SOME STUDIES ON SEMI-LOCAL RINGS

MASAYOSHI NAGATA

Introduction. The concept of semi-local rings was introduced by C. Chevalley [1]⁰⁾, which the writer has generalized in a recent paper [7] by removing the chain condition. The present paper aims mainly at the study of completions of semi-local rings. First in § 1 we investigate semi-local rings which are subdirect sums of semi-local rings, and we see in § 2 that a Noetherian semi-local ring R is complete if (and only if) R/\mathfrak{p} is complete for every minimal prime divisor \mathfrak{p} of zero ideal, together with some other properties. Further we consider in § 3 subrings of the completion of a semi-local ring. § 4 gives some supplementary remarks to [7], Chapter II, Proposition 8.

TERMS. A ring means a commutative ring with identity and under the term "subring" we mean a subring having the same identity. Semi-local rings or local rings are those in the sense of Nagata [7] (or [6]). So, (semi-)local rings in the sense of Chevally [1] (or Cohen [2]) are called Noetherian (semi-)local rings.

1. Subdirect sums of semi-local rings.

LEMMA 1.1. Let R and R^* be a subdirect sum and the direct sum of rings R_1, R_2, \ldots, R_n respectively, and suppose that R is quasi-semi-local. We denote by φ_i the natural homomorphism of R- onto R_i , by \mathfrak{n}_i the kernel of φ_i and by \mathfrak{m}_i , \mathfrak{m}^* , \mathfrak{m}_i the J-radicals of R, R^* , R_i respectively $(i=1, 2, \ldots, n)$. Then we have (1) $\mathfrak{m}^* = \mathfrak{m} R^*$, (2) $\mathfrak{m}^* \cap R = \mathfrak{m}$, (3) $\mathfrak{m}^* = \mathfrak{m}_1 + \mathfrak{m}_2 + \ldots + \mathfrak{m}_n$, (4) $\varphi_i(\mathfrak{m}^k) = \mathfrak{m}_i^k$ $(k=1, 2, \ldots)$, (5) $(\mathfrak{n}_1 + \mathfrak{n}_2)$ $((\mathfrak{m}^*)^k \cap R) \subseteq (\mathfrak{n}_1 + \mathfrak{n}_2)$ \mathfrak{m}^k $(k=1, 2, \ldots)$ provided n=2.

Proof. (1), (2) and (3) are almost evident.³⁾ To prove (4), let $\mathfrak{p}_1, \ldots, \mathfrak{p}_h$ be the totality of maximal ideals of R. Then it follows $\mathfrak{m}^k = \mathfrak{p}_1^k \cap \ldots \cap \mathfrak{p}_h^k = \mathfrak{p}_1^k \dots \mathfrak{p}_h^k$ and $\varphi_i^{-1}(\mathfrak{m}_i^k) = (\mathfrak{p}_1^k + \mathfrak{n}_i) \cap \ldots \cap (\mathfrak{p}_h^k + \mathfrak{n}_i) = (\mathfrak{p}_1^k + \mathfrak{n}_i) \ldots (\mathfrak{p}_h^k + \mathfrak{n}_i)$. This proves (4). Finally, assume that n=2, and consider an element b_1 of

Received March 13, 1951.

⁰⁾ Numbers in brackets refer to the bibliography at the end.

¹⁾ A quasi-semi-local ring is a ring which has only a finite number of maximal ideals; cf. [9].

²⁾ J-radical (Jacobson radical) of a ring is the intersection of all maximal ideals in the ring.

³⁾ Cf. [9, Lemma 2].

 $(\mathfrak{m}^*)^k \cap R$. Then we can choose an element b_2 from \mathfrak{m}^k so that $\varphi_1(b_1) = \varphi_1(b_2)$, i.e., $b = b_1 - b_2 \in (\mathfrak{m}^k + \mathfrak{n}_2) \cap \mathfrak{n}_1$ (by virtue of (3) just above). Then we have $(\mathfrak{n}_1 + \mathfrak{n}_2)b = \mathfrak{n}_1 b \subseteq \mathfrak{n}_1((\mathfrak{m}^k + \mathfrak{n}_2) \cap \mathfrak{n}_1) \subseteq \mathfrak{n}_1 \mathfrak{m}^k$, which proves (5).

Next we cite lemmas due to Chevalley:

LEMMA 1.2. Let R be a complete Noetherian semi-local ring. If every a_n is an open ideal $(n=1, 2, \ldots)$ and if $\bigcap_{n=1}^{\infty} a_n = (0)$, then $\{a_n; n=1, 2, \ldots\}$ is a system of neighbourhoods of zero. [1, § II, Lemma 7]

LEMMA 1.3. Let R be a Noetherian semi-local ring with J-radical m and let c be an element of R which is not a zero divisor. Then $\{m^n : cR; n=1, 2, \ldots\}$ forms a system of neighbourhoods of zero. [1, § II, Lemma 9]

Now we prove

THEOREM 1. Let a Noetherian semi-local ring R be a subdirect sum of two rings R_1 and R_2 . Let \mathfrak{n}_i be the kernel of natural homomorphism φ_i of R onto R_i (i=1, 2). If $\mathfrak{n}_1+\mathfrak{n}_2$ contains a non-zero-divisor c, then R is a subspace of the direct sum R^* of R_1 and R_2 . (R^* is clearly a Noetherian semi-local ring.)

Proof. Let \mathfrak{m} and \mathfrak{m}^* be the J-radicals of R and R^* respectively. Then we have $\mathfrak{m}^k \subseteq (\mathfrak{m}^*)^k \cap R$, since $\mathfrak{m} = \mathfrak{m}^* \cap R$ by Lemma 1.1. On the other hand, it follows from Lemma 1.1 also that $c((\mathfrak{m}^*)^k \cap R) \subseteq \mathfrak{m}^k$, i.e., $(\mathfrak{m}^*)^k \cap R \subseteq \mathfrak{m}^k : cR$. These prove our assertion by virtue of Lemma 1.3.

COROLLARY. Let R be a Noetherian semi-local ring. If the intersection of ideals q_1, \ldots, q_n are zero and if $q_i : q_j = q_i$ for every pair $i \neq j$, then R is a subspace of the direct sum of rings $R/q_1, \ldots, R/q_n$; in fact, these assumptions for q_1, \ldots, q_n are satisfied if $q_1 \cap \ldots \cap q_n$ is a shortest representation of zero ideal as an intersection of primary ideals and if zero ideal has no imbedded prime divisor.

On the other hand, we have

THEOREM 2. Let a Noetherian semi-local ring R be a subdirect sum of (Noetherian semi-local) rings R_1, \ldots, R_n . We denote by \mathfrak{n}_i the kernel of natural homomorphism φ_i of R onto R_i for each i. Let \overline{R} be the completion of R. Then R is a subspace of the direct sum R^* of R_1, \ldots, R_n if and only if $\bigcap_{i=1}^n \mathfrak{n}_i \overline{R} = (0)$.

Proof. We denote by \overline{R}^* the completion of R^* and by m, \overline{m} , m^* , \overline{m}^* the J-radicals of R, \overline{R} , R^* , \overline{R}^* respectively.

If R is a subspace of R^* , it is evident that $\bigcap_{i=1}^n \mathfrak{n}_i \overline{R} = (0)$. Conversely, assume that $\bigcap_{i=1}^n \mathfrak{n}_i \overline{R} = (0)$. Then \overline{R} is a subdirect sum of completions \overline{R}_i of R_i $(i=1, 2, \ldots, n)$

by the natural way.⁴⁾ Whence $\{(\overline{\mathfrak{m}}^*)^k \cap \overline{R}; k=1, 2, \ldots\}$ forms a system of neighbourhoods of zero in \overline{R} by virtue of Lemma 1.2, that is, for any positive integer k there exists a positive integer n(k) such that $(\overline{\mathfrak{m}}^*)^{n(k)} \cap \overline{R} \subseteq \overline{\mathfrak{m}}^k$. Whence $(\mathfrak{m}^*)^{n(k)} \cap R \subseteq \mathfrak{m}^k$, which shows that R is a subspace of R^* .

COROLLARY 1. If a Noetherian semi-local ring R is complete and if $\mathfrak{n}_1, \ldots, \mathfrak{n}_n$ are ideals in R such that $\bigcap_{i=1}^n \mathfrak{n}_i = (0)$, then R is a subspace of the direct sum of $R/\mathfrak{n}_1, \ldots, R/\mathfrak{n}_n$.

COROLLARY 2. Let R be a Noetherian semi-local ring, and let there be ideals q_i $(i=1, 2, \ldots, n)$ in R such that $q_i : q_j = q_i$ for every pair $i \neq j$. Then we have $(\bigcap_{i=1}^{n} q_i) \overline{R} = \bigcap_{i=1}^{n} q_i \overline{R}$, where \overline{R} denotes the completion of R.

Proof. This is an immediate consequence of our Theorem 2 and Corollary to Theorem 1.

THEOREM 3. Let a semi-local ring R be a subdirect sum of semi-local rings R_1, \ldots, R_n . If R is a subspace of the direct sum R^* of R_1, \ldots, R_n , then R is a closed subspace of R^* . In particular, if moreover R^* is complete, i.e., if every R_i is complete, then so is R too.⁵⁾

Proof. Let $(a_i = a_{i1} + \ldots + a_{in})$ $(a_i \in R, a_{ik} \in R_k)$ $(i = 1, 2, \ldots)$ be a convergent sequence in R with limit $c = c_1 + \ldots + c_n$ $(c_k \in R_k)$ in R^* . Suppose that $c \notin R$. Let c_i be, for each i, an element of R which is mapped on c_i by the natural homomorphism φ_i of R onto R_i . Then we would have $\bigcap_{i=1}^n c_i' + n_i = \theta^{(6)}$, where n_i denotes the kernel of φ_i . Since every semi-local ring is a normal space and since each n_i is closed in R, there exists, for each i, an open set U_i in R such that $U_j \supseteq c_i' + n_i$ and $\bigcap_{i=1}^n U_i = \theta$. This contradicts to our assumption that c is the limit of the sequence (a_i) in R, and we have $c \in R$.

2. Completeness of a semi-local ring.

LEMMA 2.1. Let R be a semi-local ring and $\mathfrak a$ a closed ideal in R. Then R is complete if both $R/\mathfrak a$ and $\mathfrak a$ are complete.

Proof. Let \overline{R} be the completion of R. Since α is complete, it follows that $\alpha \overline{R} = \alpha$ and α is closed in \overline{R} . Further, since R/α is complete, it follows $\overline{R}/\alpha \overline{R} = \overline{R}/\alpha = R/\alpha$, and this proves our assertion.

⁴⁾ Cf. [1, II, Proposition 13] or [7, Chapter II, Proposition 1].

⁵⁾ If R is complete, then R* is complete without the assumption that R is a subspace of R*.

 $^{^{6)}}$ θ denotes the empty set.

⁷⁾ Cf. l.c. note 4).

LEMMA 2.2. Let R be a Noetherian semi-local ring. Let c be an element of R such that $c^2=0$. Then R is complete whenever R/cR is complete.

Proof. By virtue of preceding lemma, we have only to prove that cR is complete. Let (ca_n) $(n=1, 2, \ldots)$ $(a_n \in R)$ be a convergent sequence in R such that $c(a_n-a_{n+1}) \in \mathbb{m}^n$ $(n=1, 2, \ldots)$, where \mathbb{m} denotes the J-radical of R. Set $q_n = \mathbb{m}^n : cR$ $(n=1, 2, \ldots)$ and b=(0): cR. Then we have $\bigcap_{n=1}^{\infty} q_n = b$ because $\bigcap_{n=1}^{\infty} \mathbb{m}^n = (0)$. Since R/b is complete, $\{q_n/b; n=1, 2, \ldots\}$ forms a system of neighbourhoods of zero in R/b, by virtue of Lemma 1.2, this shows that (a_n) is a convergent sequence in R/b. Let a be its limit, then ca is the limit of (ca_n) . This proves our assertion.

THEOREM 4. Let R be a Noetherian semi-local ring with p-radical⁸⁾ n. Then R is complete whenever R/n is complete.

This is an immediate consequence of Lemma 2.2.

THEOREM 5. Let R be a Noetherian semi-local ring. Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_h$ be the totality of minimal prime divisors of zero ideal in R. Then R is complete whenever every R/\mathfrak{p}_i is complete.

This follows immediately from Corollary to Theorem 1 and Theorems 3, 4.

3. Subrings of the completion of a semi-local ring.

Let R be a ring and m its ideal. Suppose that $\bigcap_{n=1}^{\infty} m^n = (0)$. Then R is called an m-adic ring if R is topologized by taking $\{m^n; n=1, 2, \ldots\}$ as a system of neighbourhoods of zero.

THEOREM 6. Let R be a semi-local ring and let \overline{R} be its completion. Let m and \overline{m} be the J-radicals of R and \overline{R} respectively. If R' is a subring of \overline{R} containing R and if we set $m' = \overline{m} \cap R'$, then we have $R \cap m'^k = m^k$ (k=1, 2, ...). Consequently, R is a subspace of m'-adic ring R'.

Proof. Since \overline{R} is an $\overline{\mathbb{m}}$ -adic ring, R' becomes an \mathbb{m}' -adic ring. Since clearly $\mathbb{m} = \mathbb{m}' \cap R$, we have $\mathbb{m}^k \subseteq \mathbb{m}'^k \cap R$. On the other hand, it follows from $\overline{\mathbb{m}}^k \cap R = \mathbb{m}^k$ that $\mathbb{m}^k = (\overline{\mathbb{m}}^k \cap R') \cap R \supseteq \mathbb{m}'^k \cap R$, because $\mathbb{m}' = \overline{\mathbb{m}} \cap R$. These prove our assertion.

THEOREM 7. Let R be a semi-local ring and \overline{R} its completion. If a subring R' of \overline{R} containing R is finite with respect to R, then R' is a semi-local ring and R is a subspace of R', but (the semi-local ring) R' is not a subspace of \overline{R} unless

⁸⁾ The p-radical of a ring R is the intersection of all prime ideals in R; cf. [8]. If R is Noetherian, it is the largest nilpotent ideal.

R' coincides with R.

Proof. Let \mathfrak{m} , \mathfrak{m}' and $\overline{\mathfrak{m}}$ be the J-radicals of R, R' and \overline{R} respectively. Put further $\mathfrak{m}'' = \overline{\mathfrak{m}} \cap R'$. Then it follows from Theorem 5 that $(\mathfrak{m}'')^k \cap R = \mathfrak{m}^k$ $(k=1, 2, \ldots)$, while we have clearly that $\mathfrak{m}R' \subseteq \mathfrak{m}' \subseteq \mathfrak{m}''$, which shows that R is a subspace of R'. Since $R/\mathfrak{m} = \overline{R}/\overline{\mathfrak{m}}$, we have $R/\mathfrak{m} = R'/\mathfrak{m}''$. Suppose now that R' is a subspace of R, then $\mathfrak{m}R' = \mathfrak{m}R \cap R' = \mathfrak{m}''$, because $\mathfrak{m}R'$ is (open whence) closed in R'. We have therefore $R+\mathfrak{m}R'=R'$, which implies R=R' by virtue of [6, Appendix, Corollary to Proposition 4].

Remark. As was shown in the above proof, we have also that $mR' \neq m''$ if $R' \neq R$.

COROLLARY 1. Let R and \overline{R} be the same as in Theorem 6. Then \overline{R} is not finite with respect to R whenever $R \neq \overline{R}$.

COROLLARY 2. Let R be a Noetherian semi-local ring and let R' be a semi-local ring in which R is contained as a subring as well as a subspace. Then R is closed in R' whenever R' is finite with respect to R.

We prove, by the way, some properties of m-adic rings.

Proposition 3.1. If an m-adic ring R is a subspace as well as a subring of an m'-adic ring R' and if both m and m' are semi-prime ideals $^{9)}$ in R and R' respectively, then we have $\mathfrak{m}' \cap R = \mathfrak{m}$.

Proof. Since $\mathfrak{m}' \cap R$ is an open semi-prime ideal in R, we have $\mathfrak{m}' \cap R \supseteq \mathfrak{m}$. On the other hand, since we can find a natural number k so that $\mathfrak{m} \supseteq (\mathfrak{m}')^k \cap R \supseteq (\mathfrak{m}' \cap R)^k$ and since \mathfrak{m} is a semi-prime ideal, we have $\mathfrak{m} \supseteq \mathfrak{m}' \cap R$.

PROPOSITION 3.2. Let R be an m-adic ring, and suppose that m is a finite intersection of maximal ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_h$ of R. Let S be the complementary set of $\bigcup_{i=1}^h \mathfrak{p}_i$ with respect to R. Then the ring R_S of quotients of S with respect to R in the sense of H. Grell [4] is definable and is a semi-local ring. Further R is a dense subset of R_S .¹⁰⁾

Proof. S is clearly multiplicatively closed. S contains no zero divisor, because $\mathfrak{m} \cap S = \theta$, every \mathfrak{m}^n $(n=1, 2, \ldots)$ is an intersection of primary ideals and $\bigcap_{n=1}^{\infty} \mathfrak{m}^n = (0).^{(1)}$ Therefore R_S is definable. Further, since $\mathfrak{m}^n R_S \cap R = \mathfrak{m}^n$, R_S is a semi-

⁹⁾ A semi-prime ideal in a ring R is an ideal which is an intersection of prime ideals in R; cf. [8].

¹⁰⁾ Cf. [11, § 7].

¹¹⁾ Cf. [7, Chapter I, Lemma 3].

local ring and R is a subspace of R_s . Now we prove that R is dense in R_s . That $((b/a) + \mathfrak{m}^n R_s) \cap R \neq \theta$ $(b \in R, a \in S)$ is equivalent to that $b - ac_n \in \mathfrak{m}^n$ for a suitable $c_n \in R$. Since $a \in S$, a is unit in R/\mathfrak{m}^n , and this shows the existence of such c_n (for each n). This completes our proof.

Remark. Set $S' = \{a(\subseteq R); a-1 \subseteq m\}$. Then R_S coincides with the ring of quotients of S' with respect to R, because every element of S is unit in R/m.

4. Supplementary remarks to [7, Chapter II, Proposition 8].

First we prove

Proposition 4.1. Let R be a ring in which every maximal ideal is principal. Then the following five conditions for R are equivalent to each other:

- (1) R is a direct sum of a finite number of principal ideal rings each of which is einartig.¹³⁾
 - (2) R is a principal ideal ring.
 - (3) R is Noetherian.
 - (4) R is a subdirect sum of a finite number of einartig rings.
- (5) Zero ideal of R is an intersection of a finite number of primary ideals q_1, \ldots, q_s such that $\bigcap_{n=1}^{\infty} \mathfrak{p}^n \subseteq q_i$ for any maximal ideal \mathfrak{p} containing q_i (for each i).

Before proving this, we state some lemmas:

Lemma 4.1. If a ring R is a subdirect sum of a finite number of Noetherian rings, then R is Noetherian, too.

Proof, Let R be a subdirect sum of Noetherian rings R_1, \ldots, R_n . Let a be an ideal in R. Let a_1 be the natural image of a in R_1 . Then there exists a finite basis (a_1', \ldots, a_r') for a_1 in R_1 . Let a_i be, for each i, an element of a whose R_1 component is a_i' . Then clearly $a = (a_1, \ldots, a_r) + a \cap (R_2 + \ldots + R_n)$. Thus we can prove our assertion by induction on n.

Lemma 4.2. Every local ring with principal maximal ideal is an einartig principal ideal ring. [7, Chapter II, Proposition 8.]

Lemma 4.3. An einartig ring R is a principal ideal ring whenever every maximal ideal is principal.

For, R is Noetherian by virtue of [3, Theorem 2].

Proof of Proposition 4.1. It is clear that (2), (3), (4) and (5) follows from (1) and that (3) follows from (2). (3) follows from (4) by virtue of Lemmas

¹²⁾ As for the equivalence of (1), (2) and (3), cf. [5, Theorem 9].

 $^{^{13)}}$ A ring R is said to be einartig if every proper prime ideal is maximal.

4.1 and 4.3. To prove that (1) follows from (3), let $\mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_n$ be a shortest representation of zero ideal in R as an intersection of primary ideals. Let \mathfrak{p} be a maximal ideal in R, then the ring of quotients ¹⁴⁾ of \mathfrak{p} with respect to R is a local ring, whence an einartig principal ideal ring. This shows that \mathfrak{p} contains only one \mathfrak{q}_i and R/\mathfrak{q}_i is einartig. ¹⁵⁾ It follows from this that R is the direct sum of $R/\mathfrak{q}_1, \ldots, R/\mathfrak{q}_n$ each of which is, by virtue of Lemma 4.3, an einartig principal ideal ring. That (4) follows from (5) is easy if we observe the following

Lemma 4.4. If a principal ideal aR in a ring R contains properly a prime ideal \mathfrak{p} , then $\mathfrak{p} \subseteq \bigcap_{n=1}^{\infty} a^n R$.

Proof. Since $aR \supset \mathfrak{p}$, we have $\mathfrak{p} = a\mathfrak{p}'$ for an ideal \mathfrak{p}' in R. Since $a \notin \mathfrak{p}'$, we have $\mathfrak{p} = \mathfrak{p}'$. This shows that $\mathfrak{p} = a^n\mathfrak{p}$, which proves our assertion.

Next we construct a semi-local ring R which is not Noetherian, but every maximal ideal in R is principal:

EXAMPLE. Let K be a field and let x, y and z be indeterminates. Let R_1 be the subring of K(x, y) generated by K[x, y] and y/x. Then $R_1 \neq K(x, y)$ and xR_1 is a maximal ideal in R_1 . Let R_2 be the ring of quotients of xR with respect to R_1 . Let S be the intersection of complementary sets of $xR_2[z]$ and $zR_2[z]$ with respect to $R_2[z]$. Then the ring R of quotients of S with respect to $R_2[z]$ is a required ring.

In fact, R has only two maximal ideals xR and zR, while R is semi-local because $\bigcap_{n=1}^{\infty} z^n R = (0)$.

BIBLIOGRAPHY

- [1] C. Chevalley, On the theory of local rings, Ann. Math. 44, pp. 690-708 (1943).
- [2] I. S. Cohen, On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc. 59, pp. 54-106 (1946).
- [3] I. S. Cohen, Commutative rings with restricted minimum condition, Duke Math. J. 17, pp. 27-42 (1950).
- [4] H. Grell, Beziehungen zwissen den Idealen verschiedener Ringe, Math. Ann. 97, pp. 409-523 (1927).
- [5] S. Mori, Allgemeine Z.P.I-Ringe, J. Sci. Hirosima Univ. A, 10, pp. 117-136 (1940).
- [6] M. Nagata, On the structure of complete local rings, Nagoya Math. J. 1, pp. 63-70 (1950).
- [7] —, On the theory of semi-local rings, forthcoming.

¹⁴⁾ In the sense of [10]; cf. also [7].

¹⁵⁾ Observe the correspondence between primary ideals of R and those of a ring of quotients.

- [8] ---, On the theory of radicals in a ring, forthcoming.
- [9] ----, Note on subdirect sums of rings, Nagoya Math. J. 2, pp. 49-53 (1951).
- [10] A. I. Uzkov, On the rings of quotients of commutative rings, Mat. Sbornik N. S. 22 (64) (1948) [in Russian].
- [11] O. Zariski, Generalized semi-local rings, Sum. Bras. Math. 1, pp. 169-195 (1946).

Mathematical Institute, Nagoya University.