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Abstract

We prove that finite dimensional nonatomic vector measures and their integral maps are open
maps. These results can be found in the literature, but unfortunately the proofs presented
there are not complete.

1980 Mathematics subject classification (Amer. Math. Soc): primary 28 B 05; secondary 54 C
10.

1. Introduction

The problem of openness of vector measures and their integral maps has been
treated by Anantharaman and Garg [2]. Earlier Karafiat [12] considered a conti-
nuity property of the map inverse to a vector measure which gives, in particular,
the openness of the measure. Samet [16] rediscovered the problem of openness,
but his proof of the openness of finite dimensional nonatomic measures contains
a gap (see [16, page 472], the assertion of the openness of fi(Q(S, e))). Recently
Professor Samet informed me that he could fill the gap. Incomplete also are
some proofs in [2] and [12] (see the last section of this paper).

Our aim is to prove that Rp valued nonatomic measures and their integral
maps are open maps. Our arguments follow, in part, [2], [12] and [15], but we
include some of them for the sake of completeness.
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In this section we introduce the notation and recall some preliminary results.
In Section 2 we state a few characterizations of open maps. Section 3 contains
some results on semiconvex measures. Section 4 contains some rather general
results on points of openness of vector measures and affine maps. In Section 5
we present a decomposition lemma due to Liapunov [15] and Karafiat [12]. The
main results are presented in Section 6. Some applications of openness of vector
measures and their integral maps are contained in the next section. The last
section contains some remarks.

Throughout this paper S is a nonempty set, sf is a cr-algebra of subsets of
S and m is a vector measure on sf with values in a complete metrizable locally
convex space Y. It is known that there exists a finite positive measure // on
Srf equivalent to m [4; 13, page 21]; n is called a control measure of m. Let
Po be the set of all characteristic functions of sets in sf and P the set of all
^-measurable [0, l]-valued functions in S. We will identify Po with sf. Note
that PQC P C L°°, where L°° = L°°(n). Let Tm be the integral map of m from
P into Y defined by Tm(x) = / x dm for x € P, where the integral is in the sense
of [13, page 26]. On Po we will identify Tm with m.

The sets Po and P a r e considered under the topology w*, the weak-star topol-
ogy of L°°. On Po this topology is identical with the Frechet-Nikodym topology
given by the metric d(A, B) = fi(AAB), where AAB denotes the symmetric dif-
ference of A and B. On P the topology w* is identical with the weak topology
of L1 = i1(/x). The integral map Tm is continuous as a map from P into (Y,cr),
where a is the weak topology of Y (see [13, page 68]). This follows easily by
applying the Radon-Nikodym theorem. The measure m is continuous as a map
from Po into Y.

Let K denote the range of the integral map Tm. It is known that K is the
closed convex hull of the range of m [13, page 76].

2. Open maps

Let X and Y be topo\ogical spaces and let T-. X —> V be surjective. We say
that T is open at a; e A" if for each neighbourhood U of x the image T(U) is a
neighbourhood of T(x). We say that T is open if for each open set U in X the
image T(U) is open in Y. Clearly, T is open if and only if T is open at each
point of X.

Denote by 2X the family of all subsets of X and let F be a multifunction
from Y to X, that is, F: Y —> 2X. We say that F is lower semicontinuous at
yo € Y if for each open set U in X satisfying F(y0) D U ^ 0 there exists a
neighbourhood V of j / 0 such that F(y) n U ^ 0 for all y € V. Given a map
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T: X —• Y we denote by T~x the multifunction from Y t o X denned by the
formula T~l{y) = {x G X: T(x) = y}.

Let Aa be a net of subsets of X. We define Li Aa as the set of all x G X such
that for each neighbourhood U of x there exists a0 such that Aa n U ^ 0 for
all a > ao> and Ls AQ as the set of all x G X such that for each neighbourhood
U of x and each a there exists 0 > a with Ap n £/ ^ 0 (see [14, Section 29]).

It is easy to prove the following lemma.

LEMMA 2 . 1 . Let X and Y be topological spaces, T: X —> Y be surjective
and j/o G Y. Consider the following conditions.

(a) T is open at each x G T~1(y0).
(b) The multifunction T~* is lower semicontinuous at j/o-
(c) T~1(y0) C Li T~1(ya) for each net (ya) in Y converging to y0.
(d) T~1(y0) C Ls T~1{ya) for each net (ya) in Y converging to y0.
(e) For each x G T~1(yo) and each net (ya) in Y converging to y0 there

exists a net (xa) in X converging to x such that xa G T~1(ya) for all
a.

(f) T~1(yo) = Ls T~l{ya) for each net (ya) in Y converging to y0.

The conditions (a), (b), (c) and (d) are equivalent. Condition (e) implies (d).
If X and Y are first countable then (d) implies (e) (in this case we replace nets
in these conditions by sequences). IfT is continuous and Y is a Hausdorff space,
then (f) is equivalent to (d). In case Y is metrizable we may replace in the above
nets by sequences.

Note that condition (f) in Lemma 2.1 is due to Hajek [9]. The equivalence of
conditions (a), (c) and (f) generalizes some results of Sikorski [17, page 16] and
Hajek [9, Proposition 1].

3. Semiconvex measures

A measure m: s/ —> Y is called semiconvex if for each i 6 J / there exists
flgi such that B C A and m(B) = m(A)/2 (see [10]). As easily seen, a
semiconvex measure is nonatomic. In view of Liapunov's theorem [15, Theorem
1] the converse holds in case Y = W. We shall need the following known lemma
[3].

LEMMA 3.1 . / / m : srf —* Y is semiconvex, then

(1) ex tT - 1 ^ ) = m-^y) for each y G m(P0),

(2)Tm(P) = m(P0).
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Indeed, by [3, Theorem 2.2] we have extT^iy) c Po for each y e Tm(P).
Since e x t P = Po, this yields (1). In view of the Krein-Milman theorem, (1)
implies (2).

The next lemma implies that, in case m is semiconvex and finite dimensional,
the openness of Tm and that of m are equivalent. The second part of our proof
follows an argument of [2, proof of Proposition 2.6].

LEMMA 3.2 . Let m: srf —* Y be a semiconvex measure and let K, the com-
mon range of m and Tm, be equipped with the weak topology a. Then, for every
2/0 G K, the following conditions are equivalent:

(a) m is open at each x € m~1(yo);
(b) Tm is open at each x € T

PROOF. Assume (a) and let (ya) be a net in K converging to y0. Then, in
view of Lemma 2.1 we have m~1(yo) C Li m~l(ya). Hence, by Lemma 3.1(1),
extT^1(?/o) C Li TT^1(j/a). This yields in view of the Krein-Milman theorem
that

T-\y0) Ceo Li T-\ya).

Since the limes inferior of a net of closed and convex sets is closed and convex,
it follows that

r-^itojcLtr-1^).

In view of Lemma 2.1, this shows that (b) holds.
Assume (b) and let (ya) be a net in K converging to y0. In view of Lemms

2.1(f), we have T^t
1(y0) = Ls T^l{ya)- Hence, by a result of Jerison [10],

Theorem 2]

or, equivalently, m~1(yo) C Ls m~1(ya) (Lemma 3.1(1)). In view of Lemma
2.1, this shows that (a) holds.

4. Points of openness

In this section we prove that m is open at x € Po whenever m(x) is an extreme
point of K, and that Tm is open at x G P whenever Tm(x) is an interior point
oiK.

LEMMA 4 .1 . If x € Po and m(x) € extK, then m is open at x (even when
K is considered under the weak topology a).

PROOF. In view of Lemma 2.1, it is enough to find for every net (ya) in (K, cr)
converging to m(x), and every net (xa) with xa e m~1(ya), a subset (xp) of
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(xa) convergent to x. Let (xa) and (ya) be such as above. Then (P,w*) is a

compact space. Thus there exists a subnet (xp) of (xa) u>*-convergent to some

xo & P- Since Tm is continuous (Tm(xp)) converges to Tm(xo) = m(x). Hence,

by [13, Theorem VI.1.1], x0 = x.

PROPOSITION 4 .2 . Let X and Y be topological linear spaces, let C be a
bounded convex subset of X and let T: C —> Y be an affine map. Then T is
open at each x € T~1(yo) whenever yo is an interior point ofT(C).

PROOF. Fix a neighbourhood V of zero in X. We first show that there exists
a neighbourhood W of zero in Y such that

whenever y € T(C) and y - yo € W. By assumption, there exists A > 0 with
X(C — C) C V. We assume that A < 1. Choose a neighbourhood W of zero in
Y with

W

Fix ?/i € T{C) and y = (1 - X)y0 + Xyi. Let an e r - ^ y i ) and x0 e T~l(y0) be
arbitrary. Then

(l-X)xo + XxleT-1(y),

whence XQ G T~1(y) + V. In view of Lemma 2.1 it is enough to show that the
multifunction T'1 is lower semicontinuous at y0. Let U be a relatively open
subset of C with T~l{y0) <1 U ^ 0 . Fix x 6 T^iyo) n U and let V be a
neighbourhood of zero in X such that for every x EC with i - i g F w e have
x € U. Taking W as above, we get T'~1(j/) n U ^ 0 , whenever y e C and

COROLLARY 4 . 3 . ie< m: ja^ —+ Y be a semiconvex measure and let yo be an
interior point of (K,a). Then m is open at each point x € rn

Indeed, in view of Proposition 4.2, Tm is open at each point x E T^i

The assertion now follows from Lemma 3.2.

5. A decomposition lemma

Properties (i)-(iv) and (v) and (vi) of the lemma below are due to Liapunov
[15, page 475] and Karafiat [12, page 42], respectively.
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LEMMA 5 . 1 . Let m : srf —• Rp be a nonatomic measure, K its range and H
a supporting hyperplane of K. Then there exists a decomposition m = rni + m^
such that

(i) mi and m-x are measures on J / concentrated on disjoint sets Si and
S% = S\Si, respectively,

(ii) K — K\ + K.2, where K{ is the range of rrii, i — 1,2,
(iii) K\ lies in the linear subspace of Rp parallel to H and dim K\ < p,
(iv) K? has only one point in H, K?, D H = {6} say, and b is an extreme

point of K-x,
(v) K n H = Kx + b,

(vi) if (j/n) is a sequence in K convergent to y0 € K C\H and yn = y\ + y%,
where y^ € K\ and y% € K?, for all n, then (y^) converges to yo - b and (y%)
converges to b.

6. Finite dimensional measures

Now we are ready to prove that finite dimensional nonatomic measures and
their integral maps are open maps.

THEOREM 6 . 1 . Every nonatomic measure m: PQ —• K, where K C Rp is
the range of m, is an open map.

PROOF. We argue by induction on p. If p — 1, then K is a compact interval,
and so the theorem clearly follows from Lemma 4.1 and Corollary 4.3 (or from
[2, Lemma 2.1]).

Let p > 1 and suppose that K spans Rp. We shall prove that m is open at each
point x G PQ. In view of Corollary 4.3, it is enough to consider the case where
m(x) is a boundary point of K. Then there exists a hyperplane H supporting
K at m(x). We may assume that H n K ^ {m(x)} for in the contrary case
m(x) G ext K and the theorem follows again from Lemma 4.1. We establish the
openness of m at x with the help of condition (e) of Lemma 2.1. Accordingly,
let (yn) be a sequence in K convergent to y — m(x). Applying Lemma 5.1 and
adopting its notation we see that mi(x) — y ~ b and m.2(x) = b. Moreover,
Kx spans a proper subspace of Rp and b € ext K2. Therefore, by the induction
hypothesis and Lemma 4.1, respectively, mi and m2 are open at x. Hence there
exist sequences (a;̂ ) and (x£) in PQ convergent to x such that xj, € m]"1(j/^) and
xl € rri21{yl) for all n. Let xn(t) = x\{t) if t e Si and xn{t) = x£(t) if t G S2,
n = 1,2, Then (xn) is a sequence in Po convergent to x and xn € m~1(yn)
for all n. This completes the proof.
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Now Theorem 6.1 and Lemma 3.2 yield the following theorem.

THEOREM 6 . 2 . If m is a finite dimensional nonatomic measure, then the

integral map Tm: P —• K is an open map.

7. Applications of openness

Anantharaman and Garg [2, Proposition 2.3] proved that the set of extreme
points of the closed convex hull of the range of a vector measure with values in Y
is closed provided the integral map is open. However, in the case of a semiconvex
measure this result can be easily obtained by applying the following lemma (see
[5, Lemma 3]): let T be an open continuous map from a Hausdorff space X onto
a topological space Y; for every positive integer n the set

Fn = {y E Y: T~1(y) has at most n points}

is closed.

THEOREM 7.1. Let m be a semiconvex measure and Tm (equivalently m) be
open. Then the set of extreme points of the range of m is closed.

PROOF. It is known that y € ext/f if and only if T^l{y) = {XA} for some
i 4 £ j / , where K is the range of Tm (see [1, Proposition 2]). However, m is
semiconvex and so K is equal to the range of m. By the lemma recalled above
we conclude that the set ext K is closed.

COROLLARY 7.2. If m is a nonatomic finite dimensional valued measure
then the set of extreme points of the range of m is closed.

8. Remarks

Let P\ be the set of all x G L°° with values in [—1,1] /j-almost everywhere,
endowed as P with the topology w*. Denote by T^ the map on Pi defined by
the formula

Ti(x)=Tm{(l + x)/2) for a: e Pi,

or equivalently, by the equation Tm(x) = T^(2x - 1), where x e P. Clearly, Tm

and TjJ, have the same range (see [8]). Hence in view of Lemma 2.1, Tm is open
if and only if T ,̂ is open (see a problem posed in [16]).
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In [12] Karafiat applied Bolker's characterization of faces of the range of Rp-

valued nonatomic measure [5, Corollary 3.3]. But this characterization concerns

only exposed faces. Consequently, the proof of Theorem 2 in [12] is complete

only for p < 2.

Anantharaman and Garg [2, proof of Theorem 2.2] use the following assertion:

the operation (A, B) >~* AnB is continuous relative to the Hausdorff metric (see

also [13, page 70]). However, this assertion is easily seen to be false.
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