
Canad. J. Math. Vol. 63 (6), 2011 pp. 1254–1283
doi:10.4153/CJM-2011-033-4
c©Canadian Mathematical Society 2011

Constructions of Chiral Polytopes of Small
Rank

Antonio Breda D’Azevedo, Gareth A. Jones, and Egon Schulte

Abstract. An abstract polytope of rank n is said to be chiral if its automorphism group has precisely

two orbits on the flags, such that adjacent flags belong to distinct orbits. This paper describes a general

method for deriving new finite chiral polytopes from old finite chiral polytopes of the same rank. In

particular, the technique is used to construct many new examples in ranks 3, 4, and 5.

1 Introduction

Abstract polytopes are combinatorial structures with distinctive geometric, algebraic,

or topological properties, and are in many ways more fascinating than convex poly-

topes and tessellations. The most symmetric structures, the abstract regular poly-

topes, generalize the traditional regular polytopes and regular tessellations and have

been investigated extensively (see Coxeter [13] and McMullen and Schulte [40]). The

abstract regular polytopes of rank 3 are (essentially) the maps on closed surfaces

and have a long history of study across many areas of mathematics (see Coxeter and

Moser [16] and Jones and Singerman [34]).

By contrast, relatively little is known about (abstract) chiral polytopes, which form

the most important class of nearly regular polytopes (see Schulte and Weiss [54]).

Chirality is a fascinating phenomenon that does not have a counterpart in the clas-

sical theory of traditional convex polytopes. Intuitively, a polytope of rank n is chi-

ral if it has maximal “rotational symmetry” but lacks symmetry by “reflection”. In

rank 3, the finite chiral polytopes are given by the irreflexible (chiral) maps on closed

compact surfaces (see Coxeter and Moser [16]). The first family of chiral maps was

constructed by Heffter [25] in 1898 (see also Doro and Wilson [19]). It is well known

that there are infinitely many chiral maps on the 2-torus (of genus 1), but for higher

genus their appearance is rather sporadic with the next example occurring on a sur-

face of genus 7 (see Wilson [59]). On the other hand, for rank n ≥ 4 there are no

chiral tessellations on compact euclidean space-forms of dimension n − 1 (see Hart-

ley, McMullen, and Schulte [24]), so in particular, there are no chiral tessellations on

the (n − 1)-torus. (There do exist regular tessellations on the (n − 1)-torus for any

n ≥ 3, called regular toroids; see [40, § 6D,E]).

The quest for chiral polytopes of rank greater than 3 has inspired much of the re-

cent activity in this area. For a long time, finite examples were known only in rank

4 (see [12, 17, 46, 48, 55]). One particular type of construction in rank 4 begins with
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a 3-dimensional regular hyperbolic honeycomb and a faithful representation of its

symmetry group as a group of complex Möbius transformations (generated by the

inversions in four circles cutting one another at the same angles as the corresponding

reflection planes in hyperbolic space), and then derives chiral 4-polytopes by apply-

ing modular reduction techniques to the corresponding matrix group (see Monson

and Schulte [45] for a brief survey).

For rank 5, infinite chiral polytopes were found by applying the following general

extension theorem to certain finite examples of rank 4 (see [56]). Any chiral poly-

tope of rank n with regular facets is itself the facet type of a chiral polytope of rank

n + 1; moreover, among all chiral polytopes of rank n + 1 with facets isomorphic to

the given chiral polytope of rank n, there exists a universal such polytope, whose au-

tomorphism group is a certain amalgamated product of the automorphism groups

of the given polytope and its facet (see Section 9).

Very recently, Conder, Hubard, and Pisanski [10] succeeded in constructing the

first known examples of finite chiral polytopes of rank 5 by searching for normal sub-

groups of small index in the orientation preserving subgroups of certain 5-generator

Coxeter groups with string diagrams.

In this paper we describe a general method for deriving new chiral polytopes from

old chiral polytopes of the same rank. This enables us to construct many new ex-

amples in ranks 3, 4, and 5. The new polytopes have a group isomorphic to the

direct product of the automorphism group of the old chiral polytope with the rota-

tion (even) subgroup of the automorphism group of a certain regular polytope. The

key idea behind this approach is an analogue of the mixing technique of [40, Ch.7].

In Sections 2 and 3 we review basic facts about regular and chiral polytopes and

investigate the crucial intersection property of their automorphism groups. Section 4

discusses chirality groups, an algebraic means of measuring the degree of irreflexibil-

ity of a chiral polytope. Section 5 introduces mixing of groups and polytopes and

establishes criteria for when the mix of certain groups is a direct product. The four

remaining sections then exploit the mixing technique to construct chiral polytopes

in ranks 3, 4, and 5.

2 Polytopes and Groups

For general background material on abstract polytopes we refer the reader to [40,

Ch. 2–3]. Here we briefly review some basic concepts and terminology.

An (abstract) polytope of rank n, or simply an n-polytope, is a partially ordered set

P with a strictly monotone rank function with range {−1, 0, . . . , n}. An element of

rank j is a j-face of P, and a face of rank 0, 1, or n − 1 is a vertex, an edge, or a

facet, respectively. The maximal chains, or flags, of P all contain exactly n + 2 faces

including a unique least face F−1 (of rank −1) and a unique greatest face Fn (of rank

n). These faces, F−1 and Fn, are the improper faces of P; the other faces are the proper

faces of P. Two flags are said to be adjacent (i-adjacent) if they differ in a single

face (just their i-face, respectively). Then P is required to be strongly flag-connected

in the sense that if Φ and Ψ are two flags, then they can be joined by a sequence of

successively adjacent flags Φ = Φ0,Φ1, . . . ,Φk = Ψ, each containing Φ ∩Ψ. Finally,

P has the following homogeneity property (diamond condition): whenever F ≤ G,
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with F a ( j − 1)-face and G a ( j + 1)-face for some j, then there are exactly two

j-faces H with F ≤ H ≤ G. This last property basically says that abstract polytopes

are topologically “real” and are close relatives of convex polytopes; in particular, this

feature distinguishes abstract polytopes from other kinds of (thick) ranked incidence

structures.

For any two faces F of rank j and G of rank k with F ≤ G, we call

G/F := {H ∈ P | F ≤ H ≤ G}

a section of P; this is a (k − j − 1)-polytope in its own right. In particular, we can

identify a face F with the section F/F−1. Moreover, Fn/F is said to be the co-face at

F, or the vertex-figure at F if F is a vertex.

We occasionally require more general ranked structures than polytopes. Following

[40, p. 43], a pre-polytope is a ranked partially ordered set sharing with polytopes all

defining properties but one, namely strong flag-connectedness. Thus a pre-polytope

is a polytope if and only if it is strongly flag-connected. A priori, a pre-polytope need

not have any connectedness properties at all. However, in our applications, all pre-

polytopes are at least flag-connected, meaning that, if Φ and Ψ are two flags, they can

be joined by a sequence of successively adjacent flags Φ = Φ0,Φ1, . . . ,Φk = Ψ with

no further assumptions on these flags. Thus strong flag-connectedness amounts to

flag-connectedness of every section (including the pre-polytope itself).

Now returning to polytopes, we say that a polytope P is regular if its automorphism

group Γ(P) (group of incidence preserving bijections) is transitive on the flags, and

that P is chiral if Γ(P) has two flag orbits such that adjacent flags are always in distinct

orbits. The group Γ(P) of a regular or chiral polytope P has a well-behaved system

of distinguished generators obtained as follows.

If P is a regular n-polytope, then Γ(P) is generated by involutions ρ0, . . . , ρn−1,

where ρi maps a fixed, or base, flag Φ to the flag Φi i-adjacent to Φ. These generators

satisfy (at least) the standard Coxeter-type relations

(2.1) (ρiρ j)
pi j = ǫ for i, j = 0, . . . , n − 1,

where ǫ denotes the identity element, and pii = 1, p ji = pi j =: pi+1 if j = i + 1, and

pi j = 2 otherwise. Note that the underlying Coxeter diagram is a string diagram.

The numbers p j determine the (Schläfli) type {p1, . . . , pn−1} of P. Moreover, the

group has the following intersection property:

(2.2) 〈ρi | i ∈ I〉 ∩ 〈ρi | i ∈ J〉 = 〈ρi | i ∈ I ∩ J〉 for I, J ⊆ {0, 1, . . . , n − 1}.

The elements

σi := ρi−1ρi (i = 1, . . . , n − 1)

generate the rotation subgroup Γ
+(P) of Γ(P), which has index at most 2. We call P

directly regular if this index is 2.

A string C-group is a group Γ = 〈ρ0, . . . , ρn−1〉 whose generators satisfy (2.1)

and (2.2); here, the “C” stands for “Coxeter”, though not every C-group is a Coxeter
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group. The string C-groups are precisely the automorphism groups of regular poly-

topes, since, in a natural way, such a polytope can be uniquely reconstructed from Γ

(see [40, §2E]). We often identify a regular polytope with its automorphism (string

C-) group.

We write [p1, p2, . . . , pn−1] for the Coxeter group whose underlying Coxeter di-

agram is a string with n nodes and with n − 1 branches labeled p1, p2, . . . , pn−1.

This is the automorphism group of the universal n-polytope {p1, . . . , pn−1}, which

is indeed regular (see [40, § 3D]).

All polytopes of rank 3 (also called polyhedra) can be viewed as maps on surfaces,

and all maps on surfaces satisfying the above homogeneity property are polytopes (of

rank 3). Note that a map on a surface has the homogeneity property if and only if

its faces have more than one edge and do not self-touch (neither two vertices, nor

two edges, of a face coincide). Recall from [16] that {p, q}r denotes the regular map

obtained from the regular tessellation {p, q} on the 2-sphere or the euclidean or hy-

perbolic plane by identifying any two vertices r steps apart along a Petrie polygon (a

zigzag polygon along the edges such that any two, but no three, consecutive edges

belong to a common face). Its group [p, q]r is the quotient of the Coxeter group

[p, q] = 〈ρ0, ρ1, ρ2〉 obtained by factoring out the single extra relation (ρ0ρ1ρ2)r
= ǫ.

In particular, {p, q}r is directly regular (or, equivalently, orientable) if and only if r

is an even integer. Note that here it is not implied that a polyhedron {p, q}r exists

for all p, q, r ≥ 2; for example, the group [3, 7]17 is trivial (see [16, p. 113]), so a

polyhedron {3, 7}17 certainly does not exist.

If P is a chiral n-polytope, then Γ(P) is generated by elements σ1, . . . , σn−1 associ-

ated with a base flagΦ = {F−1, F0, . . . , Fn} as follows. The generator σi fixes the faces

in Φ \ {Fi−1, Fi} and cyclically permutes (“rotates”) consecutive i-faces of P in the

(polygonal) section Fi+1/Fi−2 of rank 2. By replacing a generator by its inverse if need

be, we can further require that, if F ′
i denotes the i-face of P with Fi−1 < F ′

i < Fi+1

and F ′
i 6= Fi , then σi(F ′

i ) = Fi . The resulting generators σ1, . . . , σn−1 of Γ(P) then

satisfy (at least) the relations

(2.3) σ
pi

i = (σiσi+1 · · ·σ j)
2
= ǫ for i, j = 1, . . . , n − 1, with i < j,

where as before the numbers pi determine the type {p1, . . . , pn−1} of P. The inter-

section property for the groups of chiral polytopes is more complicated than that for

C-groups and can be described as follows (see [54]).

For 1 ≤ i ≤ j ≤ n − 1 define

κi, j := σiσi+1 · · ·σ j ,

and for 0 ≤ i ≤ n let κ0,i := κi,n := ǫ; then κii = σi for i 6= 0, n. For I ⊆
{−1, 0, . . . , n} set

Γ
I := 〈κi, j | i ≤ j and i − 1, j ∈ I〉.

Then the subgroup Γ
I of Γ(P) is trivial if |I| ≤ 1; equals Γ(P) if I = {−1, 0, . . . , n};

or is given by 〈σ1, . . . , σn−2〉 or 〈{σ j | j 6= i, i + 1}∪{κi,i+1}〉 if I = {−1, 0, . . . , n}\
{i} with i = n−1 or 1 ≤ i ≤ n−2, respectively. Moreover, Γ{i−1,..., j}

= 〈σi , . . . , σ j〉
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if 0 ≤ i ≤ j ≤ n. The intersection property for the group Γ(P) of a chiral n-polytope

P then takes the following form:

(2.4) Γ
I ∩ Γ

J
= Γ

I∩ J for I, J ⊆ {−1, 0, . . . , n}.

For polytopes of ranks 4 and 5, such as those dealt with in this paper, these conditions

are equivalent to the following smaller sets of equalities of groups: for rank 4,

(2.5) 〈σ1〉 ∩ 〈σ2〉 = 〈ǫ〉 = 〈σ2〉 ∩ 〈σ3〉, 〈σ1, σ2〉 ∩ 〈σ2, σ3〉 = 〈σ2〉

(the intersection condition for rank 3 amounts to the left-most equality in equation

(2.5)); and for rank 5, both sets (2.5) and

(2.6)
〈σ1, σ2, σ3〉 ∩ 〈σ2, σ3, σ4〉 = 〈σ2, σ3〉, 〈σ1, σ2, σ3〉 ∩ 〈σ3, σ4〉 = 〈σ3〉,

〈σ1, σ2, σ3〉 ∩ 〈σ4〉 = 〈ǫ〉.

The equations in (2.5) and (2.6), respectively, correspond to the cases n = 4 and

n = 5 of Lemma 3.1.

Note that the same intersection property (2.4) also holds for the rotation subgroup

of a directly regular polytope. However, it might fail if the regular polytope is not

directly regular. In fact, if P is a regular 4-polytope whose facets and vertex-figures

are not directly regular, then P is also not directly regular and

〈σ1, σ2〉 ∩ 〈σ2, σ3〉 = 〈ρ0, ρ1, ρ2〉 ∩ 〈ρ1, ρ2, ρ3〉 = 〈ρ1, ρ2〉 	 〈σ2〉,

so the two subgoups on the left intersect in the dihedral group 〈ρ1, ρ2〉, not the cyclic

group 〈σ2〉. The 11-cell {{3, 5}5, {5, 3}5} (see below for notation) discovered in

[15,21] is an example of a 4-polytope of this kind. Its automorphism group is L2(11),

and the facets and vertex-figures are hemi-icosahedra {3, 5}5 or hemi-dodecahedra

{5, 3}5, respectively, both with group A5. The two subgroups isomorphic to A5 in-

tersect in a dihedral group of order 10. (We use the ATLAS [11] notation L2(q) for

the projective special linear group PSL2(q).)

Conversely, if Γ is a group generated by elements σ1, . . . , σn−1 satisfying the rela-

tions (2.3) and the respective intersection condition (2.4) in rank n (that is, (2.5) in

rank 4 and (2.6) in rank 5), then Γ is the group of a chiral n-polytope, or the rota-

tion subgroup (of index 2) of the group of a directly regular polytope. In particular,

the polytope is directly regular if and only if Γ admits an involutory group automor-

phism mapping the set of generators σ1, . . . , σn−1 of Γ to the new set of generators

σ−1
1 , σ2

1σ2, σ3, . . . , σn−1. In this case the automorphism is induced by conjugation

with ρ0 in Γ(P) (and there are similar group automorphisms induced by conjuga-

tion with ρi for any i). On the other hand, for a chiral polytope P, the two flag orbits

yield two sets of generators that are not conjugate in Γ(P); thus a chiral polytope

occurs in two enantiomorphic (mirror image) forms.

If ω is any word in the generators σ1, . . . , σn−1 of Γ (and their inverses), then the

enantiomorphic (or mirror image) word ω of ω is obtained from ω by replacing every

occurrence of σ1 by σ−1
1 and σ2 by σ2

1σ2, while keeping all σ j with j ≥ 3 unchanged
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(and possibly applying some standard rules for inverses, powers, and cancellation).

This definition is motivated by the characterization of direct regularity in the previ-

ous paragraph. (Strictly speaking, its proper setting would be the free group on n

generators, but for simplicity we work here directly with Γ.) For example, if n = 4

and ω = σ2σ
−1
3 σ1, then ω = σ2

1σ2σ
−1
3 σ−1

1 . If a word ω represents the trivial element

in Γ, this may no longer be true for the new word ω (unless Γ admits a group au-

tomorphism as described). Note that ω depends on the actual representation of an

element of Γ as a word ω in the generators, not only on the element itself. Moreover,

observe that ω = ω for all words ω.

We later exploit the following simple observation to establish the chirality of poly-

topes. An application is given in Section 9.

Lemma 2.1 In the above situation, if Γ is the rotation subgroup of a directly regular

n-polytope and ω is any word in the distinguished generators of Γ, then the two elements

of Γ represented by ω and its enantiomorphic word ω must necessarily have the same

period.

Proof The elements ω and ω are conjugates by ρ0 in the full automorphism group

of the polytope, so they clearly have the same period.

It is convenient to define Γ
+(P) := Γ(P) if P is a chiral polytope, so as to have

common notation available for both chiral and directly regular polytopes. Thus

Γ(P), again considered with its distinguished generators, coincides with its rotation

subgroup in this case.

The simplest examples of chiral polytopes are the toroidal maps {4, 4}(b,c),

{3, 6}(b,c), and {6, 3}(b,c), with b, c 6= 0 and b 6= c (see [16]). There seem to be

fewer chiral polytopes than regular polytopes. For example, for chiral maps, the next

occurrence (by genus) is on a surface of genus 7; see [8] for a census of orientable chi-

ral or regular maps of genus 2 to 101 and of non-orientable regular maps of genus 2

to 202. For rank n ≥ 4, there are no chiral tessellations on compact euclidean space-

forms of dimension n− 1 (see [24]), so the search for examples of chiral n-polytopes

should begin with Schläfli symbols of hyperbolic type.

All the sections of a regular polytope are regular, and all the sections of a chiral

polytope are either directly regular or chiral. In fact, for a chiral n-polytope, all the

(n − 2)-faces and all the co-faces at edges are actually directly regular; in particular,

the 3-faces of a chiral polytope of rank 5 are directly regular.

If a regular or chiral n-polytopeP has facetsP1 and vertex-figuresP2, we say thatP

is of type {P1,P2} (this is a change of terminology from [40]). By slight abuse of no-

tation, the symbol {P1,P2} will also denote the universal regular or chiral n-polytope

of this type, provided any such polytopes exist at all (see [40, p. 97] and [55, p. 229]).

For example, the 11-cell {{3, 5}5, {5, 3}5} is the universal regular 4-polytope with

hemi-icosahedral facets {3, 5}5 and hemi-dodecahedral vertex-figures {5, 3}5.

Recall that the order complex of an n-polytope P is the (abstract) (n − 1)-

dimensional simplicial complex whose vertices are the proper faces of P (of ranks

0, . . . , n − 1) and whose simplices are the chains (subsets of flags) that do not con-

tain an improper face (of rank −1 or n). The order complex of a chiral polytope is
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orientable, and the order complex of a regular polytope is orientable if and only if the

polytope is directly regular.

A polytope is self-dual if it admits a duality (incidence reversing bijection) onto

itself. A chiral polytope P is properly self-dual if it admits a duality preserving each

of the two flag orbits under Γ(P) (that is, flags are mapped to flags in the same flag

orbit); otherwise, P is improperly self-dual (see [27, 54]).

A self-dual regular, or properly self-dual chiral, n-polytope P always has a dual-

ity δ that fixes the base flag; this necessarily is a polarity (duality of period 2). If

σ1, . . . , σn−1 are the distinguished generators of Γ+(P), then

δσ jδ = σ−1
n− j ( j = 1, . . . , n − 1).

Thus conjugation by δ (in the group of all automorphisms and dualities of P) in-

duces an involutory group automorphism of Γ+(P). Conversely, if an n-polytope P

is regular or chiral and Γ
+(P) admits a group automorphism mapping σ j to σ−1

n− j for

each j, then P is self-dual. In fact, P is properly self-dual if P is chiral. Note that an

improperly self-dual chiral n-polytope need not possess a polarity, but it does if the

rank n is odd (see [27]).

Let P and Q be two polytopes (or flag-connected pre-polytopes) of the same rank,

not necessarily regular or chiral. Following [40, p. 43], a mapping γ : P → Q is called

a covering if it preserves incidence of faces, ranks of faces, and adjacency of flags; then

γ is necessarily surjective, by the flag-connectedness of Q. We say that P covers Q if

there exists a covering γ : P → Q.

A common way to obtain coverings of polytopes is by the construction of quo-

tients. Let P be an n-polytope, let N be a subgroup of Γ(P), and let P/N denote the

set of N-orbits on P. If F is a face of P, we write N · F for its orbit under N. On

P/N we can introduce a partial order as follows: if F̂, Ĝ ∈ P/N, then F̂ ≤ Ĝ if and

only if F̂ = N · F and Ĝ = N · G for some faces F and G of P with F ≤ G. The

set P/N together with this partial ordering is called the quotient of P with respect to

N. A quotient of a polytope need not be a polytope (in fact, it need not even be a

pre-polytope).

The chiral polytopes in this paper are obtained from other chiral polytopes by

mixing them with a directly regular polytope. To begin with, let ∆ = 〈α1, . . . , αk〉
and ∆

′
= 〈α ′

1, . . . , α
′
k〉 be two groups, each with k specified generators (here we

could allow a generator to be trivial, although we will not encounter this case). If we

define

β j := (α j , α
′
j) ∈ ∆×∆

′ ( j = 1, . . . , k),

then the subgroup

∆ ♦ ∆
′ := 〈β1, . . . , βk〉

of ∆ ×∆
′ is called the mix of (the component groups) ∆ and ∆

′ (see [40, Ch. 7A]).

In our applications, ∆ and ∆
′ will be the rotation subgroups of chiral or directly

regular polytopes.

More specifically, let P and Q be chiral or regular n-polytopes with (rotation sub-)

groups Γ+(P) = 〈σ1, . . . , σn−1〉 and Γ
+(Q) = 〈σ ′

1, . . . , σ
′
n−1〉, respectively. (Here we
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represent a regular polytope by its rotation subgroup rather than the full automor-

phism group. We do not explicitly require that a regular polytope be directly regular,

but in our applications this will always be the case.) Now the mix of Γ+(P) and Γ
+(Q)

is given by

Γ
+(P) ♦ Γ

+(Q) := 〈τ1, . . . , τn−1〉,

where

τ j := (σ j , σ
′
j ) ( j = 1, . . . , n − 1).

This certainly is a group satisfying relations as in (2.3), but in general it will not have

the intersection property (2.4) with respect to its generators τ1, . . . , τn−1. If, however,

the intersection property is satisfied, then Γ
+(P) ♦ Γ

+(Q) is either the group of a

chiral n-polytope or the rotation subgroup of a directly regular n-polytope, denoted

P ♦ Q and called the mix of P and Q.

Note that the mix of two polytopes is an analogue of the parallel product (or join)

construction occurring in the study of maps and hypermaps (see [3, 4, 49, 60]).

3 More on the Intersection Property

In practice, the verification of the intersection property (2.4) for a group Γ can often

be reduced to the consideration of only a few intersections of subgroups, as described

in the following lemma given without proof (see [54, p. 511]). The cases n = 4 and

n = 5 were illustrated earlier.

Lemma 3.1 Let n ≥ 4, and let Γ := 〈σ1, . . . , σn−1〉 be a group satisfying (2.3).

Suppose that the subgroup Γn−1 := 〈σ1, . . . , σn−2〉 of Γ has the intersection property

(2.4) and that the following intersection conditions hold:

Γn−1 ∩ 〈σ j , . . . , σn−1〉 = 〈σ j , . . . , σn−2〉 ( j = 2, . . . , n − 1).

Then Γ itself has the intersection property (2.4).

Next we establish, in Lemma 3.2, an analogue for chiral polytopes of the quotient

criterion of [40, p. 56] for regular polytopes. We refer to it again as the quotient

criterion. This often enables us to determine if a given group with presentation (2.3)

has the intersection property (2.4).

Lemma 3.2 Let Γ := 〈σ1, . . . , σn−1〉 be a group satisfying (2.3), and let Λ :=

〈λ1, . . . , λn−1〉 be a group satisfying (2.3) and the intersection property (2.4) (or equiv-

alently, (2.5) or (2.6) when n = 4 or 5, respectively). If the mapping σ j → λ j

for j = 1, . . . , n − 1 induces a homomorphism π : Γ → Λ, which is one-to-one on

Γn−1 := 〈σ1, . . . , σn−2〉 or on Γ0 := 〈σ2, . . . , σn−1〉, then Γ also has the intersection

property (and π induces a covering between the n-polytopes associated with Γ and Λ).

Proof The proof is similar to that of [40, Thm. 2E17]. Suppose that π is one-to-one

on Γn−1, so that, in particular, Γn−1 has the intersection property. By the previous

lemma it suffices to verify that

Γn−1 ∩ 〈σ j , . . . , σn−1〉 = 〈σ j , . . . , σn−2〉 ( j = 2, . . . , n − 1).
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Let ϕ ∈ Γn−1 ∩ 〈σ j , . . . , σn−1〉. Then

π(ϕ) ∈ 〈λ1, . . . , λn−2〉 ∩ 〈λ j , . . . , λn−1〉 = 〈λ j , . . . , λn−2〉,

since Λ has the intersection property. Hence π(ϕ) has a pre-image in 〈σ j , . . . , σn−2〉.
This must necessarily coincide with ϕ, since π is one-to-one on Γn−1. Thus ϕ ∈
〈σ j , . . . , σn−2〉. It follows that Γ has the intersection property.

Concluding this section, we deal with the particularly interesting case when the

quotient criterion guarantees the “polytopality” of the mix Γ
+(P) ♦ Γ

+(Q) for chiral

or directly regular polytopes P and Q. Clearly, given P and Q the canonical projec-

tions

πP : Γ+(P) ♦ Γ
+(Q) → Γ

+(P) and πQ : Γ+(P) ♦ Γ
+(Q) → Γ

+(Q)

of the mix onto its component groups are surjective homomorphisms. If the vertex-

figures (or facets, respectively) of P and Q are isomorphic, then the restrictions of πP

and πQ to the subgroup 〈τ2, . . . , τn−1〉 (or 〈τ1, . . . , τn−2〉, respectively) are one-to-

one. Hence Lemma 3.2 applies and proves that the mix has the intersection property.

This establishes the following result.

Lemma 3.3 Let P and Q be chiral or directly regular n-polytopes with isomorphic

vertex-figures (or facets, respectively). Then Γ
+(P) ♦ Γ

+(Q) is the group of a chiral or

directly regular n-polytope, whose vertex-figures (or facets, respectively) are isomorphic

to those of P and Q.

The conditions on P and Q described in the next two sections will ensure that the

resulting polytope is indeed chiral.

Remark 3.4 (a) Inspection of the argument shows that, for the mixΓ+(P) ♦ Γ
+(Q)

in Lemma 3.3 to have the intersection property (2.4), it suffices to assume that only

one of its component groups has this property, but still requiring isomorphic facets

or vertex-figures, respectively, for the two structures. In particular, it is sufficient to

require that only one component, P or Q, is a chiral or directly regular n-polytope,

while the other component is still a flag-connected pre-polytope of rank n. (The

groups of chiral or directly regular pre-polytopes do not in general have the intersec-

tion property.) In other words, in the above, both P and Q must be flag-connected

pre-polytopes of rank n, but only one of them actually needs to be a polytope of the

appropriate kind.

(b) Generalizing in yet another direction, it also is enough to assume that the vertex-

figures (or facets, respectively) of one of the polytopes P and Q cover those of the

other (they need not actually be isomorphic, though in our applications this is typi-

cally the case).

4 Chirality Groups

In this section we find it convenient to represent n-polytopes as quotients of the uni-

versal n-polytope U = {∞, . . . ,∞} associated with the (universal) string Coxeter
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group W = Wn on n generators r0, . . . , rn−1. Thus W = Wn has the presentation

r2
i = (rir j)

2
= ǫ for i, j = 0, . . . , n − 1, with i < j − 1.

This is a string C-group and its rotation subgroup W +
= W +

n of index 2 is generated

by si := ri−1ri (i = 1, . . . , n − 1), with a presentation given by

(4.1) (sisi+1 . . . s j)
2
= ǫ for i, j = 1, . . . , n − 1, with i < j.

We now describe the concept of the chirality group of an abstract polytope, an in-

variant that in some sense measures the degree of mirror asymmetry (irreflexibility)

of the polytope; this is an analogue of the chirality group for hypermaps introduced

in [6] (see also [2]). Here we restrict ourselves to chiral or directly regular polytopes,

although the concept can be generalized to more general classes of polytopes. Our

discussion is in terms of automorphism groups of polytopes, not monodromy groups

as in [6], but the two approaches are equivalent at least for chiral or directly regular

polytopes (in general, for other kinds of polytopes, the definitions would have to

involve the monodromy group; see [22,26]). For ease of presentation we restrict our-

selves to polytopes, although the concept of chirality group applies more generally to

pre-polytopes (see Remark 3.4).

Let P be a chiral or directly regular n-polytope, let Γ+(P) be its (rotation) group,

and let M be the normal subgroup of W + such that Γ+(P) = W +/M. Here, P is

directly regular if and only if M is also normal in W , that is, if and only if Mr0 = M.

(Throughout we write Mg for gMg−1.) Given the polytope P the largest normal

subgroup of W contained in M is MW := M∩Mr0 , and the smallest normal subgroup

of W containing M is MW := MMr0 . Both are also normal subgroups of W +. This

relationship is displayed in the following diagram:

MW

�� @@

M Mr0

MW

@@ ��

The corresponding quotients PW := U/MW and PW := U/MW of U are “polytope-

like” ranked partially ordered sets that may or may not be polytopes. (In fact, when

MW
= W + the quotient PW consists only of two flags, so certainly PW is not even

a pre-polytope.) Informally we can think of PW as the smallest “regular” (reflexible)

cover of P, and of PW as the largest (polytope-like) “regular” ranked partially ordered

set covered by P, once again, with no claim of polytopality. In any case, if P is finite,

then PW and PW are also finite, since both MW and MW have finite index in W .

Recall here that the intersection of two subgroups of finite index also has finite index.

The following result is a direct analogue of [6, Prop. 2].
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Lemma 4.1 Any two of the four groups MW/M, M/MW , MW/Mr0 , and Mr0/MW

are isomorphic.

Proof We have

MW/M = MMr0/M ≃ Mr0/(M ∩ Mr0 ) = Mr0/MW ,

and similarly MW/Mr0 ≃ M/MW . Moreover, conjugation by r0 induces the isomor-

phisms MW/M ≃ MW/Mr0 and M/MW ≃ Mr0/MW .

We will call the common quotient group of Lemma 4.1 the chirality group X(P)

of P, and its order the chirality index κ = κ(P) of P. Note that X(P) is trivial if and

only if P is directly regular. Thus X(P) measures algebraically how far the polytope P

deviates from being reflexible. Note that, since X(P) = MW/M, we may view X(P)

as a normal subgroup of Γ+(P) = W +/M with quotient

(4.2) Γ
+(P)/X(P) = (W +/M)/(MW/M) = W +/MW .

The most extreme case of chirality (irreflexibility) occurs when X(P) and Γ
+(P) are

the same, that is, when MW
= W +. In this case the polytope P is said to be totally

chiral. Every chiral polytope P whose automorphism group is simple is an example

of a totally chiral polytope; in fact, MW/M, being a non-trivial normal subgroup

of W +/M, must coincide with the full group, giving MW
= W +. However, not

every totally chiral polytope has a simple group as automorphism group (see [6] for

examples of rank 3). In Section 9 we also meet an example of a chiral 5-polytope

whose group is S6 (and hence almost simple), but which is not totally chiral.

The next lemma says that, if P is totally chiral, then the rotation subgroup of the

smallest regular cover PW of P is the direct product of the automorphism group of P

with itself.

Lemma 4.2 In the above notation, if P is totally chiral, then

W +/MW
∼= Γ

+(P) × Γ
+(P) = Γ(P) × Γ(P).

Proof Since P is totally chiral, we have W +
= MW

= MMr0 and hence

W +/MW = MMr0/MW = M/MW · Mr0/MW .

The two factors on the right have trivial intersection, since M ∩ Mr0 = MW , hence

the internal product is direct. Moreover,

M/MW = M/(M ∩ Mr0 ) ∼= MMr0/Mr0 = W +/Mr0 ∼= W +/M = Γ
+(P) = Γ(P),

and similarly, Mr0/MW
∼= Γ(P). Now the lemma follows.

It is usually very difficult to compute the chirality group X(P) of a chiral polytope

P by hand (however, see [2] for the explicit computation of the chirality groups of the
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chiral torus maps). We conclude this section with some general remarks about gen-

erating sets of X(P) which sometimes allow the computation of X(P) with GAP [20].

In particular, this enabled us to calculate the chirality group of a 5-polytope in Sec-

tion 9.

Consider the canonical epimorphism

Γ(P) = W +/M −→ Γ(P)/X(P) = (W +/M)/(MW/M) = W +/MW ,

whose kernel is MW/M = X(P) (see (4.2)). Since W + is generated by s1, . . . , sn−1,

we can write

Γ(P) = 〈s1, . . . , sn−1 | R〉,

where R is the set of relators in the generators s1, . . . , sn−1 that defines Γ(P) as a

quotient of W + by M; in other words, M is the normal closure of R in W +, denoted

〈R〉W +

. Since W + is normal in W , we have

Mr0 = (〈R〉W +

)r0 = 〈Rr0〉W +

,

where Rr0 denotes the set of relators Rr0 (say) in the generators s1, . . . , sn−1 obtained

from the relators R in R by replacing each generator s j in R by the product

(s1s2 · · · s j−1)(s1s2 · · · s j)
−1.

This latter product is s−1
1 , s2

1s2, or s j , according as whether j = 1, j = 2, or j ≥
3. Now, considering the image of Mr0 = 〈Rr0〉W +

under the canonical projection

W + → W +/M, we see that the chirality group X(P) = MMr0/M is the subgroup of

Γ(P) = W +/M given by

X(P) = 〈Rr0〉Γ(P),

the normal closure in Γ(P) of the image of Rr0 in Γ(P), which for simplicity we have

again denoted by Rr0 . Thus X(P) is the normal closure of Rr0 in Γ(P).

If P is a finite chiral polytope and the defining relators R for its group Γ(P) are

explicitly known, the calculation of the corresponding normal closure in Γ(P) often

becomes manageable in GAP [20], which then outputs the chirality group of the

polytope.

5 Mixing

We now describe the basic construction that lies at the heart of our discovery of new

chiral polytopes. Suppose that M and K, respectively, are the normal subgroups of

W +
= 〈s1, . . . , sn−1〉 associated with two n-polytopes P and Q, where P is chiral

and Q is directly regular; this latter condition says that K is normal in W , but M is

not. Our methods apply more generally in situations where the quotients W +/M and

W +/K may not necessarily be associated with polytopes (just with pre-polytopes; see

Remark 5.8), but here, for the sake of simplicity, we will make this assumption. The
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situation is depicted in the following diagram.

(5.1)

W +

�
�

��

@
@
@@

M Mr0K=Kr0

�
�

��

@
@
@@

M ∩ K = N Nr0 = (M ∩ K)r0

Here N := M ∩K is a normal subgroup of W + that may or may not be normal in W .

We later describe conditions guaranteeing that N is not normal in W .

Writing σi := siM and σ ′
i := siK for i = 1, . . . , n − 1, we then have

W +/M = 〈σ1, . . . , σn−1〉 = Γ
+(P),

W +/K = 〈σ ′
1, . . . , σ

′
n−1〉 = Γ

+(Q),

where σ1, . . . , σn−1 and σ ′
1, . . . , σ

′
n−1 are the two sets of distinguished generators. We

now investigate the mix

(5.2) W +/M ♦ W +/K = 〈τ1, . . . , τn−1〉,

the subgroup of the direct product W +/M × W +/K generated by τi := (σi , σ
′
i ) for

i = 1, . . . , n − 1.

First observe that the natural projections onto the two components define surjec-

tive homomorphisms of the mix in (5.2) onto the component groups W +/M and

W +/K, so the latter are quotients of the mix. Moreover, since both sets of genera-

tors σi of W +/M and σ ′
i of W +/K satisfy the defining relations (4.1) for W +, these

relations continue to hold for the generators τi of W +/M ♦ W +/K, so the latter

is necessarily a quotient group of W + under a surjective homomorphism that maps

w ∈ W + to (wM,wK) and hence has kernel M ∩ K = N. Thus,

(5.3) W +/N ≃ W +/M ♦ W +/K

under the isomorphism given by wN → (wM,wK). We now have the following

lemma.

Lemma 5.1 In the above situation of diagram (5.1), if the mix W +/M ♦ W +/K has

the intersection property with respect to its generators τ1, . . . , τn−1, then it is the rotation

group of a chiral or directly regular n-polytope.
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Next we make additional assumptions on the subgroups M and K of W + that

allow us to explicitly determine the mix; in fact, the mix turns out be the full direct

product.

Lemma 5.2 In the above situation of diagram (5.1), suppose that the groups W +/M

and W +/K have no nontrivial common quotient. (For example, this holds if one of the

groups W +/M or W +/K is simple and the other does not have it as a quotient.) Then,

(a) W +
= MK,

(b) W +/N ≃ M/N × K/N,

(c) W +/M ♦ W +/K = W +/M × W +/K.

Proof For part (a) note that MK is normal in W + and

(W +/M)/(MK/M) ≃ W +/MK ≃ (W +/K)/(MK/K).

Hence W +/MK is a nontrivial common quotient of W +/M and W +/K, except when

MK = W +. This establishes part (a). Then part (b) follows from

W +/N = MK/N = (M/N) · (K/N)

and the observation that (M/N) ∩ (K/N) is trivial, since N = M ∩ K. Finally, from

part (a) we obtain

W +/M = MK/M ≃ M/(M ∩ K) = M/N,

and similarly W +/K ≃ K/N, so that now part (c) is implied by part (b) and equation

(5.3) .

We mention in passing that the strong assumption of Lemma 5.2 that there are no

nontrivial common quotients is not satisfied in general if P is a totally chiral polytope

with a non-simple automorphism group W +/M.

Restated in terms of polytopes, our previous discussion yields the following lem-

ma.

Lemma 5.3 Let P and Q be n-polytopes, let P be chiral, and let Q be directly regu-

lar. Suppose that the groups Γ+(P) (= Γ(P)) and Γ
+(Q) have no nontrivial common

quotient. (For example, this holds if one of the groups Γ+(P) or Γ+(Q) is simple and the

other does not have it as a quotient.) Then,

Γ
+(P) ♦ Γ

+(Q) = Γ
+(P) × Γ

+(Q).

Moreover, if this group has the intersection property with respect to its generators

τ1, . . . , τn−1, then it is the rotation group of a chiral or directly regular n-polytope, the

mix P ♦ Q of P and Q.

In the interesting special case when the vertex-figures (or facets) of the two com-

ponent polytopes are isomorphic, we can appeal to Lemma 3.3 to immediately arrive

at the following lemma.

https://doi.org/10.4153/CJM-2011-033-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-033-4


1268 A. B. D’Azevedo, G. A. Jones, and E. Schulte

Lemma 5.4 Let P and Q be n-polytopes with isomorphic vertex-figures (or facets,

respectively), let P be chiral, and let Q be directly regular. Suppose that the groups Γ+(P)

and Γ
+(Q) have no nontrivial common quotient. Then Γ

+(P) × Γ
+(Q) is the rotation

group of a chiral or directly regular n-polytope, the mix P ♦ Q. Moreover, the vertex-

figures (or facets, respectively) are isomorphic to those of P and Q.

It remains to settle the critical question of chirality of the mix P ♦ Q. Clearly,

one possibility is to invoke the criterion of Lemma 2.1 for enantiomorphic pairs of

words. However, as an alternative, we can also establish a criterion based on chirality

groups. This can be done as follows. As before, let P be chiral, and let Q be directly

regular. Clearly, P ♦ Q is not chiral in general; in fact, if Q covers P, then P ♦ Q

is isomorphic to Q and hence is regular. Ignoring the question of polytopality for a

moment, for P ♦ Q to be chiral we need to prove that X(P ♦ Q) is not the trivial

group.

Lemma 5.5 If P is a chiral n-polytope and Q is a directly regular n-polytope, then

X(P ♦ Q) is a normal subgroup of X(P) and

X(P ♦ Q) ∼= (Mr0 ∩ K)M/M.

Moreover, X(P ♦ Q) is the trivial group if and only if M ∩ K ≤ Mr0 . In particular, if

P ♦ Q is directly regular, then P ♦ Q covers the smallest regular cover PW of P.

Proof Recall from (5.3) that P ♦ Q is associated with the normal subgroup N =

M ∩ K of W +. Then

X(P ♦ Q) = Nr0/NW = (Mr0 ∩ K)/(Mr0 ∩ K ∩ M),

bearing in mind that Kr0 = K. Now consider the homomorphism

γ : Mr0 ∩ K −→ Mr0 M/M = X(P)

w −→ wM.

(5.4)

Then the kernel and image of γ are given by Ker(γ) = Mr0 ∩ K ∩ M and

Im(γ) = {wM | w ∈ Mr0 ∩ K} = (Mr0 ∩ K)M/M.

Hence,

X(P ♦ Q) = (Mr0 ∩ K)/(Mr0 ∩ K ∩ M) = (Mr0 ∩ K)/Ker(γ) ∼= Im(γ)

= (Mr0 ∩ K)M/M,

where the group on the right is a normal subgroup of Mr0 M/M = X(P). This proves

the first part of the lemma.

For the second part, note that (Mr0 ∩K)M/M is trivial if and only if Mr0 ∩K ≤ M,

or equivalently, if and only if M∩K ≤ Mr0 . In other words, X(P ♦ Q) is trivial if and

only if the normal subgroup N = M ∩ K associated with P ♦ Q lies in the normal

subgroup MW associated with the smallest regular cover PW of P. However, the latter

implies that P ♦ Q covers PW .
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Remark 5.6 More generally, if P and Q are arbitrary chiral or directly regular

n-polytopes (with no condition on one being directly regular), the chirality group

of the mix P ♦ Q embeds into the direct product of the chirality groups of the com-

ponents; that is,

X(P ♦ Q) ≤ X(P) × X(Q).

For the proof of this more general result, replace γ in (5.4) by the homomorphism

γ : Mr0 ∩ Kr0 −→ Mr0 M/M × Kr0 K/K = X(P) × X(Q)

w −→ (wM,wK),

but otherwise follow the same line of argument. When P is chiral and Q is directly

regular (and hence X(Q) is trivial), we recover Lemma 5.5.

Next we employ Lemmas 4.2 and 5.5 to establish the chirality of the mix P ♦ Q

under the assumptions that P is (chiral and) totally chiral and Q is directly regular.

Now suppose for a moment that the corresponding mix P ♦ Q is directly regular in

this case. Then X(P ♦ Q) is trivial, and hence P ♦ Q covers PW by Lemma 5.5. On

the other hand, by Lemma 4.2, since P is totally chiral, the group W +/MW of PW is

isomorphic to Γ
+(P) × Γ

+(P). It follows that Γ+(P) × Γ
+(P) must be a quotient of

the group Γ
+(P) ♦ Γ

+(Q) of P ♦ Q. Thus, if both polytopes P and Q are finite, then

|Γ+(P) ♦ Γ
+(Q)| ≡ 0 mod |Γ+(P)|2.

On the other hand, Γ+(P) ♦ Γ
+(Q) is a subgroup of Γ+(P) × Γ

+(Q), and so its

order divides |Γ+(P)| · |Γ+(Q)|. Hence, |Γ+(P)| · |Γ+(Q)| ≡ 0 mod |Γ+(P)|2, or

equivalently,

|Γ+(Q)| ≡ 0 mod |Γ+(P)|.
This proves the following lemma.

Lemma 5.7 Let P be chiral and totally chiral, let Q be directly regular, and suppose

that Γ+(P) ♦ Γ
+(Q) has the intersection property. If Γ+(P) × Γ

+(Q) does not have a

subgroup that has a quotient Γ+(P) × Γ
+(P) (in particular if P and Q are finite and

|Γ+(P)| does not divide |Γ+(Q)|), then P ♦ Q is a chiral polytope.

Remark 5.8 As indicated earlier, some of our results carry over to certain nor-

mal subgroups M and K of W + whose quotient groups W +/M and W +/K are not

necessarily associated with polytopes. Such quotients always are associated with pre-

polytopes (see Remark 3.4). Still, there are interesting examples where the mix itself

is polytopal even though one of its components is not. We will meet such examples

in later sections (see Theorems 7.1 and 7.2).

6 Chiral Polyhedra

Polyhedra (polytopes of rank 3) and maps on surfaces have been studied for well

over 100 years, and deep connections with other branches of mathematics have been
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discovered, including hyperbolic geometry, Riemann surfaces, number fields and Ga-

lois theory (see [16, 34]). In the past few years there has been great progress in the

computer-aided enumeration of regular or chiral maps by genus, leading to the cre-

ation of a complete census of regular or chiral maps on orientable surfaces of genus

up to 101 (see [8]). This approach is based on new algorithms for finding low index

normal subgroups. Moreover, recently the set of possible genera (known as the genus

spectrum) for regular or chiral maps has attracted a lot of attention (for example, see

[5, 9]).

In this section we briefly illustrate our method by mixing two polyhedra of type

{3, 7} to construct infinite sequences of chiral polyhedra of type {3, 7}. Recall that a

Hurwitz group is a group generated by two elements of orders 2 and 3 whose product

has order 7 (yielding (2, 3, 7) generating triples). The Hurwitz groups are precisely

the rotation subgroups of chiral or directly regular polyhedra of type {3, 7} (see [7]

and [33, p. 264]). (For a given polyhedron, we may take σ1σ2 and σ−1
1 as generators;

the appropriate intersection condition holds, since 3 and 7 are coprime.) It is known

that the projective special linear groups L2(q), q a prime power, are Hurwitz groups

precisely when q = 7, or when q = p for any prime p ≡ ±1 mod 7, or when

q = p3 for any prime p 6≡ 0,±1 mod 7, but for no other values of q (see [7, 38]). By

Dirichlet’s Theorem on primes in arithmetic progressions, this gives an infinite list

of values of q. In fact, by a theorem of Macbeath [38], the group L2(q) yields three

Hurwitz surfaces and three polyhedra corresponding to three orbits of Aut(L2(q)) on

(2, 3, 7) generating triples, if q = p ≡ ±1 mod 7, and one if q = 7 or q = p3 for

p 6≡ 0,±1 mod 7. Moreover, the corresponding polyhedra Q (say) of type {3, 7}
cannot be chiral and hence must necessarily be directly regular. In fact, if L2(q) is the

quotient of W + by a normal subgroup N, then N must necessarily be normal in W

(see [6, Cor. 9]).

For the chiral component of the mix we take a polyhedron P of type {3, 7} whose

group is a Ree group Re(3 f ) =
2G2(3 f ); the latter is defined for all odd f ≥ 1,

has order 33 f (33 f + 1)(3 f − 1), and is simple when f > 1. The Ree groups were

first described in [52, 53], and a good account of their properties can also be found

in [29, Ch. XI]. It was pointed out in the proof of [6, Thm. 12] that Re(3 f ) with

f > 1 is a Hurwitz group yielding a totally chiral hypermap; this hypermap is in

fact a chiral polyhedron of type {3, 7} that is totally chiral. Now, mixing P with

a directly regular polyhedron Q arising from a group L2(q) by considering it as a

Hurwitz group (possibly in several non-equivalent ways) gives a chiral polyhedron

of type {3, 7} with group Re(3 f ) × L2(q), as long as f > 1 (see Lemmas 5.4 and

5.7). In fact, the crucial condition of Lemma 5.7 is satisfied: the group Γ
+(P) ×

Γ
+(Q) = Re(3 f ) × L2(q) does not have a subgroup with quotient Γ+(P) × Γ

+(P) =

Re(3 f )×Re(3 f ). Otherwise, we could project onto the second direct factor to obtain

a subgroup of L2(q) with the Ree group as quotient; however, the subgroups of the

groups L2(q) are known for all q and the only non-abelian composition factors that

occur are isomorphic to A5 or L2(q ′), where q is a power of q ′ (see [18, Ch. XII] and

[28, Ch. II]). Thus, the direct products Re(3 f )×L2(q) are Hurwitz groups associated

with chiral polyhedra. For example, when q = 7, any odd f > 1 gives a chiral

polyhedron of type {3, 7} with automorphism group Re(3 f ) × L2(7).

A similar construction is possible using the Suzuki groups Sz(2 f ) =
2B2(2 f ),
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introduced in [57] (see also [29, Ch. XI]). These are simple groups of order

22 f (22 f + 1)(2 f − 1) for odd f > 1. It is shown in [32, §6] that each Suzuki group

is the automorphism group of a chiral map of type {4, 5}, which can be regarded as

a totally chiral polyhedron P of this type. As in the case of the Hurwitz groups, the

techniques developed by Macbeath in [38] show that there are infinitely many values

of q for which L2(q) is the automorphism group of a directly regular polyhedron Q

of type {4, 5}: for instance one can take q to be any prime p ≡ ±1 or ±9 mod 40

(again, by Dirichlet’s Theorem, there are infinitely many such primes). Our con-

struction then yields a chiral polyhedron of type {4, 5} with automorphism group

Sz(2 f ) × L2(q) for each odd f > 1.

7 Chiral 4-Polytopes with Spherical Vertex-Figures

In this section we employ the mixing technique to construct finite chiral 4-polytopes

with spherical or toroidal facets and with spherical vertex-figures. This yields exam-

ples of locally spherical or locally toroidal 4-polytopes. Recall that a 4-polytope is

said to be locally spherical if all its facets and vertex-figures are spherical maps, and

locally toroidal if all its facets and vertex-figures are spherical or toroidal maps, with at

least one toroidal. The regular or chiral toroidal maps are all of the forms {4, 4}(b,c),

{6, 3}(b,c), or {3, 6}(b,c) (see [16]). We write [4, 4]+
(b,c), [6, 3]+

(b,c), or [3, 6]+
(b,c) for the

corresponding rotation subgroup, which is the full automorphism group if the map

is chiral.

As input we take a finite chiral 4-polytope P and a finite regular 4-polytope Q,

both of the same Schläfli type {r, s, t} and both already locally spherical or locally

toroidal. Since there are no chiral 4-polytopes of (global) spherical or euclidean type,

{r, s, t} must necessarily be a hyperbolic Schläfli symbol (see [24] and [40, § 6H]).

The admissible Schläfli symbols (with spherical vertex-figure) are

{r, s, t} = {3, 5, 3}, {5, 3, 4}, {5, 3, 5}, {4, 4, 3}, {6, 3, 3}, {6, 3, 4}, {6, 3, 5}.

The vertex-figures of both polytopes P and Q are Platonic solids {s, t}. Hence Lem-

ma 5.4 applies, provided the corresponding groups Γ+(P) and Γ
+(Q) have no com-

mon non-trivial quotient. The latter condition is guaranteed if one of these groups

is simple and the other does not have it as a quotient. In our applications, the simple

group will usually come from the chiral polytope; then this polytope is also totally

chiral, so the mix P ♦ Q is chiral by Lemma 5.7 if |Γ+(P)| does not divide |Γ+(Q)|.
We describe some particularly interesting examples but do not attempt to fully

exhaust all possibilities. We mainly concentrate on examples where the simple group

is a group L2(p) with p an odd prime. There are many variants of our constructions.

Recall that L2(p) has order p(p2 − 1)/2 if p is an odd prime. In our theorems we

will usually make the assumption that, for a directly regular polytope Q, the order

|Γ(Q)| of its full automorphism group is not divisible by p(p2 − 1), or equivalently,

that |Γ+(Q)| is not divisible by p(p2 − 1)/2. Note that this implies in particular that

L2(p) cannot be a quotient of Γ+(Q). This non-divisibility condition enables us to

appeal directly to Lemma 5.7, although the lemma frequently applies in more general

situations as well.
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7.1 Locally Spherical Polytopes

We begin with locally spherical chiral polytopes.

Theorem 7.1 Let p be a prime; let p ≡ ±1 mod 5 or p = 5, and let Q be a finite

locally spherical directly regular 4-polytope of type {5, 3, 5} such that p(p2 − 1) does

not divide |Γ(Q)|. Then there exists a locally spherical chiral 4-polytope of type {5, 3, 5}
with group L2(p) × Γ

+(Q).

Proof We know from [30, Thm. A] that under our assumptions on p there are nor-

mal subgroups of [5, 3, 5]+, not normal in [5, 3, 5], whose quotient is isomorphic to

L2(p) (see also [31]). The corresponding quotients may not all be associated with

polytopes, but if they are, then the corresponding polytopes P are chiral. Never-

theless, as indicated in Remark 5.8, even though one component group may not be

polytopal, we are still able to apply our method if the intersection property can be

verified for the resulting mix. In the present case, the mix

Γ := L2(p) × Γ
+(Q) = 〈τ1, τ2, τ3〉

necessarily has its subgroups Γ3 := 〈τ1, τ2〉 and Γ1 := 〈τ2, τ3〉 isomorphic to [5, 3]+

and [3, 5]+, respectively, since the latter are the rotation subgroups of the facet and

vertex-figure groups for Q and certainly have the corresponding subgroups of L2(p)

as homomorphic images. Thus the quotient criterion applies (via the projection

onto the component group Γ
+(Q)) and establishes that the mix has the intersec-

tion property, yielding a chiral polytope. Moreover, the mix is the direct product

L2(p) × Γ
+(P), since the component groups have no nontrivial common quotient

groups.

For instance, let Q be the classical regular star-polytope { 5
2
, 3, 5} (of type {5, 3, 5})

in euclidean 4-space (see [13]). Here the fractional entry in the Schläfli symbol in-

dicates that its 2-faces are pentagrams { 5
2
}. Its combinatorial automorphism group

Γ(Q) is isomorphic to its geometric symmetry group given by the Coxeter group

H4 = [5, 3, 3] of order 14 400 (with suitably chosen distinguished generators), and

Γ
+(Q) = H+

4 . Moreover, Γ(Q) is obtained from [5, 3, 5] by imposing the single extra

relation

(ρ0ρ1ρ2ρ3ρ2ρ1)3
= ǫ

(see [39] or [40, p. 213]). Hence Theorem 7.1 applies (if p 6= 5) and yields lo-

cally spherical chiral 4-polytopes of type {5, 3, 5} with groups isomorphic to L2(p)×
H+

4 . Note here that H+
4 is a central product of two copies of SL2(5), so it has a

central subgroup C2 with quotient L2(5)2 ∼= A2
5. There are many other possible

choices for Q (for example, see [23,45]); however, we cannot choose Coxeter’s 57-cell

{{5, 3}5, {5, 3}5}, since this is not directly regular (see [14]).

Theorem 7.2 Let p be a prime with p ≡ ±1 mod 5. Let p ≡ 1, 3, 4, 5 or 9 mod 11

with 3±2
√

5 both squares mod p, or let p ≡ 2, 6, 7, 8 or 10 mod 11. Let Q be a finite

locally spherical directly regular 4-polytope of type {3, 5, 3} such that p(p2 − 1) does

not divide |Γ(Q)|. Then there exists a locally spherical chiral 4-polytope of type {3, 5, 3}
with group L2(p) × Γ

+(Q).
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Proof We now appeal to the results in [35, Thm. 1.3]. In particular, under our as-

sumptions on p there exist normal subgroups of [3, 5, 3]+, not normal in [3, 5, 3],

whose quotient is isomorphic to L2(p). Hence we can proceed as in the proof of

Theorem 7.1, but now with [3, 5, 3] in place of [5, 3, 5] and with Γ3 = [3, 5]+ and

Γ1 = [5, 3]+; recall that [3, 5]+ ∼= [5, 3]+ ∼= A5. Thus the mix is again a chiral

polytope with the desired properties.

Since star-polytopes of type {3, 5, 3} do not exist (see [13]) and the 11-cell

{{3, 5}5, {5, 3}5} is not directly regular, the search for appropriate candidates for

Q in Theorem 7.2 is slightly more involved. Interesting examples of directly regular

polytopes of type {3, 5, 3} (and {5, 3, 5}) were constructed in [45] by applying mod-

ular reduction techniques, with moduli given by primes in Z[τ ] (with τ the golden

ratio). Their automorphism groups are given by certain finite orthogonal groups.

Any of these polytopes can serve for Q. For example, if q is an odd (rational) prime

with q ≡ ±2 mod 5, then the automorphism group of the polytope is O1(4, q2, ǫ)
with

ǫ :=

{
+1 if q ≡ 3, 12, 23, 27, 37, 38, 42, 47, 48, 53 mod 55,

−1 if q ≡ 2, 7, 8, 13, 17, 18, 28, 32, 43, 52 mod 55.

Recall that if O(4, q2, ǫ) denotes the full orthogonal group of a 4-dimensional non-

singular orthogonal vector space over GF(q2) (with Witt index 2 or 1 according as ǫ =
+1 or −1), then O1(4, q2, ǫ) is the subgroup of index 2 in O(4, q2, ǫ) generated by the

reflections whose spinor norm is 1 (see [1, 43]). When applied with these polytopes

as directly regular components of the mix, Theorem 7.2 gives locally spherical chiral

4-polytopes of type {3, 5, 3} with groups

L2(p) × O+
1 (4, q2, ǫ) ∼= L2(p) × Ω(4, q2, ǫ),

at least when p ∤ (q2 ± 1). Here, O+
1 (4, q2, ǫ) stands for the even subgroup

of O1(4, q2, ǫ), which is isomorphic to the commutator subgroup Ω(4, q2, ǫ) of

O(4, q2, ǫ) (for this isomorphism, see [1, Thm. 5,14, 5.17] and [43, p. 297], and ob-

serve that the elements of O+
1 (4, q2, ǫ) all have determinant 1 and spinor norm 1).

Note that O1(4, q2, ǫ) has order q2(q2 − 1)(q2 − ǫ), so p(p2 − 1) certainly does not

divide |Γ(Q)| when p ∤ (q2 ± 1) (our conditions on p and q imply that p 6= q).

Theorem 7.3 Let p be a prime with p ≡ ±1 or ± 9 mod 40, with either 1 +
√

5 or

1 −
√

5 a square mod p. Let Q be a finite locally spherical directly regular 4-polytope

of type {5, 3, 4} such that p(p2 − 1) does not divide |Γ(Q)|. Then there exists a locally

spherical chiral 4-polytope of type {5, 3, 4} with group L2(p) × Γ
+(Q).

Proof As in the two previous cases, our assumptions on p guarantee the existence of

normal subgroups M of [5, 3, 4]+, not normal in [5, 3, 4], whose quotient is L2(p).

Here we arrived at the conditions on p by carefully inspecting the calculations for

[37, Thm. 4.5(3)] and imitating the argument for [3, 5, 3] in [35]. The congruence

condition on p (needed to give elements of order 4 and 5 in L2(p)) implies that p ≡
±1 mod 5, so quadratic reciprocity implies that 5 is a square mod p. There seems

to be no simple answer for when an element 1 ±
√

5 is a square mod p. However,
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(1 +
√

5)(1 −
√

5) = −4, so if p ≡ 1 mod 4, then −1 is a square mod p and hence

either both or neither of 1 ±
√

5 are squares, while if p ≡ −1 mod 4, then −1 is

not a square mod p, so exactly one of 1 ±
√

5 is a square mod p. (For example, if

p = 31, then
√

5 = ±6, so 1 ±
√

5 = 7 or −5, and quadratic reciprocity shows

that 7 is a square mod 31, whereas −5 is not.) Thus we always get such subgroups

M if p ≡ −1 or − 9 mod 40. (Note that similar remarks also apply to the elements

3 ± 2
√

5 occurring in Theorem 7.2.)

The construction of the corresponding chiral polytopes then proceeds as before,

now with Γ3 = [5, 3]+ and Γ1 = [3, 4]+ ∼= S4.

Interesting directly regular 4-polytopes Q of type {5, 3, 4} with automorphism

groups D6
s ⋊ [3, 5], s ≥ 2, are obtained from [40, Thm. 8C5]; here, Ds denotes

the dihedral group of order 2s. More precisely, they arise as the duals of certain

polytopes 2K,G(s), namely when K is the icosahedron {3, 5} and G(s) is the Coxeter

diagram whose nodes are the vertices of {3, 5} and whose branches connect pairs of

antipodal vertices of {3, 5} (but no other pairs of vertices) and are marked s. Thus,

when p ≡ −1 or − 9 mod 40 and p ∤ s, Theorem 7.3 and its proof provide locally

spherical chiral 4-polytopes of type {5, 3, 4} with groups L2(p)×(D6
s ⋊[3, 5])+ (with

an appropriate interpretation of even subgroup).

7.2 Locally Toroidal Polytopes

Next we turn to locally toroidal chiral 4-polytopes. Interesting examples with groups

L2(p) as automorphism group were constructed in [55], and we may choose them

here for the chiral component P. The congruence classes of primes p that actually

occur depend on the underlying Schläfli type; this explains the conditions on p oc-

curring in our theorems. Any directly regular 4-polytope of the specified kind can

serve as components Q; finite examples are readily available for each Schläfli type

(for example, see [40, Ch. 10–11] and [41, 42, 44, 47, 55]). Again we do not strive for

the most general results. We begin with the type {4, 4, 3}.

Theorem 7.4 Let p be a prime with p ≡ 1 mod 8, let b and c be positive integers such

that p = b2 + c2, let m ≥ 2 be an integer, and let Q be a finite directly regular 4-polytope

of type {{4, 4}(m,0), {4, 3}} such that p(p2 − 1) does not divide |Γ(Q)|. Then there

exists a chiral 4-polytope of type {{4, 4}(m,0), {4, 3}} if p |m, or {{4, 4}(mb,mc), {4, 3}}
if p ∤ m, whose group is L2(p) × Γ

+(Q). The facets themselves are regular or chiral,

respectively, in the two cases.

Proof We know from [55, Cor. 7.7] that, under our assumptions on p, b, and c,

there exists a chiral 4-polytope P of type {{4, 4}(b,c), {4, 3}} with group L2(p). Now

Lemmas 5.4 and 5.7 apply and show that P ♦ Q is a chiral 4-polytope with vertex-

figures {4, 3} and group L2(p) × Γ
+(Q). To determine the structure of the facets,

again let τi = (σi , σ
′
i ) for i = 1, 2, 3 denote the generators of

Γ
+(P) ♦ Γ

+(Q) = L2(p) × Γ
+(Q),

where σ1, σ2, σ3 generate Γ
+(P) and σ ′

1, σ
′
2, σ

′
3 generate Γ

+(Q). We know that the

facets of P ♦ Q are isomorphic to the mix {4, 4}(b,c) ♦ {4, 4}(m,0). Now recall that
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[4, 4]+
(b,c)

∼= C p ⋊ C4 and [4, 4]+
(m,0)

∼= (Cm × Cm) ⋊ C4, where in each case the first

factor of the semi-direct product is given by the translation subgroup of the map and

the second factor C4 by the 4-fold rotation about the base vertex. Here two cases can

occur.

First, if p | m, then {4, 4}(m,0) covers {4, 4}(b,c), so the facets are isomorphic to

{4, 4}(m,0). Hence P ♦ Q is of type {{4, 4}(m,0), {4, 3}} in this case. Second, suppose

that p ∤m, so p and m are relatively prime. Then [4, 4]+
(b,c) ♦ [4, 4]+

(m,0) is a subgroup

of [4, 4]+
(b,c)×[4, 4]+

(m,0) isomorphic to (C p×Cm×Cm)⋊C4. But the latter is precisely

the group [4, 4]+
(mb,mc) of order 4pm2. Thus the facets are isomorphic to {4, 4}(mb,mc)

in this case, and P ♦ Q is of type {{4, 4}(mb,mc), {4, 3}}.

As an example, if Q is the universal 4-polytope {{4, 4}(3,0), {4, 3}} with full au-

tomorphism group S6 × C2 (see [40, p. 366]), then Theorem 7.4 yields chiral 4-

polytopes of type {{4, 4}(3b,3c), {4, 3}} with groups L2(p) × A6 ×C2.

Theorem 7.5 Let p be a prime with p ≡ 1 mod 12, let b and c be positive integers

such that p = b2 + bc + c2, let m ≥ 2 be an integer, and let Q be a finite directly

regular 4-polytope of type {{6, 3}(m,0), {3, 3}} such that p(p2 − 1) does not divide

|Γ(Q)|. Then there exists a chiral 4-polytope of type {{6, 3}(m,0), {3, 3}} if p | m, or

{{6, 3}(mb,mc), {3, 3}} if p ∤m, whose group is L2(p)×Γ
+(Q). The facets themselves are

regular or chiral, respectively, in the two cases.

Proof For P we now take the chiral 4-polytope P of type {{6, 3}(b,c), {3, 3}} with

group L2(p) described in [55, Cor. 9.10]. Then P ♦ Q is a chiral 4-polytope

with vertex-figures {3, 3} and group L2(p) × Γ
+(Q). Its facets are isomorphic

to {6, 3}(b,c) ♦ {6, 3}(m,0). Now bear in mind that [6, 3]+
(b,c)

∼= C p ⋊ C6 and

[6, 3]+
(m,0)

∼= (Cm × Cm) ⋊ C6, with the second factor C6 in the semi-direct prod-

uct coming from the rotation about the center of the base face. As in the previous

proof, if p |m, then {6, 3}(m,0) covers {6, 3}(b,c), and hence the facets are isomorphic

to {6, 3}(m,0). On the other hand, if p ∤m, then

[6, 3]+
(b,c) ♦ [6, 3]+

(m,0) = [6, 3]+
(mb,mc)

∼= (C p ×Cm ×Cm) ⋊C6,

of order 6pm2, so the facets are maps {6, 3}(mb,mc).

Theorem 7.6 Let p be a prime with p ≡ 1 mod 24, let b and c be positive integers

such that p = b2 + bc + c2, let m ≥ 2 be an integer, and let Q be a finite directly

regular 4-polytope of type {{6, 3}(m,0), {3, 4}} such that p(p2 − 1) does not divide

|Γ(Q)|. Then there exists a chiral 4-polytope of type {{6, 3}(m,0), {3, 4}} if p | m, or

{{6, 3}(mb,mc), {3, 3}} if p ∤m, whose group is L2(p)×Γ
+(Q). The facets themselves are

regular or chiral, respectively, in the two cases.

Proof From [48, Thm. 2] we obtain a chiral 4-polytope P of type {{6, 3}(b,c), {3, 4}}
with group L2(p). The analysis of the previous case carries over with little change

and proves that the corresponding mix P ♦ Q is a chiral 4-polytope with group

L2(p) × Γ
+(Q) of the desired type.
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Theorem 7.7 Let p be a prime with p ≡ 1, 49 mod 60, let b and c be positive in-

tegers such that p = b2 + bc + c2, let m ≥ 2 be an integer, and let Q be a finite

directly regular 4-polytope of type {{6, 3}(m,0), {3, 5}} such that p(p2 − 1) does not di-

vide |Γ(Q)|. Then there exists a chiral 4-polytope of type {{6, 3}(m,0), {3, 5}} if p | m,

or {{6, 3}(mb,mc), {3, 5}} if p ∤m, whose group is L2(p) × Γ
+(Q). The facets themselves

are regular or chiral, respectively, in the two cases.

Proof Now [48, Thm. 6] yields a chiral 4-polytope P of type {{6, 3}(b,c), {3, 5}}
with group L2(p). Then the mix P ♦ Q is again a chiral polytope with group L2(p)×
Γ

+(Q), and its type is as stated.

To illustrate the last three theorems, letting Q be the universal 4-polytope

{{6, 3}(2,0), {3, r}} with full group [3, 3, r] × C2 (see [40, Thm. 11B5]), we ob-

tain chiral 4-polytopes of type {{6, 3}(2b,2c), {3, r}}, for r = 3, 4, 5, with groups

L2(p) × [3, 3, r]+ (and p depending on r). For example, if r = 3, the resulting poly-

topes have groups L2(p) × A5.

There are variants of our constructions employing regular polytopes Q with

toroidal facets {4, 4}(m,m) or {6, 3}(m,m), or, in some cases, other congruence classes

of primes. For example, by using the polytopes of [48, Thm. 7] as chiral compo-

nent of the mix, we can construct chiral polytopes of type {6, 3, 5} with groups

L2(p2) × Γ
+(Q) for primes p ≡ 7, 13 mod 15 such that p2(p4 − 1) does not divide

|Γ(Q)|.

8 Chiral 4-Polytopes with Toroidal Facets and Vertex-Figures

Next we investigate locally toroidal 4-polytopes of the remaining types {4, 4, 4},

{6, 3, 6}, and {3, 6, 3}. These do not have spherical vertex-figures or facets. Here

we must establish the intersection property directly and then apply Lemmas 5.3 and

5.7. We focus on self-dual polytopes, although there are similar results for general

polytopes.

Theorem 8.1 Let p be a prime with p ≡ 1 mod 8, let b and c be positive integers such

that p = b2 + c2, let m be an odd integer, and let Q be a finite self-dual directly regular

4-polytope of type {{4, 4}(m,0), {4, 4}(m,0)} such that p(p2 − 1) does not divide |Γ(Q)|.
Then there exists a properly self-dual chiral 4-polytope of type {{4, 4}(m,0), {4, 4}(m,0)}
if p |m, or {{4, 4}(mb,mc), {4, 4}(mc,mb)} if p ∤m, whose group is L2(p) × Γ

+(Q).

Proof Now [55, Cor. 8.5] provides a properly self-dual chiral 4-polytope P of type

{{4, 4}(b,c), {4, 4}(c,b)} with group L2(p). (Note that [55, Cor. 8.5] only states that P

is self-dual, but inspection of the proof shows that P is actually properly self-dual.)

Mixing with Q and applying Lemmas 5.3 and 5.7 then yields a chiral 4-polytope

P ♦ Q with the desired group, provided the intersection property holds. As before,

we let τi = (σi , σ
′
i ) for i = 1, 2, 3 be the generators of

Γ := Γ
+(P) ♦ Γ

+(Q) = L2(p) × Γ
+(Q),

where Γ
+(P) = 〈σ1, σ2, σ3〉 and Γ

+(Q) = 〈σ ′
1, σ

′
2, σ

′
3〉. Then the subgroups Γ3 :=

〈τ1, τ2〉 and Γ1 := 〈τ2, τ3〉 for the facet or vertex-figure, respectively, of the mix P ♦ Q
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are themselves mixes of the facet subgroups or vertex-figure subgroups of the com-

ponent polytopes. Hence it follows as before that the facets and vertex-figures them-

selves are either both isomorphic to {4, 4}(m,0) if p |m, or isomorphic to {4, 4}(mb,mc)

or {4, 4}(mc,mb), respectively, if p ∤ m. It remains to verify the intersection property

and establish self-duality.

Since the facet and vertex-figure subgroups already have the intersection property,

it suffices to prove Γ1 ∩Γ3 = 〈τ2〉 (see Lemma 3.1). First observe that, since m and p

are odd and Γ1 has order 4m2 or 4pm2, the order of Γ1 ∩ Γ3 cannot be divisible by 8;

on the other hand, Γ1 ∩ Γ3 does contain the subgroup 〈τ2〉 ∼= C4. Now, appealing to

the intersection property of the component groups, if (ϕ,ψ) ∈ Γ1 ∩ Γ3, then

ϕ ∈ 〈σ1, σ2〉 ∩ 〈σ2, σ3〉 = 〈σ2〉, ψ ∈ 〈σ ′
1, σ

′
2〉 ∩ 〈σ ′

2, σ
′
3〉 = 〈σ ′

2〉,

and therefore (ϕ,ψ) ∈ 〈σ2〉 × 〈σ ′
2〉 ∼= C2

4 . Hence Γ1 ∩ Γ3 lies in a group isomorphic

to C4. As its order cannot be divisible by 8, this forces Γ1 ∩ Γ3 = 〈τ2〉. Thus Γ must

have the intersection property.

Finally, since P is properly self-dual, both groups Γ+(P) and Γ
+(Q) admit invo-

lutory group automorphisms mapping σ j to σ−1
n− j and σ ′

j to (σ ′
n− j)

−1 for each j,

respectively (see Section 2). Hence their mix admits an involutory group automor-

phism mapping τ j to τ−1
n− j for each j. Thus P ♦ Q is also properly self-dual.

In Theorem 8.1, if Q is the universal 4-polytope {{4, 4}(3,0), {4, 4}(3,0)} with full

group S6×C2 (see [40, p. 371]), then we arrive at properly self-dual chiral 4-polytopes

of types {{4, 4}(3b,3c), {4, 4}(3c,3b)} with groups L2(p) × A6 ×C2.

Note that the toroidal vertex-figure of the chiral polytope of Theorem 8.1 is the

enantiomorphic copy of the facet (if p ∤ m); that is, the two coordinates of the sub-

script vectors are switched. The latter will not remain true for the next two Schläfli

types.

Theorem 8.2 Let p be a prime with p ≡ 1 mod 12, let b and c be positive integers

such that p = b2 + bc + c2, let m be an odd integer with 3 ∤m, and let Q be a finite self-

dual directly regular 4-polytope of type {{3, 6}(m,0), {6, 3}(m,0)} such that p(p2 − 1)

does not divide |Γ(Q)|. Then there exists a properly self-dual chiral 4-polytope of type

{{3, 6}(m,0), {6, 3}(m,0)} if p |m, or {{3, 6}(mb,mc), {6, 3}(mb,mc)} if p ∤m, whose group

is L2(p) × Γ
+(Q).

Proof We proceed exactly as in the proof of the previous theorem. In this case,

[55, Cor. 10.5] provides the initial properly self-dual chiral polytope P of type

{{3, 6}(b,c), {6, 3}(b,c)} with group L2(p), which then is mixed with Q. The corre-

sponding group L2(p) × Γ
+(Q) again has the intersection property, for reasons very

similar to those in the previous proof. Now Γ1 ∩Γ3 lies in a group isomorphic to C2
6 ;

on the other hand, by our assumptions on p and m, its order cannot be divisible by 4

or 9, so it must be 6.

Relatively little is known about regular 4-polytopes of type {3, 6, 3} (see [40,

Ch. 11E]); in particular, the universal polytopes {{3, 6}(m,0), {6, 3}(m,0)} have not

yet been fully classified (but it is known that the polytope is finite if m = 3).

On the other hand, for every prime m > 3 there are regular 4-polytopes of type
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{{3, 6}(m,0), {6, 3}(m,0)} with full automorphism groups given by certain finite or-

thogonal groups (see [44, p. 345]). When these polytopes are chosen as Q in Theo-

rem 8.2, we obtain chiral 4-polytopes of types {{3, 6}(mb,mc), {6, 3}(mb,mc)} as long as

p does not divide m2 ± 1.

Theorem 8.3 Let p be a prime with p ≡ 1 mod 12, let b and c be positive integers

such that p = b2 + bc + c2, let m ≥ 2 be an integer with 3 ∤ m, and let Q be a fi-

nite self-dual regular 4-polytope of type {{6, 3}(m,0), {3, 6}(m,0)} such that p(p2 − 1)

does not divide |Γ(Q)|. Then there exists a properly self-dual chiral 4-polytope of type

{{6, 3}(m,0), {3, 6}(m,0)} if p |m, or {{6, 3}(mb,mc), {3, 6}(mb,mc)} if p ∤m, whose group

is L2(p) × Γ
+(Q).

Proof The initial properly self-dual chiral polytope P of type {{6, 3}(b,c), {3, 6}(b,c)}
with group L2(p) is obtained from [55, Cor. 11.5]. The intersection property can be

settled in the same manner as in the two previous theorems. Here, Γ1 ∩ Γ3 lies in

a group isomorphic to C2
3 ; on the other hand, by our assumptions on p and m, its

order cannot be 9, so it must be 3.

If Q is the universal regular 4-polytope {{6, 3}(2,0), {3, 6}(2,0)} with full group

S5 × C2
2 (see [40, p.412]), then Theorem 8.3 provides chiral 4-polytopes of type

{{6, 3}(2b,2c), {3, 6}(2b,2c)} with groups L2(p) × A5 ×C2
2 .

9 Chiral Polytopes of Rank 5

Very little is known about chiral polytopes of rank larger than 4. In particular, finite

examples are known only for rank 5 and were discovered quite recently in [10] (see

also our concluding remarks). Infinite examples were found earlier in [56] by estab-

lishing the following extension theorem and applying it to suitable polytopes of rank

4. If K is a chiral n-polytope with regular facets F, then there exists a chiral (n + 1)-

polytope L with facets isomorphic to K; moreover, among all chiral (n + 1)-polytopes

with facets isomorphic to K, there exists a universal such polytope whose group is a cer-

tain amalgamated product of Γ(K) and Γ(F) with amalgamation along two subgroups

isomorphic to Γ
+(F). Note here that the assumption on the regularity on F is neces-

sary, since the (n − 1)-faces of a chiral (n + 1)-polytope must be regular (see [54]).

In this section we employ our methods to construct more chiral polytopes for rank

5. Now, unlike in previous sections, the two components of the mix will not have

the same Schläfli symbol. In particular, we establish the following theorem, which

enables us to construct many new chiral n-polytopes from a given chiral n-polytope

for any rank n ≥ 3.

Theorem 9.1 Let P be a finite chiral n-polytope of type {p1, . . . , pn−1}, let Q be

a finite directly regular n-polytope of type {q1, . . . , qn−1}, and let p j , q j be relatively

prime integers for each j = 1, . . . , n − 1. Then P ♦ Q is a chiral or directly regular

n-polytope of type {p1q1, . . . , pn−1qn−1} with group Γ(P) × Γ
+(Q). Moreover, if P is

totally chiral and Γ(P) × Γ
+(Q) does not have a subgroup that has a quotient Γ(P) ×

Γ
+(P) (in particular if |Γ(P)| does not divide |Γ+(Q)|), then P ♦ Q is chiral.
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Proof Consider the mix Γ := Γ(P) ♦ Γ
+(Q) of the group of P and the rotation sub-

group of Q. Let τ j = (σ j , σ
′
j ) for j = 1, . . . , n−1 denote the distinguished generators

of Γ, where again Γ(P) = 〈σ1, . . . , σn−1〉 = Γ
+(P) and Γ

+(Q) = 〈σ ′
1, . . . , σ

′
n−1〉.

Since p j , q j are relatively prime, we have

〈τ j〉 = 〈σ j〉 × 〈σ ′
j〉 = C p j

×Cq j
= C p j q j

,

so in particular, (σ j , ǫ), (ǫ, σ
′
j ) ∈ Γ for each j. Then it follows immediately that, for

any J ⊂ {1, . . . , n − 1},

(9.1) 〈τ j | j ∈ J〉 = 〈σ j | j ∈ J〉 × 〈σ ′
j | j ∈ J〉.

In particular, Γ = Γ(P) × Γ
+(Q).

Now the proof of the intersection property of Γ is quite simple and applies

Lemma 3.1 inductively as follows. Define Γ≤k := 〈τ j | j ≤ k〉 for k = 1, . . . , n − 1,

so in particular Γ≤n−1 = Γ. Then clearly Γ≤1 has the intersection property.

Now suppose that Γ≤k has the intersection property for some k ≤ n−2. We claim

that then Γ≤k+1 must also have the intersection property. In fact, we have

Γ≤k ∩ 〈τ2, . . . , τk+1〉
= 〈σ1, . . . , σk〉 × 〈σ ′

1, . . . , σ
′
k〉 ∩ 〈σ2, . . . , σk+1〉 × 〈σ ′

2, . . . , σ
′
k+1〉

= 〈σ2, . . . , σk〉 × 〈σ ′
2, . . . , σ

′
k〉 = 〈τ2, . . . , τk+1〉,

where the first and last equalities are special cases of (9.1), and the second equality

follows directly from the intersection property of the groupsΓ(P) andΓ
+(Q), bearing

in mind that (σ j , ǫ), (ǫ, σ
′
j ) ∈ Γ for each j. Hence, by Lemma 3.1, Γ≤k+1 also satisfies

the intersection property.

It follows that Γ = Γ≤n−1 has the intersection property. Thus the mix P ♦ Q of

P and Q is a chiral or directly regular n-polytope of type {p1q1, . . . , pn−1qn−1} with

group Γ.

Finally, if P is totally chiral and Γ(P)×Γ
+(Q) does not have a subgroup with quo-

tient Γ(P)×Γ
+(P) (in particular if |Γ(P)| does not divide |Γ+(Q)|), then Lemma 5.7

implies that P ♦ Q is chiral.

The polytopes obtained from the previous theorem generally have Schläfli sym-

bols with rather large entries. We conclude this section with some interesting exam-

ples of chiral polytopes of rank 5, but note that the method works more generally

for any rank for which suitable chiral polytopes are known, so in particular also for

ranks 3 and 4.

First suppose that P is the chiral 5-polytope

{{{3, 4}, {4, 4}(2,1)}, {{4, 4}(2,1), {4, 3}}}

with automorphism group S6 described in [10, pp. 126–127]. This is the uni-

versal 5-polytope with chiral facets {{3, 4}, {4, 4}(2,1)} and chiral vertex-figures

{{4, 4}(2,1), {4, 3}}, and is of type {3, 4, 4, 3}. Its group S6 has only one non-trivial
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normal subgroup, A6. Hence, if P is not totally chiral, then its chirality group X(P)

must necessarily be isomorphic to A6. Now, employing the technique described at the

end of Section 4, computation with GAP [20] has shown that the chirality group is

indeed A6. Thus P is not totally chiral, and we cannot simply appeal to Theorem 9.1

to conclude that a mix of P with a suitable directly regular 5-polytope is chiral.

However, under certain circumstances we can still establish the chirality of the

mix by hand, even though the chiral component is not totally chiral; more precisely

we will apply the criterion of Lemma 2.1. Now, let Q be a regular cubic 5-toroid

{4, 3, 3, 4}(sk,04−k) (of type {4, 3, 3, 4}), with s ≥ 2 and k = 1, 2 or 4 (see [40, Sect.

6D]), and let [4, 3, 3, 4]+
(sk,04−k)

denote the rotation subgroup of its full automorphism

group (of index 2). Then Theorem 9.1 gives an infinite series of chiral or directly

regular 5-polytopes P ♦ Q of type {12, 12, 12, 12}, whose automorphism groups are

of the form [4, 3, 3, 4]+
(sk,04−k)

× S6, of orders 138 240s4, 276 480s4 or 1 105 920s4 as

k = 1, 2 or 4. We need to reject the possibility that P ♦ Q is directly regular. Here we

can exploit the fact that a word in the generators and its enantiomorphic image must

represent elements of the same period in the group (see Lemma 2.1).

As before, let Γ(P) = 〈σ1, . . . , σn−1〉, let Γ+(Q) = 〈σ ′
1, . . . , σ

′
n−1〉, and let Γ :=

Γ(P) × Γ
+(Q) = 〈τ0, . . . , τn−1〉, with τ j = (σ j , σ

′
j ) for each j. Recall that Γ(P)

is the quotient of the Coxeter group [3, 4, 4, 3] defined by the single extra relation

(σ−1
2 σ3)2σ2σ

−1
3 = ǫ. This extra relation determines [4, 4](2,1) as a quotient of [4, 4]

(see [16]). Now consider the corresponding word

ω := (τ−1
2 τ3)2τ2τ

−1
3 = (ω1, ω2)

in Γ, whose component words are ω1 = (σ−1
2 σ3)2σ2σ

−1
3 in Γ(P) (representing the

trivial element) and ω2 = (σ ′
2
−1
σ ′

3)2σ ′
2σ

′
3
−1

in Γ
+(Q). In particular, ω2 = σ ′

2 in

Γ
+(Q). In fact, since ω2 lies in 〈σ ′

2, σ
′
3〉 ∼= [3, 3]+ (bear in mind that Q is of type

{4, 3, 3, 4}), the elements σ ′
2 and σ ′

2
−1
σ ′

3 have period 3, and so

ω2 = (σ ′
2
−1
σ ′

3)−1σ ′
2σ

′
3
−1

= σ ′
3
−1
σ ′

2σ
′
2σ

′
3
−1

= σ ′
3
−1
σ ′

2
−1
σ ′

3
−1

= (σ ′
2σ

′
3)−1σ ′

3
−1

= (σ ′
2σ

′
3)σ ′

3
−1

= σ ′
2.

Thus ω has period 3 in Γ. Now consider the enantiomorphic word of ω in Γ given by

ω = (τ−1
2 τ−2

1 τ3)2τ 2
1 τ2τ

−1
3 = (ω1, ω2),

where ω1 and ω2 are the enantiomorphic words of ω1 and ω2 in their groups, respec-

tively. Then a simple computation with GAP (or by hand, using the permutation

representation of Γ(P) in [10, p. 126]) shows that ω1 has period 5 in Γ(P). Hence ω
cannot have period 3 in Γ. Thus the mix P ♦ Q must be chiral, since ω and ω have

different periods.

However, we can also obtain chiral polytopes of rank 5 by directly appealing to

Theorem 9.1. In fact, with the same choice of Q, the two chiral 5-polytopes of

[10, pp. 127–128] of type {3, 8, 8, 3} and with groups A12 or A20, respectively, give

two infinite series of chiral 5-polytopes of type {12, 24, 24, 12}, with automorphism
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groups A12 × [4, 3, 3, 4]+
(sk,04−k)

and A20 × [4, 3, 3, 4]+
(sk,04−k)

. Now the two initial chiral

5-polytopes of type {3, 8, 8, 3} are totally chiral since their groups are simple.

We can also establish some interesting results about chiral polytopes (of ranks

3, 4 or 5) with preassigned Schläfli symbols. For example, let k, l,m, n ≥ 3, with

k, n each relatively prime to 3 and with l,m odd. Suppose that there are infinitely

many directly regular 5-polytopes of type {k, l,m, n}. Then there are also infinitely

many chiral 5-polytopes of type {3k, 8l, 8m, 3n}. The latter are obtained directly

from Theorem 9.1 by mixing the regular 5-polytopes with the above (totally chiral)

chiral 5-polytopes of type {3, 8, 8, 3}.

Concluding Remarks and Acknowledgment

This paper, by itself, does not establish the existence of chiral polytopes of any rank.

In fact, the method already requires as input the existence of certain chiral polytopes

of the specified rank.

Most of our results were obtained by January 2009. Since then, two important

developments have occurred independent of our work. We have heard from Marston

Conder and Alice Devillers (personal communication) that they succeeded in con-

structing chiral polytopes of ranks 6, 7, and 8, and Daniel Pellicer has announced

that he can construct chiral polytopes of any rank n ≥ 3 (see [50]). A new example

of rank 5 is also described in Pellicer–Weiss [51]. There is a good chance that some of

these polytopes can serve as input polytopes in our construction and hence provide

many more chiral polytopes of the specified ranks.

This research was begun while the second and third authors visited the first at the

University of Aveiro in April 2008. We would like to thank the University of Aveiro

for its hospitality.
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