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1. Introduction. In this paper we study generalized homomorphisms 
between two algebras, namely the binary relations whose graphs are sub-
algebras of the direct product of the given algebras.1 In 1897 Goursat proved 
that every subgroup of the direct product of two groups is determined by an iso
morphism between factor groups of subgroups of the given groups (10, §§11, 12; 
25, pp. 15, 16). A like result is here shown for a general class of algebras, 
including loops and quasigroups, by a method due to Riguet (22). This result 
is used to obtain general forms of the Zassenhaus lemma and the Jordan-
Hôlder-Schreier theorem for normal series (26, §9). I t is also shown how 
Goldie's generalization (8) of the latter may be derived by these methods. 

For easier reading, all results are first proved for groups in §2. Although the 
results for groups are not new, except proposition 2, the proofs given here 
carry over without change to the class of algebras considered in §3. It is 
difficult to judge from the extensive literature whether the J.H.S. theorem for 
normal series has previously been extended to quasigroups in the present form, 
because most authors on loops and quasigroups (for example, 1, 20) do not 
count division among the operations; the first to do so was apparently Evans 
(7). The extension of these results to systems with partial and infinitary 
operations is discussed in §4. 

To introduce our notation, we briefly review some concepts from the calculus 
of binary relations. A binary relation between two sets A and 5 is a triple 
p = (R, A,B), where R is a subset of the Cartesian product A X 5 , called the 
graph of p. One usually writes apb to mean (a,b) (E R. Relations of special 
interest are the identity relation iA on A, the converse p~ = (R~,B,A) of p and 
the relative product pa = (RS,A,C) of p and a = (5,5,C). These are defined by 

1.1 aiAa*' <-> a = a' Ç A, 
1.2 bp~a <->ap6, 
1.3 apac <-> apb and bac for some b £ 5 . 

We write p < p = (R',A,B) if R is a subset of R'. 
One may think of the relation p = (R,A,B) as a many-valued mapping of 

part of A into 5 and say that 

Received September 28, 1956; in revised form June 15, 1957. This paper was written while 
the author held a summer research associateship of the Canadian National Research Council. 

xIt was pointed out to me by G. D. Findlay that ordinary homomorphisms have this 
property. 
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1.4 p is universally defined <^ iA < pp~, 
1.5 p is 0^/0 <-> t5 < p~p, 
1.6 pis faithful ^> PP~ < ^ , 
1.7 p is single-valued <-» p~p < t5. 

If K = (i£,^4,^4), one says that 
1.8 AC is symmetric <-> AC~ < AC, 
1.9 AC is transitive <-> ACAC < AC, 
1.10 AC is reflexive <-» tA < AC. 

An equivalence relation satisfies all of these three; but relations which are 
merely symmetric and transitive are also of interest. Any such relation satisfies 

AC = A C , ACAC = AC 

and has the same graph as an equivalence relation on a subset of A. The 
following definition is due to Riguet (22). 

1.11 p is difunctional <-» pp~p < p. 

This is easily seen to imply pp~p = p and means that whenever apb', a*pb' and 
afpb then apb. Riguet showed that such a p determines a one-to-one corres
pondence between equivalence classes on subsets of A and B respectively. 

We shall write 
ap = {b \ apb} ; 

more generally, for any subset A' of A, 

A'p = {b | apb for some a Ç A'}. 

In particular, ^4p is the range of p, i?p~ is its domain. The following rules are 
well known and will be used freely: 

(P<T)T = p(ar), 
piB — p = LAp, 

1>A~ = ^ , (P~)~ = P> (P<0~ = ^"p"» 

A'(pa) = G4'p>. 

We often take advantage of the first and last of these to write without brackets 
par and A'pv. 

If AC = (K,A,A) is any binary relation such that AC < ACAC = AC2, then AC71 < ACW+1 

for all n > 1. The union AC* = (K*,A,A) of all nn is called the transitive closure 
of AC, since AC—>AC* is a closure operation and AC = AC* if and only if AC is transitive. 

One easily verifies that 

1 . 1 2 AC*AC* = AC*AC = AC*, AC*~ = AC~*. 

For any binary relation p = (R.A.B), Riguet (23) defines its difunctional closure 

1.13 P + = (PP~)*P = p{p~p)*. 

p —» p+ is again a closure operation and p = p+ if and only if p is difunctional. 

https://doi.org/10.4153/CJM-1958-005-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1958-005-6


LEMMAS OF GOURSAT AND ZASSENHAUS 47 

2. Homomorphic relations between groups. To generalize the notion 
of a homomorphism of a group A into a group B, we call the binary relation 
p = (RjAyB) homomorphic if and only if 

(i) l p l , 
(ii) if apb then a~1pb~1

1 

(iii) if ap6 and a'pbf then aarpbbr. 
Clearly then, p is homomorphic if and only if its graph R is a subgroup of the 
direct product A X B. I t is easily verified t h a t the ident i ty relation, the con
verse of a homomorphic relation and the relative product of two homomorphic 
relations are all homomorphic . One also verifies for any homomorphic 
p = (R,A,B) t h a t if A' is a subgroup of A then A'p is a subgroup of B. 

A homomorphic equivalence relation is usually called a congruence relation. 
We shall call subcongruence any homomorphic relation which is t rans i t ive and 
symmetr ic wi thout necessarily being reflexive. If K = (K,A,A) is such a sub-
congruence on A, it induces a congruence relation (K,AK,AK) on its range AK. 
T h e factor group of AK modulo K is usually wr i t ten AK/K, we shall call it a 
subfactor of A. W e define R = (K,A,AK/K) by 

2.1 aR(arK.) <-» ana', 

so t h a t aR = a\i. A simple calculation shows t h a t 

2.2 RK~ = AC, R~R = LAK/K, 

whence 

2.3 R~KR = LAK/ICI 

Note t h a t R induces the well-known na tura l homomorphism (K,AK}AK/K). 

P R O P O S I T I O N 1 (Riguet) . Ifp= (R,A,B) is a difunctional homomorphic 
relation (between two groups) then 

(i) K = pp~ is a subcongruence of A with range Bp~, 
(ii) X = p~p is a subcongruence of B with range Ap, 

(iii) p induces an isomorphism /x between subf actor s AK/K and B\/\ such 
that 

(aic)iJL(bX) if and only if apb. 

Conversely, every isomorphism between subf actor s of A and B is induced in this 
way. 

Proof. In view of 1.11 we have 

(pp~) (pp~) = (PP~P)P~ = PP~> 

and anyway 

(pp~)~ = (P~)~P~ = PP~> 

hence pp~ is a subcongruence b y 1.9 and 1.8. Moreover 

A(pp-) = (Ap)p-QBp-, 
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and bp~ is empty unless b £ Ap, hence 

2.4 App~ = Bp~. 

This establishes (i), and by symmet ry (ii). Let k = (K, A, AK/K) and 
X = (L,B,5X/X) be defined by 2.1 and pu t 

2.5 fJL = K~pX, 

then 

2.6 At~M = LB\/\, MM~ = ^«/«; 

for 

jJLjJL=\pKKp\z=\p Kp\ 

= %~p~pp~p\ = \~p~p\ = X~XX = t̂ X/X, 

by 2.5, 2.2, (i), 1.11, (ii) and 2.3. Hence /x is an isomorphism between AK/K 
and B\/X, by 1.4 to 1.7. A further calculation shows t h a t 

2.7 /c/xX~ = p. 

This gives a "canonical decomposit ion" (18) of p and is paraphrased by (iii). 
Conversely, let /x be a given isomorphism between given subfactors ^4/c//c and 

BX/X of y4 and Z? respectively. If p is defined by 2.7, a computat ion will show 
t h a t 

pp~ = K, p~p = X, pp_p = p. 

This completes the proof of Proposition 1, which may also be wri t ten more 
concisely thus : 

PROPOSITION 1'. Subf actor s AK/K and BX/X of (groups) A and B respectively 
are isomorphic if and only if there exists a difunctional homomorphic relation 
p = (R,A,B) such that pp~ — K and p~p = X. 

T h e importance of the above derives from the following: 

PROPOSITION 2. Any homomorphic relation p = (R,A,B) {between two 
groups) is difunctional. 

Proof. Wri te / 3 (x,y,z) = xy~lz, then 

(t) M*,y,y) = *> My,y,z) = z. 
Now let a, a' £ A and b, V G B and assume 

apb', a'pb', a'pb 

then 

a =f3(a,a',a') pf3(b',b',b) = b. 

T h u s p is difunctional by 1.11. 
Propositions 1 and 2 together give Goursat ' s characterization of the sub

groups of the direct product of two groups, since all such subgroups are graphs 
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of homomorphic relations between the groups. We have seen that Proposi
tion 1 yields a characterization of all isomorphisms between subfactors of 
groups. Thus the isomorphism of Zassenhaus (26, p. 54) may be obtained as 
follows. 

PROPOSITION 3. If K and X are subcongruences of (a group) A, then K\ induces 
an isomorphism between the subfactors of A modulo K\K and XKX. 

Proof. By proposition 2, K\ is difunctional, hence by Proposition 1 we 
have subcongruences 

(K\)(K\)~ = K\\~K~ = K\K 

and 

(KX)~(KX) = X K KX = XKX, 

whose associated subfactors are isomorphic. 
Zassenhaus used this result in a somewhat different form to prove the J.H.S. 

theorem for normal series. For the purpose of generalization, it is of interest 
to see how this can be done using Proposition 3 in the present form. 

If C is a subgroup of A and K is a subcongruence of A such that C C CK, 
we shall call K a subcongruence of A over C. Following Goldie (9), we call 
normal series from A' to C any m-tuple KI, . . . am of subcongruences of A over 
C such that 

2.8 A' = AKh CK\ = AK2, . . . , CKM-I = Aicm, CKM = C'. 

Ultimately we are only interested in the case Af = A, C = C; the more com
prehensive definition is useful in the following. 

PROPOSITION 4. If X is any subcongruence of {a group) A over {a subgroup) 
C then any normal series of subcongruences of A over C from A' to C gives rise to 
a normal series from A'\ to C'X. 

Proof. If p = (R,A,B) is difunctional and A0 and B0 are subgroups of 
A and B respectively such that Bo C A0p and A0 C B0p~ then 

2.9 Aopp~ = Bop~, Bop p = A op, 

since for instance 

A op ^ Bop~p Q Aopp~p = A op 

by 1.11. If K and X are both subcongruences of A over C, it follows from 2.9, 
by taking B = A,Bo = AQ = C and p = K\ or XK that 

2.10 CK\K = C\K, C\K\ = CK\. 

It follows similarly from 2.4 with B = A that 

2.11 AK\K = A\K, A\KX = AK\. 
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Using 2.8, 2.10 and 2.11 we compute 

A'\ = AK{K = A\KI\ 

C\KI\ = CKiX = AKÎ+I\ = A\Ki+i\ (i = 1, . . . m — 1), 
C\Km\ = CKm\ = C'A, 

thus establishing the analogue of 2.8 which completes the proof. 

In view of Propositions 3 and 4, we may now state the Jordan-Hôlder-
Schreier-Zassenhaus theorem in the following form : 

PROPOSITION 5. If m, . . . Km and Ai, . . . \n are normal series from A to C 
then the rectangular array {K*A^K<} i<m.j<n may oe ordered by rows to give a "refine
ment" of the former, the array {AyJtiA }̂*<OT,Kn wwy oe ordered by columns to give 
a refinement of the latter, and corresponding entries of the two arrays determine 
isomorphic subfactors. 

3. Generalization to other algebraic systems. By an w-ary operation 
fn on a set A is understood a mapping which assigns to each n-tup\e of 
elements of A a single element of A, n being some finite non-negative integer. 
In particular, a 0-ary operation is a constant. We thus consider operations 
which are finitary, universally defined and single-valued. 

Let F be a set of operation symbols with prescribed subscripts. An algebra, 
in the sense of Birkhoff (3), is a representation of such a set of symbols as 
w-ary operations on a set A, and may be denoted by FA. If A' is a subset of A 
closed under all the operations in F, the induced representation FAr is called a 
subalgebra of A. Two algebras FA and GB are called similar if F = G; if no 
confusion is likely to arise, they may be denoted merely by A and B. The 
Cartesian product A X B of two similar algebras is turned into another 
algebra of the same kind, called the direct product of A and B, by the familiar 
device, here illustrated by a unary operation, 

/i(a,ft) = (M/xô ) (a eA,b 6 5 ) . 

We define homomorphic relations between yl and i? as binary relations whose 
graphs are subalgebras of A X B. In particular, a homomorphism satisfies 1.4 
and 1.7, an isomorphism also 1.5 and 1.6; a subcongruence satisfies 1.8 and 1.9, 
a congruence also 1.10. Factors and subfactors are defined as for groups. 

Compound operations on an algebra are obtained by composition from the 
given operations and the selection operations Ink: 

Inkipci, . . . xn) = xk (1 < k < n). 

Mal'cev has introduced the notion of a primitive class of algebras (19). This 
is a maximal class of similar algebras subject to a given set of postulates 
expressed as identities between compound operations. For instance, the primi
tive class of groups consists of all sets with three operations 

/o = 1, fix = x~\ f2(x, y) = x-y, 
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subject to the postulates 

ftifotf) = x =/2(*,/o), 
f2(x,fix) = / 0 = h(fix,x). 

The proofs of Propositions 1 to 5 were purposely stated in such a way that 
they remain valid, with minor modification of terminology, when the primitive 
class of groups is replaced by other primitive classes of algebras, as follows. 

THEOREM I. Proposition 1 holds for any primitive class of algebras, proposi
tions 2 to 5 hold for any primitive class with a compound operation fz satisfying 

(t) Mx,y,y) = x, My,y,z) = z. 

This result applies to loops and generalized loops, as seen from the first two 
of the following examples. 

Example 1. Smiley (24) has considered what might be called left-loops, with 
operations 1, •,/ subject to 

(z/y)-y = z, (x-y)/y = x, 1-y = y. 

Taking fz(x,y,z) = (x/y)-z, we easily verify (f) (see Proposition 2). Every 
left-loop A has a one-element subalgebra A0 = {1}. It is easily verified that 
every subcongruence K of A is uniquely determined by its range An and its 
kernel A0K. In fact, ana' if and only if a, a' G A and a/ar G A0K, that is 
a G (AOK) -af. The subfactor AK/K may then be denoted by AK/A0K, to conform 
with the usual notation in group theory. If p = (R,A,B) is any homomorphic 
relation between left-loops, the subcongruence pp~ gives rise to the subfactor 

App~ _ Bp~ 
A0pp~ B0p~' 

in view of 2.4 and 2.9. Hence, by Theorem I, any homomorphic relation 
p = (R,A,B) between left-loops induces an isomorphism between 

Bp-_ 
Bop 

and 

AIL 

Aop' 

The Zassenhaus lemma is easily seen to take the familiar form : If 
U_ 

and 
V_ 
V 
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are subfactors of a left-loop then 

U'.SUC\XL~ v'j.vrw) 

Example 2. A quasigroup is a system with operations -, / , u subject to 

(z/y)-y = z, (x-y)/y = x, y-(yuz) = z, yu(y-x) = x. 

T a k i n g / 3 ( x , y, z) = (x-(yuy)) / (zuy), we easily verify (f).2 

Example 3. A relatively complemented lattice (2, p. 105) is a lattice in which 
to every element a\J b between a and a\J b^J c there corresponds a so-called 
relative complement g3(a, b, c) such t h a t 

{a U b) U gz(a,b,c) = a \J b U c, 
(a\J b) Pi gz(a,b,c) = a. 

If we reckon g3 among the operations of a relatively complemented lattice, we 
may p u t / 3 ( a , b, c) = g3(a, 6, c) Pi g3(c, ô,'a) and verify (f) by computat ion. 3 

Birkhoff (2, p . 89) has proved the J.H.S.Z. theorem for principal series for 
algebras whose congruence relations permute , t h a t is, where K\ = X/c for any 
two congruence relations K and X. I t is therefore of interest t ha t the following 
three s ta tements about a primitive class of algebras are equivalent : 

M l . There is a compound operation ft satisfying (f). 
M2. All homomorphic relations are afunctional. 
M 3 . All pairs of congruence relations on the same algebra permute. 

In fact, M l implies M2 by Theorem I, M2 implies M 3 , because 

K\ — LK\L < \K\K — (XK)(XK)~(XK) = XK, 

by 1.10 and 1.11, and symmetrically X/c < /cX. Finally, Mal 'cev has shown t h a t 
M 3 implies M l , by an ingenious argument involving the free algebra with 
three generators in the primitive class. 

Goldie (8) has generalized the J.H.S.Z. theorem for normal series to a larger 
class of algebras satisfying a condition of "weak associability," which is equiva
lent to our 2.10. We briefly indicate how Goldie's result can be deduced from 
proposition 1. 

If A is an algebra with uni tary operations then the union of any increasing 
sequence of subalgebras is also a subalgebra, as is well known.4 In particular, 
if K = (K, Ay A) is a homomorphic relation such t h a t K < KK = K2, then its 
t ransi t ive closure K* is also homomorphic. If A and B are similar algebras with 
finitary operations, it follows t ha t the difunctional closure p + of a homomorphic 
relation p, defined by 1.13, is also homomorphic. Wri t ing p + for p in Proposition 
1, we find t ha t any homomorphic p gives rise to two subcongruences 

2Essentially this formula appears in the paper by Mal'cev (19). 
3This construction of f3 is implicit in the proof by Dilworth (4) that congruence relations 

on a relatively complemented lattice permute. 
4See for instance the proof by Kurosh (15, p. 48) for groups. 
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3.1 P V ~ = (PP-)*, / V = G»"»*, 
whose associated subfactors are isomorphic. (Equation 3.1 follows from 1.13 
and 1.12.) In place of Proposition 3, we find that, given subcongruences K and X, 
their relative product K\ induces an isomorphism between the subfactors 
belonging to the subcongruences (K\K)* and (AKA)*. Modified Propositions 4 
and 5 for normal series from A to C can then be deduced from 2.10, which is 
now postulated, with little more trouble than for groups. We may ask what 
class of algebras satisfies 2.10. 

PROPOSITION 6. Let A be an algebra with a compound operation / 3 and a 
subalgebra C such that 

Ma,c,c) = a, Ma,a,c) € C, 

for all a £ A, c Ç C. If K = (K, A, A) is any homomorphic relation such that 
C C CK then 

3.2 CKK = CK~. 

Proof. Let a Ç CKK~, then cua and amf for some c G C and ar 6 A. Now 
CKCf for some c' Ç C, since C C CK. Hence 

a = fz(a}c,c) Kfz{af,a',c') = c" € C, 

so that CKK~ C C/C~. The converse follows immediately from C ÇI CK. Note 
that 2.10 can be derived from 3.2 as from 2.9. 

Example 4. Let us call left-quasigroup any system A with two binary 
operations • and / satisfying 

(z/y)-y = z, (x-y)/y = x. 

Letfz(x, y, z) = (x/y)-z, then/3(x, y, y) = x. Given a G A, call a/a a left-unit, 
and let C be the subalgebra generated by the left-units, then for any c € C 
we have / (a , a, c) = (a/a)-c € C.5 

Example 5. Consider a system 4̂ with 1 and / satisfying 

Let C = {1}, fz{x, y, z) = (x/y)/z or merely x/y, and verify that 
fz(a,a, 1) = l , /8(a, 1, 1) = a. 

4. Discussion of further generalizations. In §3 we demanded that 
the operations of an algebra be unitary, universally defined and single-valued. 
We shall briefly discuss what happens when one or more of these restrictions 
are relaxed. 

By an infinitary operation on A is usually understood a mapping which 
assigns a value in A to any sequence of elements in A, a sequence being a 

5Murdoch (20) has carried out a somewhat similar construction for certain quasigroups, 
without counting division among the operations. 
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mapping of the set / of natural numbers into A. Looking back at the proofs 
of propositions 1 to 5, we find that no use has been made of the fact that the 
operations in a group are finitary, except in the definition of compound opera
tions and therefore in the concept of primitive class. Now the only property 
of a primitive class used here is the possibility of making certain constructions 
without going outside the class. We thus have 

THEOREM II. Theorem I remains valid for a class of similar algebras with some 
infinitary operations, provided the class contains all subalgebras, factors and direct 
products of algebras in the class. 

It seems that Goldie's generalization cannot be thus extended, as long as it 
depends on the fact, not in general valid for algebras with infinitary operations, 
that the union of an increasing sequence of subalgebras is also a subalgebra. 

Example 6. A Boolean a-algebra (2, p. 167) is a Boolean algebra with an 
infinitary operation "sup" such that for any sequence a of elements la, 2a, . . . 
and any element a, sup a < a if and only if ia < a for all i Ç J. If + denotes 
the so-called symmetric difference, we write fz(x, y, z) = x + y + z and 
verify (f). This example may be generalized to relatively complemented c-
lattices, in view of Example 3. 

The familiar limit operation of analysis is a partial operation, in the sense 
that it is defined only for some sequences, which are called convergent. We shall 
use it here to illustrate arbitrary partial operations, be they finitary or infini
tary, availing ourselves of the ready-made terminology that goes with the 
limit concept. 

We consider an algebra A with a partial infinitary operation "lim." No 
connection is assumed between the algebraic structure of A and its " topo
logical" structure. Interest centres on subalgebras of A which are closed, that 
is, closed under "lim," and on homomorphic relations with closed graphs. But 
even if p is an ordinary homomorphism of A into B with closed graph, B' a 
closed subalgebra of B, it is not in general true that Bfp~ is closed, unless p is 
continuous. Moreover, in extending results of group theory to groups with a 
limit operation, one aims to make sure that all relevant isomorphisms are 
bicontinuous. Of interest are therefore classes of similar algebras with the so-
called closed-graph property: Every isomorphism between two members of the class 
is continuous if it has a closed graph. 

Example 7. Given any sequence a whose set of terms is Ia = {la, 2a, . . .}, 
a subsequence has the form era, where a is a mapping of / into / . Kuratowski 
(14, p. 84) imposes the following postulates on the operation "lim." 

K l . If lim a = a then lim aa = a. 
K2. If ia = a for all i Ç / then lim a — a. 
K3. If every subsequence aa of a has a subsequence raa such that lim roa — a 

then lim a = a. 
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We make no use of K2, instead we demand compactness: 
K4. Every sequence has a convergent subsequence. 

It is now easily shown that if A and B are sets with a limit operation satisfying 
Kl , K3 and K4, then any one-to-one correspondence between A and B is 
continuous if it has a closed graph. 

Theorem 11 can be extended to such systems as loops and quasigroups with 
a limit operation satisfying Kl , K3 and K4. We refrain from carrying out this 
extension here, since the study of infinite sequences should really be replaced 
by that of nets (11, II) . It is known that the class of locally compact quasi
groups with countable base enjoys the closed-graph property (19, theorem 
12). This suggests further extension of our results. 

In view of the extensive literature on multigroups and related systems (for 
example, 6; 13), we should say a word about them. A many-valued operation 
assigns non-empty subsets of A to n-tuples of elements of A. The following 
example may give a clue to the extension of the present results to systems with 
many valued operations. 

Example 8. Kuntzmann (13) introduces a multiform system with three many-
valued operations -, / , u subject to 

c £ a-b «-> a G c/b, c Ç ab <-> b € auc. 

Writing fz(x,y,z) = (x-(yuy)) / (zuy), in the sense of operations on complexes, 
we easily verify that 

x €fz(x,y,y), z € fz(y,y,z). 
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