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Abstract

A variety U is called solutionally complete if any solvable system of algebraic equations over
an algebra A in WA which has at most one solution in every extension of 4 in U has the
solution in A. A necessary and sufficient condition for solutional completeness is given which
is a weaker form of the strong amalgamation property.

Subject classification (Amer. Math. Soc. (MOS) 1970): 08 A 15.

Let A be a universal algebra in the variety W, X = {x,,...,x,} a finite set of
indeterminates, and W(4, X) the word algebra in X over 4 in the sense of Lausch
and Nobauer (1973). A system of algebraic equations (shortly ‘algebraic system’)
in X over A4 is a family of pairs of elements of W(4, X). An algebraic system
APy s Xn), (X1, -, X3) 4 1 18 ‘solvable over (4, )’ if there exist a A-extension
B of A (that is, an algebra BeW which has 4 as a subalgebra) and elements
by, ..., b, € B such that py(by, ..., b,) = q;(b, ..., b,) for all i€l

Lausch and Nd&bauer (1973) posed the following problem: If S is an algebraic
system solvable over (4, ) which has at most one solution in every A-extension
of A, is then the unique solution of Sin A?

Negative answers to this question have been given independently by Taylor
(1976) and Hule (1976). In some well-known varieties, however (for instance, the
varieties of groups and of lattices), the answer is affirmative. Such varieties are
called ‘solutionally complete’.

We want to give a necessary and sufficient condition for solutional completeness.
For this purpose we consider simple extensions of an algebra A, that is, algebras
generated by 4 u{b} for some b ¢ A. Such an algebra will be denoted by A(b). Two
simple extensions 4(b) and A(c) will be called ‘isomorphic over A’ if there exists an
isomorphism 7: A(b)—> A(c) such that 7@ = a for every ac A and b = c.
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THEOREM 1. A4 variety W is solutionally complete if and only if the following
condition (A) holds:
(A) For any algebra A€W and any two simple W-extensions A(b), A(c) isomorphic
over A there exist a U-extension D of A and homomorphisms ¢: A(b)~> D,
. A(c)—> D such that p and \ fix A and b + c.

PRrOOF. Suppose that U satisfies condition (A). In Hule (1976) it is shown that a
variety is solutionally complete if the definition is satisfied for algebraic systems
in one indeterminate. So let S = {py(x),q,(x));.; be an algebraic system in {x}
over A which is solvable over (4, %) and has no solution in 4. Then the system
has a solution b in some A-extension B of A. We take the subalgebra A(d) of B
and construct an isomorphic copy A(c) of A(b) by renaming the elements of
A(b)— A and defining an isomorphism 7 such that 76 = ¢ and ra = a for every
ac A, Then A(b) and A(c) are simple H-extensions isomorphic over 4. Let D, o, s
be as in the theorem. Then p;(b) = g«(b) implies p(eb) = g,(¢b) and p,(Yc) = g,()c)
for every i€l Hence @b and iJc are two different solutions of S in D. This shows
that 91 is solutionally complete.

Now suppose that condition (A) is not satisfied in 2. Then there exist an algebra
A€ and a pair of simple UA-extensions A(b), A(c) isomorphic over A such that
for any -extension D of A and any pair of homomorphisms ¢: A(b)> D and
$i: A(c)~> D which fix 4, pb = ic. By Lemma 4.43, Chap. 1 of Lausch and N&bauer
(1973) there exist a homomorphism A from the polynomial algebra A({x},A)
onto A(b) with Ax = b and Aa = q for every a€ A4, and a homomorphism p from
A}, N) onto A(c) with py =c and pa=a for every ac 4 (we assume x#y,
without loss of generality). Let B be the kernel of A and y the kernal of u. Now
we define D = A({x, y},M)/5, where & is the congruence on A({x,y}, A) generated
by Buy. This means that p(x,y)=q(x,y) mod & holds if and only if there exists
a sequence of words wgy,wy, ..., w,€ W(4,{x,y}) such that w, is a word repre-
sentation of p(x,y), w, represents g(x, ), and for any ie{l,...,k} either w;_; and
w,; represent the same polynomial or w; is obtained from w,_; replacing some
subword u of w;_; by v where u and v represent polynomials congruent under 8
or under y. We first show that 8 separates the elements of 4. Assume a,,4, to be
different elements of 4 and wy, wy,...,w;, a sequence of words as above which
establishes a,=a, mod 8. For each i, let ; be the element of A(b) obtained from
w, by substituting each occurrence of x or y by b and performing the operations
in A(b). Then @, = Wy = W, = ... = W, = a,. Therefore, we can consider D as a
U-extension of A. Since B< 8 and y< §, the canonical homomorphism y from
A({x, y}, M) onto D induces homomorphisms @: A(b)— D and ¢: A(c)— D defined
by pAx = yx, Yuy =xy, pa=a=a for every ac A. By hypothesis we have
@b = ¢ and conclude

XX = @Ax = @b = e = Yy = xy,
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whence x=y mod 8. Now let {( p;,q;) i€} be a generating set of the congruence B.
Then the family S = {(p;,4,)>;.; (Where we identify the polynomials p;,q; with
corresponding words) is an algebraic system over 4 which has the solution b in
A(b), not in A. We now show that S has at most one solution in any -extension
of A, which will prove that U is not solutionally complete. Let e and e’ be solutions
of S in some A-extension E of A. Then u(x)=v(x) mod B implies u(e) = v(e) and
u(y) = v(y) mod y implies u(e’) = v(e’). Let wy, wy, ..., w, be a sequence of words
which establishes the relation x = y mod 3. This sequence is converted into a chain
of equal elements of E if we substitute x by e and y by e’. This completes the proof
of the theorem.

As an immediate consequence of Theorem 1 we get a sufficient condition for
solutional completeness found previously by Hule (1976).

COROLLARY. A variety W is solutionally complete if it satisfies the following
condition (B):
(B) If B and C are N-extensions of an algebra A €N, then there exists an algebra
D €N which is a common extension of B and C.

Condition (B) is usually called the ‘strong amalgamation property’. Actually, it
suffices that the strong amalgamation property hold for simple f-extensions of A
isomorphic over A. A counterexample in Hule (1978) shows that this condition
is not necessary for solutional completeness.

We want to prove a generalization of the preceding result for algebraic systems
in arbitrary (not necessarily finite) sets of indeterminates. Thus, we consider an
algebraic system {(p(X),q(X)D;.; where X ={x;|jeJ} is an arbitrary set of
indeterminates and p,(X), ¢{X) are elements of W(4, X). The system is ‘solvable
over (4, )’ if there exist a A-extension E of 4 and a family £ = (e;); . ; of elements
of E such that p(F) = q,(E) for all iecl. (For any p(X)e W(4, X), p(E) is the
element of E which we obtain by substituting each x; occurring in p(X) by e;
and performing the operations in E.)

A variety is called ‘strongly solutionally complete’ if the following condition
holds: If S is an algebraic system (in an arbitrary set of indeterminates) solvable
over (4,N) which has at most one solution in every N-extension of A, then the
unique solution of S consists of elements of A4.

In order to establish a necessary and sufficient condition for strong solutional
completeness, we consider extensions A(B) of A where A(B) is generated by AU B
and An B = Q. Two extensions 4(B) and A(C) will be called ‘isomorphic over 4’
if there exists an isomorphism 7: A(B)— A(C) which takes B onto C and such that
Ta = q for every ac A. When considering extensions A(B) and A(C) isomorphic
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over A, we shall always assume that an isomorphism = with the required properties
is defined.

THEOREM 2. A variety W is strongly solutionally complete if and only if the following
condition (C) holds:
(C) For any algebra AcW and any two W-extensions A(B), A(C) isomorphic over
A there exist a W-extension D of A and homomorphisms ¢: A(B)—> D,
Y2 A(C)—> D such that ¢ and s fix A and b= y7b for at least one be B,

ProoF. Suppose that U satisfies condition (C). Let S = { p,(X),g(X)>;.; be an
algebraic system in X = {x;|j€J} solvable over (4, %) which has no solution in 4
(which means that no family (a;);, ; with a; € A is a solution). Then S has a solution
B=(b;);c; in some U-extension E of A where b;¢ A for at least one j. Let
B ={b;|jeJ and b;¢ A}. Then we take the subalgebra 4(B) of E and construct
an isomorphic copy A(C) of A(B) by renaming the elements of A(B)—A4 and
defining an isomorphism 7: A(B)-> A(C) such that the two extensions are iso-
morphic over 4. Then we define C = (c));; Where ¢; = 7b; if b;e B and ¢; = b; if
b;eA. Let D, g, be as in condition (C), pB = (pb;);.  and $C = (yic;);. ;. Then
p«B) = qB) implies p,(pB) = q,(¢B) and p;(JC) = q,($C) for every icl. Hence
@B and yC are two solutions of S in D which are different because pb;+ b; = c;
for at least one b; € B. This shows that U is strongly solutionally complete.

Now suppose that condition (C) is not satisfied in 2. Then there exist an algebra
A€W and a pair of W-extensions 4(B), 4(C) isomorphic over A such that for any
A-extension D of A and any pair of homomorphisms ¢: A(B)— Dand : A(C)—> D
which fix 4, gb = 7b for every b€ B. We index B and C by an appropriate set J
such that B={b;|jeJ}, C={¢;|jeJ} and ¢; = 7b; for all jeJ, then we take
disjoint sets of indeterminates X = {x;|jeJ} and Y = {y;|jeJ}. There exist a
homomorphism A from A(X, %) onto A(B) with Ax; = b; for every jeJand Aa = a
for every ac 4, and a homomorphism p from A(Y, ) onto A(C) with wy; = ¢;
for jeJ and pa = a for ae A. Let B be the kernel of A, v the kernel of u, and
D = A(Xu Y,N)/8, where 8 is the congruence on A(XU Y, ) generated by fuy.
Like in the proof of Theorem 1, taking for w; the element of A(B) obtained by
substituting each x; or y; occurring in w; by b;, we see that 8 separates 4, and hence
we consider D as an extension of 4. Homomorphisms ¢: 4(B)—>D and
¢i: A(C)— D are defined by the conditions pAx; = yx;, Yuy; = xy;and pa = pa=a
for every a€ A, where y is the canonical homomorphism from 4(Xu Y, ) onto D.
By hypothesis we have @b; = $vb; = c; for every j which implies x; = y; mod 8.
Also the rest of the proof is analogous to that of Theorem 1. The algebraic system
S constructed as in that proof has the solution B = (b7)je s in A(B), not in 4, and
for two arbitrary solutions of S in some U-extension of 4, (¢;);. s and (€));. s, we
deduce e; = ¢} from x;=y; mod 8. So U is not strongly solutionally complete.
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