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Abstract

A Banach space (X, || • ||) is said to be a dual differentiation space if every continuous convex function
defined on a non-empty open convex subset A of X* that possesses weak* continuous subgradients at the
points of a residual subset of A is Frechet differentiable on a dense subset of A. In this paper we show
that if we assume the continuum hypothesis then there exists a dual differentiation space that does not
admit an equivalent locally uniformly rotund norm.
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1. Introduction

Given a Banach space (X, || • ||) the Bishop-Phelps set (or BP-set for short) is the
set

{x* € X* : ||**|| =**(*) for some x e Bx],

where Bx denotes the closed unit ball in (X, || • ||). The Bishop-Phelps theorem, [1]
says that the BP-set is always dense in X*. In this paper we are interested in the case
when the BP-set is residual (that is, contains a dense Gs subset) in X*. Certainly, it is
known that if the dual norm is Frechet differentiable on a dense subset of X* then the
BP-set is residual in X* (see the discussion in [13]). However, the converse question
(that is, if the BP-set is residual in X* must the dual norm necessarily be Frechet
differentiable on a dense subset of X*?) remains open. One approach to this problem
is to consider the following class of Banach spaces. A Banach space (X, || • ||) is
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called a dual differentiation space (or DD-space for short) if every continuous convex
function defined on a non-empty open convex subset A of X* that possesses weak*
continuous subgradients at the points of a residual subset of A is Frechet differentiable
on a dense subset of A. It follows then that in a DD-space if the BP-set is residual
in X* then the dual norm is Frechet differentiable on a dense subset of X*. Hence one
way to solve our problem would be to show that every Banach space is a DD-space.
Unfortunately, to date, we have been unable to achieve this.

In the study of DD-spaces the authors introduced in [2] a class of Banach spaces
defined in terms of the continuity properties of 'quasi-continuous' mappings. Let
/ : T —> X be a mapping acting from a topological space T into a Banach space
(X, || • ||). Then / is said to be hyperplane minimal if for each open half space H
of X and open subset U of T with / (£/) Pi H ^ 0 there exists a non-empty open
subset V of U such that / (V) C H (see [2] for the original definition). Using this
definition the authors in [14, page 242] said that a Banach space (X, || • ||) is a generic
continuity space (or GC-space for short) if every hyperplane minimal mapping acting
from a complete metric space M into X is norm continuous at the points of a dense
subset of M (see [2, page 414] for the original definition in terms of minimal weak*
cuscos). It was shown in [2, Theorem 2.6] that every GC-space is in fact a DD-space.
However, right from its inception, the study of GC-spaces has been closely linked to
the study of locally uniformly rotund renormings. (Recall that a norm || • || is said
to be locally uniformly rotund if lim^^oo ||xn — x || = 0 whenever x, xn e Bx for all
n e N and limn_00 \\xn + x\\ = 2.) In the paper [6, Theorem 3.5] it was shown that
every Banach space that can be equivalently renormed to have every point of its unit
sphere a denting point of its closed unit ball is a GC-space while in the paper [3,
Theorem 4.5] it was shown that every Banach space that can be equivalently renormed
to have every point of its unit sphere a quasi-denting point (originally called a-denting
point) of its closed unit ball is a GC-space. In both cases it can be shown that the
spaces can be equivalently renormed to be locally uniformly rotund (see, [19] and [20]
respectively). Following on from this, the authors in [2, Theorem 1.13] showed that
every Banach space that can be equivalently renormed to be weakly locally uniformly
rotund is a GC-space. Nowadays such spaces are known to admit an equivalent locally
uniformly rotund norm [11]. However, the story does not end here. In [12] it was
shown that every Banach space that can be equivalently renormed so that on the dual
sphere the relative weak and weak* topologies agree is a GC-space. Then in [7] it
was shown that such spaces are sigma-fragmentable. Finally, in [4] it was shown that
such spaces admit an equivalent locally uniformly rotund norm (see [18] and [4]).
Motivated by these results the authors in [14, Question 1] asked 'Can every GC-space
be equivalently renormed to be locally uniformly rotund?' Here we show that if we
assume the continuum hypothesis then the answer is 'No'. Thus we sever the ties
between the study of GC-spaces and the study of locally uniformly rotund renormings.
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2. A GC-space without a Kadec norm

Our counter-example is modelled on that of Namioka and Pol [15] which in turn,
is based upon the following theorem of Kunen (see [16] for a proof).

THEOREM 2.1. Assume the continuum hypothesis and let X be a subset of[0, 1].
Then there exists a locally compact, locally countable topology x on X, stronger than
the Euclidean topology, such that, if K is the one-point compactification of (X, r) ,
then the function space C(K) is hereditarily Lindelof in the weak topology.

It is shown in [15, Corollary 3.3] that if X is uncountable then the Banach space
(C(K), || • || oo) is not <7-fragmentable (see, [5] for the definition of cr-fragmentability).
In particular, this means that C(K) does not admit a Kadec norm that is equivalent
to the supremum norm on C(K), [5]. (Recall that a norm || • || is said to be a Kadec
norm if on the unit sphere the relative norm topology coincides with the relative weak
topology.) What we shall show is that if X does not contain any uncountable compact
subsets (with respect to the Euclidean topology) then C(K) is a GC-space. Hence,
if X is an uncountable subset of [0, 1] that does not contain any uncountable compact
subsets (for example, if X is a Bernstein set, [17, page 23]) then C(K) is a GC-space
without an equivalent locally uniformly rotund norm. But before we can accomplish
this we will need a few more definitions and a few more lemmas. Let <I> : T —> 2X be
a set-valued mapping acting between topological spaces T and X. We shall say that
<J> is upper semicontinuous (lower semicontinuous) at a point to £ T if for each open
subset W of X with <t>(r0) c W (<t>(t0) f~l W ^ 0) there exists a neighbourhood V
of to such that $ ( r ) c w (<J>(r) n W ^ 0) for all t e U. Similarly, we shall say
that <J> is quasi upper semicontinuous (quasi lower semicontinuous) at a point to 6 T
if for each open neighbourhood U of t0 and open subset W of X with <t>(to) 9 W
(4>(*b) n W ^ 0) there exists a non-empty open subset V of U such that <&(f) C W
(<t>(f) C\W ^$5) for all t e V. If <t> is both upper and lower semicontinuous at a point
to € T then we simply say that <£> is continuous at to.

LEMMA 2.2 ([15, Lemma 6.1]). If$4 is an uncountable family of distinct compact
open subsets of a Hausdorff topological space then (J sit is also uncountable.

This lemma may be used to establish the following fact concerning continuous
set-valued mappings.

LEMMA 2.3. Suppose that T\ and T2 are Hausdorff topologies on a set X such that
every X\-compact subset ofX is at most countable. If4>:M^>-2xisa set-valued
mapping acting from a complete metric space (M, p) into X\-compact subsets of X
such that: (i) <I> is X\-continuous and (ii) for each m e M, <t>(/n) is x2-compact and
Xi-open then <& is constant on some non-empty open subset ofM.
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PROOF. In order to obtain a contradiction let us assume that <t> is not constant on
any non-empty open subset of M. Let D be the set of all finite sequences of O's and
l's. We shall inductively (on the length \d\ of d e D) define a family {Vd : d e D) of
non-empty open subsets of M such that

(i) p-diam(Vd)_< 1/2^;
(ii) 0 = Vrf0 n Kn c V^ U Vdi c Vd for each d e D\

(iii) $ 0 ) ^ 4>(u') whenever v e Vd0 and v' e Vd\.

Base Step. Let V0 be a non-empty open subset of M with p-diam( Vg) < 1/2°, where 0
denotes the empty sequence of length 0.

Assuming that we have already defined the non-empty open sets Vd satisfying the
properties (i), (ii) and (iii) for all d e D with \d\ < n, we proceed to the next step.

Inductive Step. Fix d € D of length n. Then there are two points v0 and vt in Vd

and some point x € X such that x € <t>(vo)\<t>(v\). Since (X, X\) is Hausdorff and
<E>(ui) is t\ -compact there exist disjoint reopen sets t/0 and U\ such that x e UQ and
®(v\) c U\. From the T]-continuity of <t> we can choose open neighbourhoods Vdi

of Vj (i = 1, 2) such that (i) and (ii) are satisfied and 4>(u) n UQ ^ 0 for all v e Vd0

and <t>( Vdi) c (/i- In particular, <t>(t>) ^ <t>(v') whenever v e Vd0 and u' e V̂ i and
so property (iii) is also satisfied. This completes the induction.

For each n e N, let

Kn:=\J{Vd:deD and \d\ = n]

and let AT := p|{^« : " 6 ^ ) - Then K is an uncountable compact subset of M.
Moreover, O(fc) ^ <b(k!) whenever k and A:' are distinct elements of K. Therefore,
si := {<&(k) : k e K) is an uncountable family of T2-compact r2-open subsets
and so by Lemma 2.2, Q>(K) = [ J ^ must be uncountable. On the other hand,
since 4> is r rupper semicontinuous and has r^compact images, Q>(K) is ri-compact;
which contradicts the hypothesis that X does not contain any uncountable Ti-compact
subsets. Hence <J> must be constant on some non-empty open subset of M. •

Our main result also relies upon the following version of Fort's theorem pioneered
by Matejdes, [10].

LEMMA 2.4. Let® : T -*• 2M be a quasi lower semicontinuous set-valued mapping
acting from a Baire space T into compact subsets of a metric space M. Then there
exists a residual subset RofT such that <t> is continuous at each point of R.

PROOF. Let D := {t e T : <I>(0 / 0}. Since <t> is quasi lower semicontinuous,
D c int(D). Let B := int(D). Then by [8, Corollary 2.9] there exists a residual
subset R' of B such that <t>|B is continuous at each point of R'. Let R := R'U (T\D).
Then R is residual in T and <J> is continuous at each point of R. •
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LEMMA 2.5 ([14, Theorem 1.1]). Let <5> : T -* X be a hyperplane minimal map-
ping acting from a topological space T into a Banach space (X, || • ||). Then for each
subset D ofT, $(intD) c co{4>(D)}. In particular, \\ • ||-diam[<t>(intZ>)] < || • ||-
diam[<t> (£>)].

THEOREM 2.6. Assume the continuum hypothesis. Then there exists a scattered
compact set K such that (C(K), || • ||oo) is a GC-space but (C(K), weak) is not a-
fragmentable. In particular, C(K) does not admit a Kadec norm equivalent to the
supremum norm.

PROOF. Let X be any uncountable subset of [0, 1] that does not contain any un-
countable compact subsets (for example, X is a Bernstein subset of [0, 1]) and let K be
the one-point compactification, with JC^ the point at infinity, of the space (X, r) with
Kunen's topology as described in Theorem 2.1. By [15, Corollary 3.3], (C(K), weak)
is not ff-fragmentable by the norm. In particular, this means that C{K) does not
have a Kadec norm equivalent to the supremum norm. So it remains to show that
(C(K), || • Hoc) is a GC-space. In fact because of the 3-space property given in
[14, Theorem 3.7] it is sufficient to show that (C0(K), || • W^) is a GC-space, where
Q{K) :— [f e C(K) : /(*«,) = 0}, that is, the functions that vanish at infinity.
To this end, let / : M -> Co(K) be a hyperplane minimal mapping acting from a
complete metric space (M, d) into C0(K). For each s > 0, consider the open set

Oe := | J {open sets U : || • ||oo -diam[/ (£/)] < £} •

We claim that for each s > 0, Oe is dense in M. We begin the justification of
this by considering a non-empty open subset W of M (with the aim of showing that
O ( n f f / 0). By [14, Theorem 2.9] we may assume that/ (M) c flCo(/o>the closed
unit ball in C0(K). Let & be the countable collection of all finite sets F of rational
numbers in (—1, 1) such that the distance of each point in [—1, 1] to F is less than
e/2. For each F e & and n e N, let

An(F) := (t e W : disttf (*)(*), F) > 1/n).

Then the countable family [An(F) : F e & andrc 6 N} covers W. Since for each
t e M, f (t)(K) is a scattered compact subset of R and hence countable. Therefore
there must be some F e & with / (t)(K) D F - 0. It follows then that t e An(F)
for some n e N. Now, since W is a Baire space there is some F e / and n e N such
that An(F) is second category in W. Let F := { î, qz, •.., qm) where,

- 1 = : q0 < qx < q2 < • • • qm < qm+i := 1
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and let F* := FU {q0, qm+i}. Then, by possibly making n larger, we may assume that

0 < 1/n < l/2min{|<7' - q"\ : q', q" e F* and q' ^ q").

Let/'o be the integer in [2, ... ,m] such that 0 e (<7,0_i, <?,„). For each i with i0 < i < m,
define A/,- : int[An(F)] -+2K,Wt: int[An(F)] -> 2K and Nt : int[An(F)] -> 2K by

yv,-(r) := {* 6 #T :, ~~ '

and

Nl(t):={keK:f(t)(k)>ql-l/n}.

For each i with 1 < i < iOl define A/, : int[An(F)] -> 2K, Nt : int[An(F)] ->• 2K and
#,- : int[A7(F)] - • 2K by

q, -

and

Ni(t):={keK:f(t)(k)<ql + l/n).

Now since/ is hyperplane minimal, both mappings^ and N,, (with/ e {1, 2 , . . . , m})
are quasi lower semicontinuous on int[An(F)] with respect to the discrete topology
on K. Therefore, for each i e {1, 2 , . . . , m) the mapping t H* Af,(f) has compact
(possibly empty) images and is quasi lower semicontinuous with respect to both the
T-topology and the Euclidean topology on K. Hence by Lemma 2.4, there exists
a dense Gs subset G of int[An(F)] on which each Nit (with ;' € { 1 , 2 , . . . , m}) is
continuous with respect to the Euclidean topology on K. We now show that if t 6 G
then for each i e {1, 2 , . . . , m}, Nt(t) = Nj(t). So consider t e G and i e [i0, ... ,m)
(the case 1 < i < i0 is similar) and suppose, in order to obtain a contradiction, that
there is some k e Nj(t)\Nj(t). Since N, is upper semi continuous with respect to the
Euclidean topology at t e G there exists an open neighbourhood U of t in int[An(F)]
such that k £ Nj(lT). On the other hand, the mapping Nt is quasi lower semicontinu-
ous with respect to the discrete topology on K and so there is a non-empty open subset
V of U such that k e Nj(t') for all t' e V. In particular, this would mean that for each
t' € V, f (t')(k) 6 (<?, - 1/n, q{ + 1/n] and so dist(/ (t')(K), F) < 1/n. But this is
impossible since for each t' e V n An(F) jL 0, dist(/ (t')(K), F) > 1/n. Hence it
must be the case that Ni(t) = Ni(t). Next we successively apply Lemma 2.3 (with ti
equal to the Euclidean topology and r2 equal to r ) to the mappings 11-> Nt{t) defined
on G—which is completely metrizable—to obtain a decreasing sequence

Um c Um-x c • • • U2 c ut c W

of non-empty open subsets of int[An(F)] such that each N, is constant on £/, n G.
Let [/ := f/m then each N, = /V, is constant on U C\ G. For each 0 < i < m, let
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7,• : U D G - • 2K be defined by 7,(0 := {* e AT : / (0(*) € [?,-, 9,+i]}. It is easy to
verify that each 7, (0 < i < m) is constant on {/ D G and that for each t e U n G,
UiU) '• 0 < i < m) is a partition of AT. Indeed, for each r e U n G if

(i) *=0then 7,(0 = ^+1(0;
(ii) 0 < i < i0 - 1 then 7,(0 = Nl+l(t)\Ni(t);

(iii) / = m then 7,(0 = Ni(t);
(iv) f0 <i<m then 7,(0 = N,(t)\Nl+l(t);
(v) / = i0 - 1 then 7,(0 = AT\ | JM(O : 0 < / < ro and i ^ (i0 - 1)}.

Therefore, if t, t' e U n G and jfc £ AT then \f (t')(k) - f (t)(k)\ < \qj+l - q,\ < s,
where j is the unique element in {0, 1, . . . , m] such that k e 7, (t) and k e Jj (?')•
Thus, || • ||00-diam[/(f/n G)] < s and so by Lemma 2.5, || • ||oc-diam[/((/)] < £•
Hence 0 ^ f/ c (9£ D W; which shows that O£ is dense in M. Therefore/ is norm
continuous at each point of {^\{O\/n : n e N}. •

REMARK. The previous theorem raises two natural questions: (i) Is every weakly
Lindelof Banach space a generic continuity space? (ii) Is there an example (in ZFC) of
a weakly Lindelof Banach space that does not admit an equivalent locally uniformly
rotund norm?

We end this paper by reiterating the main problem in the area. Namely, is it true
that if the Bishop-Phelps set of a Banach space (X, || • ||) is residual in X* then the
dual norm is Frechet differentiable on a dense subset of X*?

One impediment to finding a counter-example to this question is that, in general, it
is difficult to identify those linear functions in the dual of a Banach space that attain
their norm. There are a few exceptions to this, for example, if X is reflexive or of the
form C(T), for some infinite compact T, with the supremum norm. However, in the
latter case the Bishop-Phelps set is known to be always of the first Baire category in

cm*, Pi.
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