatness [23]. We prove that a sufficient con-

dition for A to be pseudo-amenable is that it is approximately biflat and has an ap-

proximate identity (Theorem 2.4). The section concludes with an examination of

some hereditary properties of (approximately) biflat Banach algebras that are needed

for our study of the approximate cohomology of Segal algebras.

In Section 3, we study Segal algebras, S1(G), in L1(G). We prove that G is amenable

when S1(G) is pseudo-amenable (Theorem 3.1) and prove that for [SIN]-groups,

S1(G) is either pseudo-amenable or approximately biflat if and only if G is amenable.

For symmetric Segal algebras, we show that G is amenable exactly when S1(G) is a flat

L1(G)-bimodule, which happens exactly when S1(G) has a type of approximate diag-

onal in L1(G)⊗̂S1(G) (Theorem 3.3). This idea is then used in Theorem 3.4 to give

an alternative approach to that of [12] for describing continuous derivations from

S1(G) into L1(G)-modules when G is amenable. We show in Theorem 3.5 that S1(G)

is compact when S1(G) is pseudo-contractible (the converse to [15, Theorem 4.5]).

Finally, in Theorem 3.6 we prove, for any group G and every continuous derivation

D : S1(G) → S1(G)∗, that π∗ ◦ D is w*-approximately inner, where π is the product

map from S1(G)⊗̂S1(G) into S1(G).

In Sections 4 and 5, we turn our attention to (operator) Segal algebras in A(G). We

first show in Theorem 4.2 that an arbitrary Segal algebra SA(G) in A(G) is pseudo-

contractible if and only if G is discrete and SA(G) has an approximate identity. We

then focus on the Lebesgue–Fourier algebra S1A(G) = A(G) ∩ L1(G) that was intro-

duced by Ghahramani and Lau in [11] and was recently studied by Forrest, Wood,

and Spronk in [10]. As well, we will examine Feichtinger’s Segal algebra S0(G), which

was shown by the second author to have many remarkable properties [29]. When

S1A(G) has an approximate identity and G contains an abelian open subgroup, Theo-

rem 4.6 shows that S1A(G) is approximately biflat (and therefore pseudo-amenable).

Supposing that G contains an open subgroup H that is weakly amenable and such

that ∆H , the diagonal subgroup of H × H, has a bounded approximate indicator

(this is true for example whenever Ge, the connected component of the identity,

is amenable), then S1A(G) is operator approximately biflat (and therefore operator

pseudo-amenable) whenever it has an approximate identity (Theorem 4.7). We con-

clude with Theorem 5.3 that shows that under these same hypotheses, the Feichtinger

Segal algebra S0(G) is actually operator biflat. This, in particular, implies that it is op-

erator pseudo-amenable.
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1 Preliminaries

1.1 Banach Algebras of Harmonic Analysis

Let G be a locally compact group and let M(G) be the Banach space of complex-

valued, regular, Borel measures on G. The space M(G) is a unital Banach algebra

with the convolution multiplication, and L1(G), the group algebra on G, is a closed

ideal in M(G). We write δs for the point mass at s ∈ G; the element δe is the identity

of M(G), and l1(G) is the closed subalgebra of M(G) generated by the point masses.

Let G be a locally compact group, let P(G) be the set of all continuous positive

definite functions on G, and let B(G) be its linear span. The space B(G) can be iden-

tified with the dual of the group C∗-algebra C∗(G), this latter being the completion of

L1(G) under its largest C∗-norm. With pointwise multiplication and the dual norm,

B(G) is a commutative, regular, semisimple, Banach algebra. The Fourier algebra

A(G) is the closure of B(G) ∩ Cc(G) in B(G). It is shown in [7] that A(G) is a com-

mutative, regular, semisimple Banach algebra whose carrier space is G. Also, up to

isomorphism, A(G) is the unique predual of V N(G), the von Neumann algebra gen-

erated by the left regular representation of G on L2(G).

Let H be a closed subgroup of G, and let I(H) = {v ∈ A(G) : v
∣∣

H
= 0}. A net

(uγ) in B(G) is called an approximate indicator for H if

(i) lim v(uγ

∣∣
H

) = v for all v ∈ A(H), and

(ii) lim wuγ = 0 for all w ∈ I(H).

Approximate indicators were introduced in [1].

1.2 Operator Spaces

Our standard reference for operator spaces is [6]. We summarize some basic defini-

tions below.

Let V be a Banach space. An operator space structure on V is a family of norms

{‖ · ‖n : Mn(V ) → R
≥0}n∈N that satisfy Ruan’s axioms, where each Mn(V ) is the

space of n × n matrices with entries in V . The natural morphisms between oper-

ator spaces are the completely bounded maps, i.e., those linear maps T : V → W

which satisfy ‖T‖cb = supn∈N
‖Tn‖ < ∞, where Tn : Mn(V ) → Mn(W ) is given

by Tn[vi j] = [Tvi j]. We say that T is completely contractive if ‖T‖cb ≤ 1. Opera-

tor spaces admit an analogue of the projective tensor product ⊗̂, which we call the

operator projective tensor product ⊗̂op.

If A is a Banach algebra which is also an operator space, and V is a left A-module

and an operator space, we say that V is a completely contractive left A-module if the

product map π0 : A ⊗ V → V extends to a complete contraction π : A⊗̂opV → V .

Completely contractive right and bi-modules are defined similarly. We say that A is a

completely contractive Banach algebra if it is a completely contractive bimodule over

itself. Natural examples include L1(G), which inherits the maximal operator space

structure as the predual of a commutative von Neumann algebra; and A(G), which

inherits its operator space structure as the predual of V N(G).
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1.3 Amenability Properties

Let A be a (completely contractive) Banach algebra.

Following Johnson [18], we say that A is (operator) amenable if A admits a bounded

approximate diagonal, i.e., a bounded net (mα) in A⊗̂A (resp. in A⊗̂opA) such that

(1.1) a · mα − mα · a → 0, π(mα)a → a

for all a ∈ A, where a · (b ⊗ c) = (ab) ⊗ c, (b ⊗ c) · a = b ⊗ (ca), and π is the

product map. (Operator) amenability of A is equivalent to having every (completely)

bounded derivation from A into a(n operator) dual bimodule be inner; see [18]. A

natural relaxation of amenability is to allow A to admit a diagonal net, as in (1.1)

above, but not insist that it is bounded. In doing so we obtain (operator) pseudo-

amenability, as defined in [13]. If A admits a net in A⊗̂A (resp. in A⊗̂opA) which

satisfies (1.1) and the additional property that a · mα = mα · a, then A is said to be

(operator) pseudo-contractible, as defined in [15].

We say that A is (operator) biflat if there is a (completely bounded) bounded

A-bimodule map θ : (A⊗̂A)∗ → A∗ (resp. (A⊗̂opA)∗ → A∗) such that θ ◦π∗
= idA∗ .

A. Ya. Helemskii proved that A is amenable if and only if A is biflat and admits a

bounded approximate identity; see [16] or [3]. The analogous characterization of op-

erator amenability follows similarly. A (completely contractive) left A-module is said

to be (operator) projective if there is a (completely bounded) bounded left A-module

map ξ : V → A⊗̂V (resp. V → A⊗̂opV ) such that π ◦ ξ = idV . A similar definition

holds for right modules. A is (operator) biprojective if there is a (completely bounded)

bounded A-bimodule map ξ : A → A⊗̂A (resp. A → A⊗̂opA) such that π ◦ ξ = idA.

1.4 Segal Algebras

Segal algebras were first defined by H. Reiter for group algebras; see [26], for example.

The definition of operator Segal algebras appeared in [10]. However, our abstract

definition deviates from the one given in [10] in the sense that we demand that Segal

algebras be essential modules.

Let A be a (completely contractive) Banach algebra. An (operator) Segal algebra is

a subspace B of A such that

(i) B is dense in A,

(ii) B is a left ideal in A,

(iii) B admits a norm (operator space structure) ‖ · ‖B under which it is complete

and a (completely) contractive A-module, and

(iv) B is an essential A-module: A · B is ‖ · ‖B-dense in B.

We further say that B is symmetric if it is also a (completely) contractive essential right

A-module.

In the case that A = L1(G) we will write S1(G) instead of B and further require

that

(v) S1(G) is closed under left translations: Lx f ∈ S1(G) for insist that all x in G and

f in S1(G),
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where Lx f (y) = f (x−1 y) for y in G. By well-known techniques, condition (iii) on

B = S1(G) is equivalent to

(iii ′) the map (x, f ) 7→ Lx f : G×S1(G) → S1(G) is continuous with‖Lx f ‖S1 = ‖ f ‖S1

for all x in G and f in S1(G).

Moreover, symmetry for S1(G) is equivalent to having S1(G) be closed under right

actions, Rx f ∈ S1(G) for x in G and f in S1(G), where Rx f (y) = f (yx−1)∆(x−1),

with the actions being continuous and isometric.

We will discuss two specific types of operator Segal algebras in the Fourier algebra

A(G). One is the Lebesgue-Fourier algebra, S1A(G), whose study was initiated in

[11] and which was shown to be an operator Segal algebra in [10]. The second is

Feichtinger’s algebra S0(G), whose study in the non-commutaive case was taken up

in [29]. This study included an exposition of the operator space structure. Though

slightly different terminology was used in that article, it was proved there that S0(G)

is an operator Segal algebra in A(G), in the sense defined above.

2 Approximate biflatness and pseudo-amenability

Throughout this section, A is a Banach algebra. Recall that if E, F are Banach spaces,

then the weak∗ operator topology (W*OT) on B(E, F∗) is the locally convex topology

determined by the seminorms {pe, f : e ∈ E, f ∈ F}, where pe, f (T) = |〈 f , Te〉|. On

bounded sets, the W*OT is exactly the w∗-topology of B(E, F∗) when identified with

(E⊗̂F)∗, so closed balls of B(E, F∗) are W∗OT compact. When E and F are operator

spaces, CB(E, F∗) is identified with (E⊗̂opF)∗ [6, Corollary 7.1.5]. On ‖·‖cb-bounded

subsets of CB(E, F∗), the W*OT agrees with the weak* topology.

Suppose that X and Y are Banach A-bimodules. Following A.Yu. Pirkovskii [23],

a net (θδ)δ of bounded linear maps from X into Y , satisfying

(2.1) ‖θδ(a · x) − a · θδ(x)‖ → 0 and ‖θδ(x · a) − θδ(x) · a‖ → 0

for all a in A, will be called an approximate A-bimodule morphism from X to Y . If Y

is a dual Banach space, and instead of norm convergence we have w∗-convergence in

(2.1), we call (θδ)δ a w∗-approximate A-bimodule morphism.

The following proposition may be compared with [23, Corollary 3.2].

Proposition 2.1 The following statements are equivalent:

(i) A is biflat;

(ii) there is a net θδ : (A⊗̂A)∗ → A∗ (δ ∈ ∆) of A-bimodule morphisms such that

(θδ)δ is uniformly bounded in B((A⊗̂A)∗, A∗) and W ∗OT-limδ θδ ◦ π∗
= idA∗ ;

(iii) there is a w∗-approximate A-bimodule morphism θδ : (A⊗̂A)∗ → A∗ (δ ∈ ∆)

such that (θδ)δ is uniformly bounded in B((A⊗̂A)∗, A∗) and W ∗OT-limδ θδ ◦
π∗

= idA∗ .

Proof The implications (i) ⇒ (ii) and (ii) ⇒ (iii) are trivial. Let (θδ)δ be a w∗-ap-

proximate morphism satisfying the properties of statement (iii). As bounded subsets

of B((A⊗̂A)∗, A∗) are relatively W ∗OT compact, (θδ)δ has a W ∗OT limit point, θ;

we may assume that W ∗OT-limδ θδ = θ. Routine calculations show that θ is an

A-bimodule map such that θ ◦ π∗
= idA∗ .
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Remark 2.2 When A is a quantized Banach algebra, one can similarly prove an

operator space version of Proposition 2.1:

A is operator biflat if and only if there is a net θδ : (A⊗̂opA)∗ → A∗ (δ ∈ ∆)

of completely bounded A-bimodule morphisms such that supδ ‖θδ‖cb < ∞ and

W ∗OT-limδ θδ ◦ π∗
= idA∗ .

By dropping the condition of uniform boundedness from statement (ii) of Propo-

sition 2.1, we obtain our definition of (operator) approximate biflatness. Remark 4.9

gives examples of approximately biflat Banach algebras which are not biflat.

Definition 2.3 We call a (quantized) Banach algebra, A, (operator) approximately

biflat if there is a net θδ : (A⊗̂A)∗ → A∗ (respectively, θδ : (A⊗̂opA)∗ → A∗) (δ ∈ ∆)

of (completely) bounded A-bimodule morphisms such that W ∗OT-limδ θδ ◦ π∗
=

idA∗ .

Note that statement (iii) in the following theorem agrees with statement (iii) of

Proposition 2.1, except that we have dropped the condition of uniform boundedness.

Statement (ii) may be seen as an approximate biprojectivity condition.

Theorem 2.4 Consider the following conditions for a Banach algebra A:

(i) A is pseudo-amenable;

(ii) there is an approximate A-bimodule morphism (βδ) from A into A⊗̂A such that

‖π ◦ βδ(a) − a‖ → 0 (a ∈ A);

(iii) there is a w∗-approximate A-bimodule morphism θδ : (A⊗̂A)∗ → A∗ (δ ∈ ∆)

such that W ∗OT-limδ θδ ◦ π∗
= idA∗ ;

(iv) A is approximately biflat.

Then (i) ⇒ (ii) ⇒ (iii) and if A has a central approximate identity, then (iii) ⇒ (i). If

A has an approximate identity, then (iv) ⇒ (i).

Proof Assuming that condition (i) holds, let (mδ) be an approximate diagonal for A.

Then it is easy to check that

βδ : A → A⊗̂A : a 7→ a · mδ

satisfies the properties of condition (ii). The dual maps θδ = β∗
δ satisfy the conditions

of statement (iii).

Suppose that θδ : (A⊗̂A)∗ → A∗ (δ ∈ ∆) satisfies the conditions of statement (iii)

and let (eλ)λ∈Λ be a central approximate identity for A. Then for any a ∈ A and

ψ ∈ (A⊗̂A)∗

lim
λ

lim
δ
〈ψ, a · θ∗δ (eλ) − θ∗δ (eλ) · a〉 = lim

λ
lim

δ
〈eλ, θδ(ψ · a) − θδ(a · ψ)〉

= lim
λ

lim
δ
〈eλ, θδ(ψ · a) − θδ(ψ) · a + θδ(ψ) · a − θδ(a · ψ)〉

(∗) = lim
λ

lim
δ
〈eλ, θδ(ψ · a) − θδ(ψ) · a〉 + 〈eλ, a · θδ(ψ) − θδ(a · ψ)〉

= lim
λ

(0 + 0) = 0,
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where we have used the centrality of (eλ) at line (∗). Also, for a ∈ A and φ ∈ A∗,

lim
λ

lim
δ
〈φ, π∗∗(θ∗δ (eλ)) · a〉 = lim

λ
lim

δ
〈eλ, θδ(π∗(a · φ))〉

= lim
λ
〈eλ, a · φ〉 = lim

λ
〈eλa, φ〉

= 〈a, φ〉.

Let E = Λ×∆
Λ be directed by the product ordering, and for each β = (λ, (δλ ′)) ∈ E,

let mβ = θδλ
(eλ) ∈ (A⊗̂A)∗∗. Using the iterated limit theorem [20, p. 69], the above

calculations give for each a in A

(2.2) a · mβ − mβ · a → 0, w∗ in (A⊗̂A)∗∗ and π∗∗(mβ)a → a, w∗ in A∗∗.

As in the proof of [15, Proposition 2.3], we can use Goldstine’s theorem to obtain

(mβ) in A⊗̂A, and we can replace weak∗ convergence in equation (2.2) by weak con-

vergence. This implies, via Mazur’s theorem, that A is pseudo-amenable (again see

[15, Proposition 2.3]).

The proof that A is pseudo-amenable when A is approximately biflat and has an

approximate identity (eλ) is the same as that given above except that we reverse the

order in which we calculate the iterated limits and use the fact that each θδ is now an

A-bimodule map:

lim
δ

lim
λ

a · θ∗δ (eλ) − θ∗δ (eλ) · a = lim
δ

lim
λ

θ∗δ (a · eλ − eλ · a) = lim
δ

0 = 0

and

lim
δ

lim
λ
〈φ, π∗∗(θ∗δ (eλ)) · a〉 = lim

δ
lim

λ
〈eλa, θδ(π∗(φ))〉

= lim
δ
〈a, θδ(π∗(φ))〉 = 〈a, φ〉.

This completes the proof.

One can similarly prove the analogous relationship between operator pseudo-

amenability and operator approximate biflatness. Our motivation in writing this

paper has been to obtain information about the approximate (co)homology of Segal

algebras, so we will not attempt to exhaustively determine the relationship between

approximate biflatness and other forms of amenability. Instead, we have chosen

to only examine approximate biflatness versus pseudo-amenability (Theorem 2.4)

and refer the reader to [15] for a detailed study of the relationship between pseudo-

amenability and several other amenability properties. We will, however, conclude

this section with an examination of some hereditary properties of (approximately)

biflat Banach algebras that are needed in the sequel.

Proposition 2.5 Let B be an (operator) Segal algebra in A, and suppose that B contains

a net (eλ)λ∈Λ in its centre such that (e2
λ)λ∈Λ is an approximate identity for B. If A is

(operator) approximately biflat, then so is B.
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Proof We will prove the operator space version of the proposition; the other case is

similar. Let Tλ be the completely bounded map specified by

Tλ : A⊗̂opA → B⊗̂opB : a ⊗ b 7→ aeλ ⊗ beλ.

As eλ is central in B, Tλ is a B-bimodule map. Let θδ : (A⊗̂A)∗ → A∗ (δ ∈ ∆) be a

net of completely bounded A-bimodule maps such that W ∗OT-limδ θδ ◦ π∗
A = idA∗ ,

and consider the completely bounded B-bimodule map, p : A∗ → B∗ : φ 7→ φ
∣∣

B
. Let

E = Λ×∆
Λ be directed by the product ordering, and for each β = (λ, (δλ ′)λ ′) ∈ E,

define θβ : (B⊗̂opB)∗ → B∗ so that the following diagram commutes.

(A⊗̂opA)∗
θδλ

//
A∗

p

²²
(B⊗̂opB)∗

T∗

λ

OO

θβ

//
B∗

That is, θβ = p◦θδλ
◦T∗

λ , a completely bounded B-bimodule map. Note that because

eλ lies in the centre of B,

T∗
λ ◦ π∗

B(φ) = π∗
A ◦ R∗

λ(φ) (λ ∈ Λ, φ ∈ B∗),

where Rλ : A → B : a 7→ ae2
λ. Let φ ∈ B∗, b ∈ B. By the iterated limit theorem we

have

lim
β
〈b, θβ ◦ π∗

B(φ)〉 = lim
λ

lim
δ
〈b, (p ◦ θδ ◦ T∗

λ ◦ π∗
B)(φ)〉

= lim
λ

lim
δ
〈b, (θδ ◦ π∗

A ◦ R∗
λ)(φ)〉

= lim
λ
〈b, R∗

λ(φ)〉

= lim
λ
〈be2

λ, φ〉

= 〈b, φ〉.

Hence, W ∗OT-limβ θβ ◦ πB∗ = idB∗ .

Note that if (eλ)λ is an approximate identity that is bounded in the multiplier

norm on B, then (e2
λ)λ is also an approximate identity for B.

Definition 2.6 The (operator) biflatness constant of an (operator) biflat (quantized)

Banach algebra A is the number BFA = infγ ‖θ‖ (respectively, BF
op
A = infγ ‖θ‖cb),

where the infimum is taken over all (completely) bounded A-bimodule maps

θ : (A⊗̂A)∗ → A∗ (resp. θ : (A⊗̂opA)∗ → A∗, )

such that θ ◦ π∗
= idA∗ .

https://doi.org/10.4153/CJM-2010-044-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-044-4


Biflatness and Pseudo-Amenability of Segal Algebras 853

Proposition 2.7 Let A be a (quantized) Banach algebra containing a directed family

of closed ideals {Aγ : γ ∈ Γ} such that for each γ ∈ Γ there is a (completely) bounded

homomorphic projection Pγ of A onto Aγ . Suppose that either:

(i) A has a central approximate identity (eλ)λ in ∪γAγ ; or

(ii) for each a ∈ A, ‖Pγa − a‖ → 0.

(a) If each Aγ is (operator) approximately biflat, then so is A.

(b) If each Aγ is (operator) biflat with supγ BFAγ
< ∞ (resp., supγ BF

op
Aγ

< ∞),

and (i) holds with (eλ)λ bounded in the (completely bounded) multiplier norm

of A, or (ii) holds with supγ ‖Pγ‖ < ∞ (resp., supγ ‖Pγ‖cb < ∞), then A is

(operator) biflat.

Proof We first prove (a). Given α = (F,Φ, ǫ), where F ⊂ A, Φ ⊂ A∗ are finite, and

ǫ > 0, we will find an A-bimodule map θα : (A⊗̂A)∗ → A∗ such that

(2.3) |〈a, (θα ◦ π∗
A)(φ) − φ〉| < ǫ (a ∈ F, φ ∈ Φ).

Assuming first that condition (i) holds, take eλ0
= e0 such that

(2.4) ‖ae0 − a‖ < ǫ/2M (a ∈ F)

where M = sup{‖φ‖ : φ ∈ Φ}. Choose γ0 ∈ Γ such that e0 ∈ Aγ0
. Consider the

maps

ι0 : Aγ0
⊗̂Aγ0

→ A⊗̂A : a ⊗ b 7→ a ⊗ b and T0 : A → Aγ0
: a 7→ ae0

and let π0 : Aγ0
⊗̂Aγ0

→ Aγ0
be the multiplication map. As Aγ0

is approximately biflat,

there is an Aγ0
-bimodule map θ0 : (Aγ0

⊗̂Aγ0
)∗ → A∗

γ0
such that

(2.5) |〈T0a, (θ0 ◦ π∗
0 )(φ

∣∣
Aγ0

) − φ
∣∣

Aγ0

〉| < ǫ/2 (a ∈ F, φ ∈ Φ).

Define θα so that the following diagram commutes:

(Aγ0
⊗̂Aγ0

)∗
θ0

// A∗
γ0

T∗

0

²²

(A⊗̂A)∗

ι∗0

OO

θα
//

A∗

That is, let θα = T∗
0 ◦ θ0 ◦ ι∗0 . For a ∈ F and φ ∈ Φ, equations (2.4) and (2.5) give

|〈a, (θα ◦ π∗
A)(φ) − φ〉| ≤ |〈T0a, (θ0(ι∗0 (π∗

A(φ))) − φ〉| + |〈T0a − a, φ〉|

≤ |〈T0a, (θ0 ◦ π∗
0 )(φ

∣∣
Aγ0

) − φ
∣∣

Aγ0

〉| + ‖ae0 − a‖‖φ‖

< ǫ.
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If condition (ii) holds, we instead choose γ0 such that ‖Pγ0
a−a‖ < ǫ/2M (a ∈ F).

By replacing T0 in the above paragraph by Pγ0
, we again obtain equation (2.3).

Because we only know that θ0 is an Aγ0
-bimodule map, the argument showing

that θα is an A-bimodule map requires some care. Note that

ι∗0 (a · ψ) = Pγ0
(a) · ι∗0 (ψ) (a ∈ A, ψ ∈ (A⊗̂A)∗),

where on the left and right we respectively have A-module and Aγ0
-module actions.

Let a, b ∈ A, ψ ∈ (A⊗̂A)∗ and assume first that θα = T∗
0 ◦ θ0 ◦ ι∗0 . Then

〈b, θα(a · ψ)〉 = 〈T0b, θ0(ι∗0 (a · ψ))〉

= 〈T0b, θ0(Pγ0
(a) · ι∗0 (ψ))〉

= 〈T0b, Pγ0
(a) · θ0(ι∗0 (ψ))〉

= 〈T0(b)Pγ0
(a), θ0(ι∗0 (ψ))〉

= 〈T0(ba), θ0(ι∗0 (ψ))〉

= 〈ba, T∗
0 (θ0(ι∗0 (ψ)))〉

= 〈b, a · θα(ψ)〉,

where we have used the fact that T0bPγ0
a = Pγ0

((T0b)a) = be0a = bae0 = T0(ba).

As well, Pγ0
bPγ0

a = Pγ0
(ba), so the same argument works when θα = P∗

γ0
◦ θ0 ◦ ι∗0 .

A symmetric argument shows that θα is also a right A-module map. The operator

biflatness version of part (a) is proved in exactly the same way.

Under the hypotheses of the non-bracketed part of statement (b), the maps θα can

be chosen to be uniformly bounded in B((A⊗̂A)∗, A∗), so biflatness follows from

Proposition 2.1. If A is a quantized Banach algebra, then the bracketed hypotheses

of statement (b) yield completely bounded maps θα in CB((A⊗̂opA)∗, A∗) such that

supα ‖θα‖cb < ∞. Operator biflatness of A follows from Remark 2.2.

If {Vi : i ∈ I} is a family of operator spaces, we let
⊕p

i∈I Vi (1 ≤ p < ∞) have the

operator space structure it attains as the predual of the direct product of dual spaces

in the case p = 1, and through interpolation in the case p > 1. See [24].

Proposition 2.8 Let {Ai : i ∈ I} be a family of (quantized) Banach algebras.

(i) If each Ai is (operator) approximately biflat, then for 1 ≤ p < ∞,
⊕p

i∈I Ai is

(operator) approximately biflat.

(ii) If A1, A2 are operator approximately biflat quantized Banach algebras and A =

A1 ⊕A2 has an operator space structure such that the projection maps A → Ai are

completely bounded, then A is also operator approximately biflat.

(iii) If each Ai is (operator) biflat and supi BFAi
< ∞ (respectively supi BF

op
Ai

< ∞),

then
⊕1

i∈I Ai is (operator) biflat.

Proof We first prove (ii). Let α = (F,Φ, ǫ), where ǫ > 0, and F ⊂ A, Φ ⊂ A∗ are

finite. Let θi : (Ai⊗̂opAi)
∗ → A∗

i be a completely bounded Ai-bimodule map such

that

|〈ai , θi ◦ π∗
Ai

(φi) − φi〉| < ǫ/2 (i = 1, 2, a = (a1, a2) ∈ F, φ ∈ Φ),
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where φi = φ
∣∣

Ai
. Let Ei : Ai →֒ A and pi : A → Ai be the embedding and projection

maps and let θ̃i = p∗
i ◦ θi ◦ (Ei ⊗ Ei)

∗ (i = 1, 2). Thus, we have the following

commuting diagram:

(A⊗̂opA)∗

(Ei⊗Ei )
∗

²²

eθi

//
A∗

(Ai⊗̂opAi)
∗

θi

// A∗
i

p∗

i

OO

Standard arguments show that θ̃ = θ̃1+θ̃2 : (A⊗̂opA)∗ → A∗ is a completely bounded

A-bimodule map such that

|〈a, θ̃ ◦ π∗
A(φ) − φ〉| < ǫ (a ∈ F, φ ∈ Φ).

This proves (ii). Obviously, the (non-quantized) Banach algebra version of (ii) holds

for arbitrary direct sums A1 ⊕A2. Suppose further that A = A1 ⊕
1 A2 is the (operator

space) ℓ1-direct sum of A1 and A2. If each Ai is (operator) biflat and θi ◦ π∗
Ai

= idA∗

i
,

then observe that θ̃ ◦ π∗
A = idA∗ and ‖θ̃‖ ≤ max{‖θ1‖, ‖θ2‖} (respectively, ‖θ̃‖cb ≤

max{‖θ1‖cb, ‖θ2‖cb}).

Suppose now that for each i ∈ I, Ai is (operator) approximately biflat. Let

Γ = {γ : γ ⊂ I is finite} be ordered by inclusion. By induction, the first case

shows that Aγ =
⊕p

i∈γ Ai is (operator) approximately biflat. Viewing Aγ as an ideal

in A =
⊕p

i∈I Ai , the natural homomorphic projection maps Pγ of A onto Aγ are

(completely) contractive and satisfy ‖Pγa− a‖ → 0 (a ∈ A). By Proposition 2.7, A is

(operator) approximately biflat. This is statement (i).

Finally, suppose that each Ai is operator biflat with supi∈I BF
op
Ai

< ∞. As noted

above, Aγ =
⊕1

i∈γAi is operator biflat with BF
op
Aγ

≤ maxi∈γ BF
op
Ai

, so the biflatness of⊕1
i∈I Ai follows from Proposition 2.7. This proves the operator space version of (iii).

The other case is similar.

3 Approximate Biflatness and Pseudo-Amenability of S1(G)

Throughout this section, S1(G) will denote an arbitrary Segal algebra in L1(G), where

G is a locally compact group. Observe that because S1(G) embeds contractively onto

a dense subspace of L1(G), L∞(G) in turn embeds contractively into S1(G)∗ via

〈 f , φ〉 =

∫

G

f (s)φ(s) ds ( f ∈ S1(G), φ ∈ L∞(G)).

Theorem 3.1 If S1(G) is pseudo-amenable, then G is amenable.

Proof Let (mγ)γ∈Γ ⊂ S1(G)⊗̂S1(G) be an approximate diagonal for S1(G). Let

ι : S1(G) →֒ L1(G) be the embedding map, let 1G be the augmentation character
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of L1(G), and put

T = ι ⊗ 1G : S1(G)⊗̂S1(G) → L1(G) : f ⊗ g 7→
(∫

G

g(s)ds
)

f .

By checking with elementary tensors, one can see that T satisfies

T(k · m) = k ∗ Tm and T(m · k) =

(∫

G

k(s)ds
)

Tm

where k ∈ S1(G), m ∈ S1(G)⊗̂S1(G). Hence, for any k ∈ S1(G) with
∫

G
k(s)ds = 1,

we have

‖k ∗ Tmγ − Tmγ‖L1(G) = ‖T(k · mγ − mγ · k)‖L1(G)

≤ ‖k · mγ − mγ · k‖ → 0.
(3.1)

Fix h ∈ S1(G) with
∫

h = 1, and for each γ, let fγ = h ∗ Tmγ . For each x ∈ G we

then obtain

‖δx ∗ fγ − fγ‖L1(G) ≤ ‖(δx ∗ h) ∗ Tmγ − Tmγ‖L1(G)

+ ‖Tmγ − h ∗ Tmγ‖L1(G) → 0.

When m = f ⊗ g, note that

〈1G, π(m)〉 = 〈1G, f ∗ g〉 = 〈1G, f 〉〈1G, g〉 = 〈1G, 〈1G, g〉 f 〉 = 〈1G, Tm〉,

and so

1 = 〈1G, h〉 = lim
γ
〈1G, h ∗ π(mγ)〉

= lim
γ
〈1G, h〉〈1G, π(mγ)〉 = lim

γ
〈1G, Tmγ〉

= lim
γ
〈1G, h ∗ Tmγ〉 = lim

γ
〈1G, fγ〉.

As ‖ fγ‖L1(G) ≥ |〈1G, fγ〉|, we may therefore assume that ‖ fγ‖L1(G) ≥ 1/2 (γ ∈ Γ).

Defining

gγ =
1

‖ fγ‖L1(G)

| fγ |, (γ ∈ Γ),

we obtain a net of positive norm-one functions in L1(G) which by (3.1) satisfies

‖δx ∗ gγ − gγ‖L1(G) ≤ 2‖δx ∗ | fγ | − | fγ |‖L1(G) ≤ 2‖δx ∗ fγ − fγ‖L1(G) −→ 0

for x ∈ G. This implies that G is amenable [22]—any w∗-limit point of (gγ)γ in

L∞(G)∗ is a left-invariant mean on L∞(G).
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Corollary 3.2 Let G be a [SIN]-group. Then the following statements are equivalent:

(i) G is amenable;

(ii) S1(G) is approximately biflat;

(iii) S1(G) is pseudo-amenable.

Proof If statement (i) holds, then L1(G) is amenable and therefore biflat [4, Theo-

rem 2.9.65], and S1(G) has a central approximate identity (eλ)λ which is bounded in

L1(G) [21]. Hence, (e2
λ)λ is also an approximate identity for S1(G), so (ii) is a conse-

quence of Proposition 2.5. That (ii) implies (iii) and (iii) implies (i) are special cases

of Theorems 2.4 and 3.1 respectively.

Proposition 4.4 of [15] states that the converse to Theorem 3.1 holds when S1(G)

has an approximate identity which “approximately commutes with orbits”. When G

is a [SIN]-group, S1(G) always has such an approximate identity so, (i) ⇒ (iii) of

Corollary 3.2 is also a consequence [15, Proposition 4.4].

We do not know whether, in general, the amenability of G implies either approx-

imate biflatness or pseudo-amenability of S1(G) (see also [15, Question 3, p. 123]).

However, as we show below, it is possible to construct a well-behaved approximate

diagonal for S1(G) in L1(G)⊗̂S1(G) when G is amenable.

We say that S1(G) has an approximate diagonal in L1(G)⊗̂S1(G) if there is a net

{mγ}γ∈Γ in L1(G)⊗̂S1(G) such that, for every f ∈ S1(G),

f · mγ − mγ · f −→ 0 as γ −→ ∞

and π(mγ) is an approximate identity for S1(G). If, in addition, the associated left

and right multiplication operators Lγ : f 7→ f · mγ and Rγ : f 7→ mγ · f from S1(G)

into L1(G)⊗̂S1(G) are uniformly bounded, then we say that S1(G) has a multiplier-

bounded approximate diagonal in L1(G)⊗̂S1(G). Finally, in either of the above cases,

we say that the (multiplier-bounded) approximate diagonal is central if f ·mγ = mγ · f

for all γ ∈ Γ and f ∈ S1(G).

Theorem 3.3 Let G be a locally compact group, and let S1(G) be a symmetric Segal

algebra. Then the following statements are equivalent:

(i) G is amenable;

(ii) S1(G) is a flat L1(G)-bimodule;

(iii) S1(G) has an approximate diagonal in L1(G)⊗̂S1(G);

(iv) S1(G) has a multiplier-bounded approximate diagonal in L1(G)⊗̂S1(G).

Proof (i) =⇒ (ii) Since G is amenable, L1(G) is amenable. Also S1(G) is an essential

Banach L1(G)-bimodule. Hence if π1 is the convolution multiplication map from

L1(G)⊗̂S1(G) onto S1(G), then the short exact sequence of L1(G)-bimodules

0 7−→ S1(G)∗
π∗

1−→ (L1(G)⊗̂S1(G))∗
ι∗
−→ (ker π1)∗ 7−→ 0,

is admissible, and therefore splits, [3, Theorem 2.5].

(ii) =⇒ (iv) Let θ : (L1(G)⊗̂S1(G))∗ → S1(G)∗ be a continuous L1(G)-bimodule

morphism such that θ ◦π∗
= idS1(G)∗ . Let {eα} be an approximate identity for S1(G)
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with L1-norm equal to 1. Set nα = θ∗(e2
α) ∈ (L1(G)⊗̂S1(G))∗∗. Then, for every

f ∈ S1(G) and every α,

‖ f · nα‖ = ‖θ∗( f ∗ e2
α)‖ ≤ ‖θ‖‖ f ∗ e2

α‖S1(G) ≤ ‖θ‖‖ f ‖S1(G).

Similar to the above, we have ‖nα · f ‖ ≤ ‖θ‖‖ f ‖S1(G). Also

π∗∗(nα) = (π∗∗ ◦ θ∗)(e2
α) = e2

α,

which is an approximate identity for S1(G). Finally, for f ∈ S1(G) and ϕ ∈
(L1(G)⊗̂S1(G))∗, we have

〈 f · nα − nα · f , ϕ〉 = 〈θ∗(e2
α) , ϕ · f − f · ϕ〉

= 〈θ(ϕ) · f − f · θ(ϕ) , e2
α〉

= 〈θ(ϕ), f ∗ e2
α − e2

α ∗ f 〉.

Hence ‖ f · nα − nα · f ‖ ≤ ‖θ‖‖ f ∗ e2
α − e2

α ∗ f ‖S1(G). Therefore f · nα − nα · f → 0

as α → ∞. The final result follows from a similar argument to the one made in

[15, Proposition 2.3]. (iv) ⇒ (iii) is obvious and (iii) ⇒ (i) follows the argument

found in the proof of Theorem 3.1.

The following is [12, Theorem 3.1]. Here we present an alternative proof using

the multiplier-bounded approximate diagonals.

Theorem 3.4 Let G be a locally compact amenable group, let S1(G) be a symmet-

ric Segal algebra, and let X be a Banach L1(G)-bimodule. Then for every continuous

derivation D : S1(G) → X∗, there is a continuous double centralizer (S, T) such that

D = S − T.

Proof Suppose that D : S1(G) → X∗ is a continuous derivation. By applying

the argument presented in the first two paragraphs of the proof of [12, Theorem

3.1(ii)], we can assume that X is an essential L1(G)-bimodule. By the proof of The-

orem 3.3(iv), we can choose a multiplier-bounded approximate diagonal {mα} for

S1(G) in L1(G)⊗̂S1(G) such that π(mα) is bounded in L1-norm.

Let mα =
∑∞

i=1 f α
i ⊗ gα

i and define x∗α =
∑∞

i=1 f α
i · D(gα

i ). Then, for f ∈ S1(G),

(3.2) f · x∗α − x∗α · f − π(mα) · D( f )
α

−→ 0.

On the other hand, the operators Sα : f 7→ f ·x∗α and Tα : f 7→ x∗α · f from S1(G) into

X∗ are uniformly bounded. Let S be a cluster point of {Sα}, and let T be a cluster

point of {Tα} in the weak∗-operator topology. Then (S, T) is a double centralizer

and for every f ∈ S1(G) and ξ ∈ X,

〈ξ, S( f ) − T( f ) − D( f )〉 = lim
α
〈ξ, Sα( f ) − Tα( f ) − π(mα) · D( f )〉 = 0,

where we have used equation (3.2) and the fact that X is essential.
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It is shown in [15, Theorem 4.5] that S1(G) is pseudo-contractible if G is com-

pact. In the following theorem, we prove the converse of that result and present

other equivalent conditions on pseudo-contractiblity of S1(G) (see also [15, Proposi-

tion 3.8]).

Theorem 3.5 Let G be a locally compact group, and let S1(G) be a Segal algebra. Then

the following statements are equivalent:

(i) G is compact;

(ii) S1(G) has a central approximate diagonal in L1(G)⊗̂S1(G);

(iii) S1(G) is pseudo-contractible.

If, in addition, S1(G) is symmetric, then the above statements are equivalent to either of

the following statements:

(iv) S1(G) is a projective L1(G)-bimodule;

(v) S1(G) has a central, multiplier-bounded, approximate diagonal in L1(G)⊗̂S1(G).

Proof (i) =⇒ (iii) This is [15, Theorem 4.5].

(iii) =⇒ (ii) We note that from [33], S1(G) is (boundedly) approximately comple-

mented in L1(G). Hence the map ι⊗idS1(G) : S1(G)⊗̂S1(G) −→ L1(G)⊗̂S1(G) is injec-

tive [32]. Therefore ι ⊗ idS1(G) maps a central approximate diagonal in S1(G)⊗̂S1(G)

into a central approximate diagonal in L1(G)⊗̂S1(G).

(ii) =⇒ (i) If S1(G) has a central approximate diagonal in L1(G)⊗̂S1(G), then a

similar argument to the proof of Theorem 3.1 gives a non-zero function f ∈ L1(G)

such that δx ∗ f = f (x ∈ G). This implies that f is equal to a non-zero constant

almost everywhere, and it follows that G is compact.

(i) ⇐⇒ (iv) If G is compact, then L1(G)⊗̂L1(Gop) = L1(G × Gop) is biprojective

[16, IV, Theorem 5.13]. Hence S1(G) is a projective L1(G)-bimodule since it can be

regarded as a Banach left L1(G)⊗̂L1(Gop)-module [16, IV, Theorem 5.3].

Conversely, suppose that S1(G) is a projective L1(G)-bimodule. Hence there is a

continuous L1(G)-bimodule morphism ρ : S1(G) −→ L1(G)⊗̂S1(G) such that π◦ρ =

idS1(G). Let 1G be the augmentation character of L1(G), and put

T = ι ⊗ 1G : L1(G)⊗̂S1(G) → L1(G) : f ⊗ g 7→
(∫

G

g(s)ds
)

f .

Now define the operator ρ1 : S1(G) −→ L1(G) by ρ1 = T ◦ ρ. It is easy to check

that ρ1 is a continuous L1(G)-bimodule morphism. Moreover, for f ∈ S1(G) and

g ∈ I0 = ker 1G ∩ S1(G), we have

ρ1( f ∗ g) = ρ1( f ) · g = ρ1( f )1G(g) = 0.

Hence ρ1 = 0 on I0 since S1(G)I0 is dense in I0. Therefore, ρ1 induces a left

L1(G)-module morphism ρ̃ : S1(G)/I0 −→ L1(G). However, S1(G)/I0 is isomorphic

with C as a Banach L1(G)-module for the product defined by

f · λ = λ · f = 1G( f )λ ( f ∈ L1(G), λ ∈ C).
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Moreover, with the above identification, 1G ◦ ρ̃ = idC. Thus C is a projective left

L1(G)-bimodule. This implies that G is compact (see, for example, [4, Theorem

3.3.32(ii)].

(i) ⇐⇒ (v) If G is compact, then S1(G) has a central approximate identity {eα}
which has L1-norm equal to 1. On the other hand, from (iv), there is a continuous

S1(G)-bimodule morphism θ : S1(G) −→ L1(G)⊗̂S1(G) which is the right inverse to

the convolution multiplication π1 : L1(G)⊗̂S1(G) −→ S1(G). Thus if we put mα =

θ(eα), then it is straightforward to show that {mα} is a central, multiplier-bounded,

approximate diagonal in L1(G)⊗̂S1(G) for S1(G). The converse follows easily because

(v) implies (iii).

It is shown in [12] that if G is an amenable group or a SIN group, then every

continuous derivation from a symmetric Segal algebra S1(G) into S1(G)∗ is approx-

imately inner, i.e., S1(G) is approximately weakly amenable. In an attempt to an-

swer whether or not in general S1(G) is approximately weakly amenable, we have

come up with the result of the following theorem. Here π is the product map from

S1(G)⊗̂S1(G) into S1(G).

Theorem 3.6 Let G be a locally compact group, and let S1(G) be a symmetric Se-

gal algebra. Then for every continuous derivation D : S1(G) → S1(G)∗, π∗ ◦ D is

w∗-approximately inner.

Proof Let D : S1(G) → S1(G)∗ be a continuous derivation. Define the operator

D̃ : L1(G) → (S1(G)⊗̂S1(G))∗ by

〈D̃( f ), g ⊗ h〉 = 〈D( f ∗ g) − f D(g), h〉 ( f ∈ L1(G), g, h ∈ S1(G)).

Since D is a derivation, it is straightforward to verify that D̃ is a continuous derivation.

Let {eα}α∈I be an approximate identity in S1(G) having L1-norm equal to 1. Define

the operator Λα : (S1(G)⊗̂S1(G))∗ → L∞(G × G) by

Λα(T)( f ⊗ g) = T( f ∗ eα ⊗ eα ∗ g),

for every T ∈ (S1(G)⊗̂S1(G))∗ and f , g ∈ L1(G). Clearly each Λα is a continuous

L1(G)-bimodule morphism. Hence Λα◦D̃ is a continuous derivation from L1(G) into

L∞(G×G), and so, it is inner ([4, Theorem 5.6.41], in the case where E = L1(G×G)).

This means that there is ϕα ∈ L∞(G × G) such that Λα ◦ D̃ = adϕα
(α ∈ I). Let

ι : S1(G) → L1(G) be the inclusion map and put ψα = (ι ⊗ ι)∗(ϕα). Then

(3.3) (ι ⊗ ι)∗ ◦ Λα ◦ D̃ = adψα
(α ∈ I).

However, since ‖eα‖1 = 1, it follows that for every T ∈ (S1(G)⊗̂S1(G))∗ and g, h ∈
S1(G)

|〈(ι ⊗ ι)∗ ◦ Λα(T), g ⊗ h〉| = |〈Λα(T) , g ⊗ h〉| = |〈T, g ∗ eα ⊗ eα ∗ h〉|

≤ ‖T‖‖g ∗ eα‖S1(G)‖eα ∗ h‖S1(G) ≤ ‖T‖‖g‖S1(G)‖h‖S1(G).
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Thus ‖(ι ⊗ ι)∗ ◦ Λα‖ ≤ 1, and so, ‖(ι ⊗ ι)∗ ◦ Λα ◦ D̃‖ ≤ 2‖D‖. Hence there is

∆ ∈ B(L1(G), (S1(G) ⊗ S1(G))∗) such that (ι⊗̂ι)∗ ◦ Λα ◦ D̃ → ∆ in the W ∗OT of

B(L1(G), (S1(G)⊗̂S1(G))∗). Now take f , g, h ∈ S1(G). Then

〈∆( f ), g ⊗ h〉 = lim
α
〈(ι ⊗ ι)∗ ◦ Λα ◦ D̃( f ), g ⊗ h〉

= lim
α
〈D̃( f ), g ∗ eα ⊗ eα ∗ h〉

= 〈D̃( f ), g ⊗ h〉 = 〈D( f ) , g ∗ h〉

= 〈π∗ ◦ D( f ), g ⊗ h〉.

Hence ∆ ◦ ι = π∗ ◦ D. Therefore, from (3.3), it follows that π∗ ◦ D = W ∗OT −
limα adψα

.

4 Approximate Biflatness and Pseudo-Amenability of S1A(G)

In the preceding section we saw that the pseudo-amenablity of a Segal algebra S1(G)

in L1(G), implies that G, and hence L1(G), is amenable. In this section we prove that

(operator) approximate biflatness, and therefore pseudo-amenability, of the (oper-

ator) Segal algebra S1A(G) is much weaker than the (operator) amenability of A(G)

(Theorems 4.6 and 4.7). On the other hand, the next theorem shows that the dual

version of Theorem 3.5 is true.

If F(G) is any collection of continuous functions on G, we let Fc(G) denote the set

of compactly supported functions in F(G).

Lemma 4.1 Let SA(G) be a Segal algebra in A(G).

(i) If SA(G) has an approximate identity, then SAc(G) is dense in SA(G).

(ii) If G is discrete, then δg the indicator function at g ∈ G belongs to SA(G).

Proof Let u ∈ SA(G), ǫ > 0. Take e ∈ SA(G) such that ‖ue− u‖SA < ǫ/2. Choosing

e0 ∈ Ac(G) such that ‖e − e0‖A < ǫ/(2‖u‖SA), we have ue0 ∈ SAc(G) and

‖ue0 − u‖SA ≤ ‖ue0 − ue‖SA + ‖ue − u‖SA ≤ ‖u‖SA‖e0 − e‖A + ǫ/2 < ǫ.

This proves (i). If G is discrete, then for g ∈ G, δg ∈ A(G), and we can choose

u ∈ SA(G) such that ‖u − δg‖A < 1/2. Then |u(g) − 1| < 1/2, so u(g) 6= 0. Now

δg =
1

u(g)
uδg ∈ SA(G), proving statement (ii).

Theorem 4.2 Let SA(G) be an (operator) Segal algebra of A(G). Then the following

statements are equivalent:

(i) SA(G) has an approximate identity and G is discrete;

(ii) SA(G) has an approximate identity and is (operator) approximately biprojective;

(iii) SA(G) is (operator) pseudo-contractible.

Proof We prove the operator space version of the theorem. Suppose that G is discrete

and that SA(G) has an approximate identity (eλ)λ∈Λ. By Lemma 4.1, we may assume

that each eλ has compact support Eλ, and we can define mλ ∈ SA(G)⊗̂opSA(G) by

mλ =
∑

x∈Eλ

eλ(x)(δx ⊗ δx) (λ ∈ Λ).
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It is clear that a ·mλ = mλ · a (a ∈ SA(G)) and π(mλ) = eλ (λ ∈ Λ), an approximate

identity. Hence, SA(G) is operator pseudo-contractible.

Assuming that SA(G) is operator pseudo-contractible, let (mα)α be an operator

approximate diagonal for SA(G) such that a · mα = mα · a (a ∈ SA(G)). Let T =

idSA(G) ⊗λ(e) : SA(G)⊗̂opSA(G) → SA(G), where λ(e) is the (completely) bounded

functional on SA(G) defined by λ(e)u = u(e). By checking with elementary tensors

m = u ⊗ v, one sees that T(a · m) = aTm, T(m · a) = a(e)Tm (a ∈ SA(G)), and

Tm(e) = π(m)(e). Hence, we can choose ψ = Tmα such that

ψ = ψa (a ∈ SA(G), a(e) = 1) and ψ(e) 6= 0.

The remainder of the proof is similar to the proof of [25, Proposition 5]. Let g ∈ G

and choose v ∈ A(G) such that v(g) = 0, v(e) = 1, and take a ∈ SA(G) such

that a(e) = 1. Then av ∈ SA(G) satisfies av(e) = 1, so 0 = avψ(g) = ψ(g).

Hence, δe =
1

ψ(e)
ψ, which is a continuous function on G. Hence, G is discrete. The

equivalence of statements (ii) and (iii) is a special case of (the operator space version

of) [15, Proposition 3.8].

Lemma 4.3 Let F : S1A(H) → S1A(G) be a linear map with a completely bounded ex-

tension FA : A(H) → A(G) and (completely) bounded extension FL : L1(H) → L1(G).

Then F is itself completely bounded.

Proof By definition, S1A(G) inherits its operator space structure via the embedding

S1A(G) →֒ A(G) ⊕1 L1(G) : u 7→ (u, u)

[10, p. 4]. As FA and FL are completely bounded, so is

FA ⊕ FL : A(H) ⊕1 L1(H) → A(G) ⊕1 L1(G)

with ‖FA ⊕ FL‖cb ≤ ‖FA‖cb + ‖FL‖cb. Hence F = (FA ⊕ FL)
∣∣

S1A(H)
is also completely

bounded.

The “completely bounded” part of the next lemma will not be needed but may be

of independent interest.

Lemma 4.4 If A(G) has an approximate identity which is bounded in the (completely

bounded) multiplier norm, then so does S1A(G).

Proof Let (eλ)λ∈Λ be an approximate identity for A(G) with bound R in the multi-

plier norm of A(G); we may further suppose that (eλ) is contained in S1A(G). Given

x ∈ G, choose v ∈ A(G) such that ‖v‖A(G) = 1 and v(x) = 1. Then for any λ,

|eλ(x)| ≤ ‖eλv‖∞ ≤ ‖eλv‖A(G) ≤ R‖v‖A(G) = R. Hence,

(4.1) ‖eλ‖∞ ≤ R (λ ∈ Λ),

and therefore, for any v ∈ S1A(G),

‖eλv‖S1A = ‖eλv‖A(G) + ‖eλv‖L1 ≤ R‖v‖A(G) + R‖v‖L1 = R‖v‖S1A.
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Thus, (eλ) is also bounded in the multiplier norm of S1A(G). As (eλ) is an approxi-

mate identity for A(G), eλ → 1 in the topology of uniform convergence on compact

subsets of G. This, together with equation (4.1), yields

‖eλv − v‖L1 → 0 (v ∈ S1A(G)).

Consequently, (eλ) is an approximate identity for S1A(G).

Suppose now that (eλ) is bounded, again by R, in the completely bounded mul-

tiplier norm in A(G). Again, we can suppose without loss of generality that (eλ) is

contained in S1A(G). From equation (4.1) we know that the maps

L1(G) −→ L1(G) : a 7→ eλa

are bounded by R. It follows from Lemma 4.3 that (eλ) is bounded in the completely

bounded multiplier norm taken with respect to S1A(G).

If u is a function defined on a subgroup H of G, we let

u◦(x) =

{
u(x) if x ∈ H

0 otherwise.

Theorem 4.5 Let G be a locally compact group such that S1A(G) has an approximate

identity. If H is an open subgroup of G, and S1A(H) is (operator) approximately biflat,

then so is S1A(G).

Proof Let C be a transversal for left cosets of H in G, and assume that e ∈ C . Order

the collection Γ of finite subsets of C by inclusion, and for each γ ∈ Γ, let Eγ =

∪x∈γxH. Let S1Aγ = {u ∈ S1A(G) : u = u1Eγ
}, S1Ax = S1A{x}.

Assuming that Haar measure on H is the restriction to H of the Haar measure

on G, the map u 7→ u◦ defines a (completely) isometric isomorphism of A(H) onto

Ae = {v ∈ A(G) : v = v1H} [31, Proposition 4.2] and of L1(H) into L1(G). On

A(H), the inverse of this map is the restriction of r : A(G) → A(H) : u → u|H to Ae,

which by [31, Proposition 4.3] is a complete contraction. It follows that u 7→ u◦ is

an isometric isomorphism of S1A(H) onto S1Ae which, by Lemma 4.3, is a complete

isomorphism. Similarly, for each x ∈ G left translation by x−1 is a complete isomor-

phism of S1Ae onto S1Ax [8, Lemma 4.4]. Hence, the (operator) approximate biflat-

ness of S1A(H) implies that of S1Ax. Lemma 4.3 also implies that the projection maps

S1A(G) → S1Ax : u 7→ u1xH are completely bounded, so S1Aγ =
⊕

x∈γ S1Ax (γ ∈ Γ)

is (operator) approximately biflat by Proposition 2.8(b). Let (eλ)λ be an approxi-

mate identity for S1A(G). As noted on [10, p. 10], Ac(G) is dense in S1A(G), so we

may assume that each eλ has compact support so that (eλ)λ ⊂ ∪γS1Aγ . If we de-

fine projections Pγ of S1A(G) onto S1Aγ by Pγu = u1Eγ
, the (operator) approximate

biflatness of S1A(G) follows from Proposition 2.7.

Theorem 4.6 Let G be a locally compact group such that S1A(G) has an approximate

identity. If G contains an abelian open subgroup, then S1A(G) is approximately biflat

and therefore pseudo-amenable.
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Proof Let H be an open abelian subgroup of G. Then A(H) is amenable and there-

fore biflat by [4, Theorem 2.9.65]. By Lemma 4.4, S1A(H) has an approximate iden-

tity (eλ)λ which is bounded in the multiplier norm of S1A(H); hence, (e2
λ)λ is also

an approximate identity for S1A(H). By first applying Proposition 2.5 then Theo-

rem 4.5, we can conclude that S1A(G) is approximately biflat. Pseudo-amenability of

S1A(G) follows from Theorem 2.4.

Theorem 4.7 Let G be a locally compact group such that S1A(G) has an approxi-

mate identity, and suppose that G contains an open subgroup H such that A(H) has

an approximate identity which is multiplier-norm bounded. If ∆H has a bounded ap-

proximate indicator, then S1A(G) is operator approximately biflat and operator pseudo-

amenable.

Proof By [1, Proposition 2.3], A(H) is operator biflat. As with the proof of Theo-

rem 4.6, Lemma 4.4, Proposition 2.5, and Theorem 4.5 yield the operator approxi-

mate biflatness of S1A(G).

It is shown in [1] that ∆H has a bounded approximate indicator whenever H

can be continuously embedded in a [QSIN]-group. Every amenable group and ev-

ery [SIN]-group is a [QSIN]-group. When Ge, the principle component of G, is

amenable, the proof of [14, Proposition 5.2] shows that G contains an amenable open

subgroup. Hence we have the following corollary to Theorem 4.7.

Corollary 4.8 Let G be a locally compact group such that S1A(G) has an approximate

identity. If Ge is amenable, then S1A(G) is operator approximately biflat and operator

pseudo-amenable.

Remark 4.9 The same arguments show that under the hypotheses of Theorems 4.6

and 4.7, A(G) is, respectively, approximately biflat and operator approximately biflat.

By choosing G to be any amenable group which contains an open abelian subgroup

but which is not a finite extension of an abelian group (such as the integer Heisenberg

group), A(G) provides an example of a Banach algebra which is approximately biflat,

but not biflat. Indeed, in this case A(G) has a bounded approximate identity, so if

A(G) were biflat, it would be amenable (see [4, Theorem 2.9.65]) in contradiction to

the main result of [9].

5 Feichtinger’s Segal algebra

Let us recall the definition of S0(G). Let K be a compact subset of G with nonempty

interior and AK(G) = {u ∈ A(G) : supp u ⊂ K}. We let

qK : ℓ1(G)⊗̂opAK (G) → A(G) qK (δs ⊗ v) = s∗v,

where s∗v(t) = v(s−1t) and ⊗̂op denotes the operator projective tensor norm, which in

this case is the same as the projective tensor norm ⊗̂. Then we set S0(G) = ran qK and

assign S0(G) the operator space structure (hence Banach space structure) it inherits as

a quotient of ℓ1(G)⊗̂AK (G). We recall that this operator space structure is completely

isomorphically, though not completely isometrically, independent of the choice of
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the set K. We do not know a tractable formula for the norm of a matrix [vi j] in

Mn(S0(G)). However, if we consider a dual formulation, and consider matrices with

a “trace-class” norm, Tn(S0(G)) ∼= Tn⊗̂S0(G), we obtain for any n × n matrix [vi j]

with entries in S0(G)

‖[vi j]‖Tn(ran qK ) = inf

{
∞∑

k=1

∥∥∥ [v(k)
i j ]

∥∥∥
Tn(A)

:
[vi j] =

∑∞
k=1[sk∗v(k)

i j ], where each

sk ∈ G and [v(k)
i j ] ∈ Tn(AK(G))

}
.

We recall that, for any operator space V, a linear map S : V → V is completely

bounded if and only if the sequence of maps

Tn(S) : Tn(V) → Tn(V), Tn(S)[vi j] = [Svi j]

are uniformly bounded, and we have ‖S‖cb = supn∈N
‖Tn(S)‖.

We let the multiplier algebra of S0(G) be given by

MS0(G) = {u : G → C : uS0(G) ⊂ S0(G)}.

The usual closed graph theorem argument tells us that for each u in MS0(G), the

operator v 7→ uv is bounded. We further define the completely bounded multiplier

algebra of S0(G) by

McbS0(G) = {u ∈ MS0(G) : v 7→ uv : S0(G) → S0(G) is c.b}.

We thus obtain the following modest description of the multipliers and the com-

pletely bounded multipliers.

Proposition 5.1 Let u : G → C.

(i) u ∈ MS0(G) if and only if for any compact subset K of G with nonempy interior

we have uAK (G) ⊂ AK (G) and

‖u‖M ran qK
= sup{‖u s ∗ v‖A : s ∈ G, v ∈ AK (G), ‖v‖A ≤ 1} < ∞.

(ii) u ∈ McbS0(G) if and only if for any compact subset K of G with nonempy interior

we have uAK (G) ⊂ AK (G) and

‖u‖Mcb ran qK
= sup

{
‖[u s∗vi j]‖Tn(A) :

s ∈ G, [vi j] ∈ Tn(AK (G))

‖[vi j]‖Tn(A) ≤ 1

}
< ∞.

We note that by regularity of A(G), the condition uAK (G) ⊂ AK (G), for any K as

above, is equivalent to saying that u is locally an element of A(G).

Proof We will show only (ii), the proof of (i) being similar.

If u ∈ McbS0(G), let mu : S0(G) → S0(G) be given by muv = uv. Note that for

any s in G, compact K ⊂ G with nonempty interior and [vi j] in Tn(AK (G)), we have

[s∗vi j] ∈ Tn(S0(G)) with

‖[s∗vi j]‖Tn(ran qK ) = ‖[s∗vi j]‖Tn(A).
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Since AK (G) ⊂ S0(G), it is clear that uAK (G) ⊂ AK (G). Moreover, since S0(G) is

closed under translations, it follows that u(s∗AK (G)) ⊂ s∗AK (G) too. Hence, for

s, [vi j], as above with ‖[vi j]‖Tn(A) ≤ 1, we have

‖[u s∗vi j]||Tn(A) = ‖[u s∗vi j]‖Tn(A)

= ‖Tn(mu)‖ ≤ ‖mu‖CB(ran qK ).

Conversely, if the latter conditions hold, we let [vi j] ∈ Tn(S0(G)), ε > 0, and find

elements sk in G and matrices [v(k)
i j ] in Tn(AK (G)) such that

[vi j] =

∞∑
k=1

[sk∗v(k)
i j ] and

∞∑
k=1

‖[v(k)
i j ]‖Tn(A) < ‖[vi j]‖Tn(ran qK ) + ε.

Then we have

‖Tn(mu)[vi j]‖Tn(ran qK ) = ‖[uvi j]‖Tn(ran qK )

≤
∞∑

k=1

‖[u sk∗v(k)
i j ]‖Tn(A)

≤
∞∑

k=1

‖u‖Mcb ran qK
[sk∗v(k)

i j ]‖Tn(A)

< ‖u‖Mcb ran qK

(
‖[vi j]‖Tn(ran qK ) + ε

)
.

Hence for each n, ‖Tn(mu)‖ ≤ ‖u‖Mcb ran qK
< ∞, and thus u ∈ McbS0(G).

We let MA(G) and McbA(G) denote the algebras of multipliers and completely

bounded multipliers of A(G). The following is immediate from the proposition

above.

Corollary 5.2 (i) MA(G) ⊂ MS0(G) with ‖u‖M ran qK
≤ ‖u‖MA for any u ∈

MA(G) and K as above.

(ii) McbA(G) ⊂ McbS0(G) with ‖u‖Mcb ran qK
≤ ‖u‖McbA for any u ∈ McbA(G) and K

as above. In particular, S0(G) is a completely contractive B(G)-module.

Proof The only thing which does not follow directly from the proposition above is

that S0(G) is a completely contractive B(G)-module. This can be seen by a straight-

forward modification of the proof of the fact that S0(G) is a completely contractive

A(G)-module in [29].

We are now ready to state the main result of this section.

Theorem 5.3 Let G be a locally compact group, and let H be an open subgroup of

G such that H is weakly amenable and ∆H has a bounded approximate indicator in

B(H × H). Then S0(G) is operator biflat. In particular, S0(G) is operator pseudo-

amenable.
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Proof We first prove that S0(H) is operator biflat. Let { fα}α∈I be a bounded ap-

proximate indicator for ∆H . For each α ∈ I, define the operator ρα : S0(H × H) →
S0(H × H) by ρα(u) = u fα (α ∈ I). By the preceding corollary, each ρα is a com-

pletely bounded B(H×H)-bimodule morphism. Moreover, ‖ρα‖cb ≤ ‖ fα‖B(H×H) ≤
M, where M = sup{‖ fα‖B(H×H) | α ∈ I}. Let ρ : S0(H × H) → S0(H × H)∗∗ be

a cluster-point of ρα in the W ∗OT of CB(S0(H × H), S0(H × H)∗∗). Clearly ρ is a

B(H × H)-bimodule morphism. Let

I(∆H) = {u ∈ S0(H × H) | u = 0 on ∆H};

and

I0(∆H) = {u ∈ S0(H × H) | u has a compact support disjoint from ∆H}.

It is easy to see that, for each u ∈ I0(∆H), u fα → 0 as α → ∞. On the other hand,

from Proposition 5.1 and [29, Theorem 3.1], S0(H ×H) has an approximate identity

bounded in its completely bounded multiplier norm. Hence, from the fact that ∆H

is a set of synthesis for A(H × H) [30, Theorem 3], it follows that I0(∆H) is dense in

I(∆H). Thus, for u ∈ I(∆H) and ǫ > 0, there is uǫ ∈ I0(∆H) such that ‖u − uǫ‖ < ǫ.

Hence,

‖u fα‖ ≤ ‖(u − uǫ) fα‖ + ‖uǫ fα‖

≤ ‖u − uǫ‖M + ‖uǫ fα‖

≤ ǫM + ‖uǫ fα‖

→ ǫM,

as α → ∞. Thus u fα → 0 as α → ∞. This implies that ρ = 0 on I(∆H). Hence

ρ̃ :
S0(H × H)

I(∆H)
→ S0(H × H)∗∗

is well defined. Using the identification S0(H × H)/I(∆H) = S0(H) (see [29, Theo-

rem 3.3]), we can assume that ρ̃ is defined on S0(H). It is clear that ρ̃ is a continuous

B(H)-bimodule morphism, and so, it is a S0(H)-bimodule morphism. Moreover, if

π : S0(H × H) → S0(H) is the multiplication map, then π∗∗ ◦ ρ̃ is the canonical

embedding of S0(H) into S0(H)∗∗. Hence S0(H) is operator biflat.

Now by [29, Corollary 2.6], there is a natural, completely-bounded, algebra ho-

momorphism from S0(G) onto ℓ1(T)⊗̂S0(H), where T is a transversal for left cosets

of H and ℓ1(T) has pointwise multiplication. Hence, by Proposition 2.8(iii), S0(G) is

operator biflat. Moreover, from Proposition 5.1, S0(H) has an approximate identity

bounded in its completely bounded multiplier norm. Since the same is true for ℓ1(T),

it follows that S0(G) has an approximate identity bounded in its completely bounded

multiplier norm. Hence, from Theorem 2.4, S0(G) is operator pseudo-amenable.

It is shown in [1] that A(G) is operator biflat whenever G is either an amenable

or a [SIN]-group. Since every [IN]-group contains an open amenable subgroup,

Theorem 5.3 shows that S0(G) is operator biflat whenever G is either an amenable or

an [IN]-group.
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