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GENERALISED HELLY AND RADON NUMBERS

KRZYSZTOF KOLODZIEJCZYK

At the Second Oklahoma Conference on Convexity and Related Combinatorial
Geometry (1980) G.Sierksma posed several problems dealing with the generalised
Helly and Radon numbers of a convexity space. The aim of this note is to give
answers to and comment on some of Sierksma's questions.

1. INTRODUCTION

We begin with some preliminary definitions. A convexity apace is a pair (X, C)
consisting of a set X and a family C C T>(X), the power set of X, such that <fi, X 6 C
and C is closed under arbitrary intersections. C is called a convexity structure for X
and the elements of C are called C-convex seU. The C-hulloi any S in X, denoted by
C(S), is the intersection of all C-convex sets containing 5 . If C\ and Ci are convexity
structures on the same set X and C\ C Cz, then C\ is said to be a substructure of C2.

A Radon t-partition of a set 5 in X is a partition

5 = Si U . . . U St

into t pairwise disjoint subsets such that

The t-Radon number of a convexity space (X, C) is the smallest integer r(t) (if
such exists) such that each set S in X of cardinality at least r(t) admits a Radon
t-partition.

The t-core of any set S in X is denned by

core* (S) = n{C(S \ M) : M C 5, \M\ < t}.

(Throughout this note \M\ denotes the cardinality of M). Now we can define the
t-Helly number of a convexity space (X, C) as the smallest integer h(t) (if such exists)
such that any set 5 with \S\ ^ h(t) + 1 has non-empty <-core.
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The (generalised) Helly and Radon numbers play a very important part in the the-
ory of axiomatic convexity and combinatorial geometry. The numbers, their properties
and relationships have been investigated in many papers; see, among others, [1, 2, 3,
4, 5, 9, 10, 11, 12].

In Section 2 we consider relationships between the t-Helly and i-Radon numbers of
two spaces {X, C\) and (X, C2) under the assumption that C\ is a substructure of C2.
In Section 3 we comment on relationships between the number of vertices of core. (5)
and the number of Radon partitions of a set in the case of ordinary convexity space
(Rn, conv). Finally, in Section 4, we consider some variants of Levi's inequality.

2. CONVEXITY PARAMETERS FOR SUBSTRUCTURES

We start with quoting Problem 4 from [11]:

Let M O and h2(t) be the i-Helly numbers of (X, &) and (X, C2), respec-
tively. If Ci C. C2, what is the relationship between hi(t) and h2(t)? This
problem is also open for the other numbers.

Below we establish the relationship for the t-Helly and t-Radon numbers and we
show that, in general, any similar relationships for the Caratheodory numbers and
exchange numbers do not exist.

First we observe the following simple lemma.

LEMMA. Let {X, Cj) and (X, C2) be convexity spaces with C\ CC2. Then for
each set S in X we have C2(S) C Ci(5).

THEOREM 1 . Let (X, C2) have t-Helly number M O and t-Radon number r2(t).
Then each space (X, C\), where C\ is a substructure of C2, has t-Helly and t-Radon
numbers M O and n ( t ) and

(a) MO <*»('),
(b) ri{t)<r2(t).

PROOF: To show (a) we first notice the following simple consequence of the Lemma:

C2 - core. {A) = [){C2(A \ M) : M C A,

cf]{C1(A\M):McA,

= C\ — core. (A).

From the definition of M O it follows that C2 — core« (A) is non-empty for each set A in
X with \A\ ^ h2(t) + l. This and the above inclusion imply C\ — core« (A) ^ 0 for each
set consisting of at least M O + 1 elements. This, in turn, means that M O ̂  M O -

The proof of (b) is also straightforward. D
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Simple examples can be given illustrating that both inequalities in the previous

theorem are sharp.

We recall the following two definitions.

The Caratheodory number of a convexity space {X, C) is the smallest integer c (if

such exists) such that for each 5 in X the following holds

C{S) = \J{C(T): T C 5, \T\ < c}.

The exchange number of a convexity space (X, C) is defined as the smallest integer
e (if such exists) such that for each point p and each set A in X with e ^ \A\ < oo
the following holds

C(A) c\J{C({p}U(A\{a})) :ae A}.

It is not surprising that there are examples of convexity structures C\ and C2 with
C\ C C2 for which the Caratheodory and the exchange numbers satisfy the inequalities
ci < c2 and e\ ^ e2. Now we are going to present an example illustrating that for
these numbers, opposite inequalities are possible as well. We can even show that the
existence of 62(62) does not imply the existence of ci(ei).

EXAMPLE: On the plane we denote by pk the point (1 + Zk, 0), k > 0, and by Dk

a regular [k + 4)-gon inscribed in the circle with the centre at pk and radius 1. Now we
consider the sequence of convexity spaces (R2, C*) , k ^ 0, where (7* consists of <j>, R2

and •proper (ordinary) convex subsets of Dj 's for j < k. It is obvious that Ct C conv
for each k > 0. We show that the Caratheodory number c* and the exchange number
ejt of (TR},Ck) axe equal to fc + 4, although (R2, conv) has Caratheodory number
c — 3 and exchange number e = 3. To this end we denote by Wk the set of vertices of
Dk • For the sets Dk we have

Ch{Wh) = R2,

\J{Ck(T) :TcWh,\T\*k + 3} = Dk,

and \J{Ck{{pk}U(Wk\{w})):weWk} = Dk.

This means that both ck and ek are greater than k + 3 and simple reasoning gives

c* = ek = fc + 4.

3. VERTICES OF (t - 1)-CORE AND THE NUMBER OF RADON

^-PARTITIONS

In this section we discuss the connection between the number of vertices of the
(t — l)-core and the number of Radon partition in the case of ordinary convexity space
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( R n , conv). Let us recall some information from [8] and [11] about coret_i (5 ) . First,
that coret_i (5) can be also defined as the intersection of all closed halfspaces containing
at least \S\ — t + 1 points of the set S (so core«_i (S) is a polytope in R n ) . Second,
conv (Dt) C core«_i (S), where Dt stands for the set of all points p such that p belongs
to the intersection C\{C(Si) : i = 1, . . . , t} for some partition Si, ..., S« of the set S,
and in the case of (R 2 , conv) we in fact have equality conv(i?t) = coret_i (S). Thus
in (R 2 , conv) for Dt and core«_i (5) we have

conv(I?<) = core«_i (S) = conv ( V(core«_i (S))),

where V(Y) denotes the set of vertices of the polytope Y. This all justifies the following

question: (Problem 9 [11])

Is the number of Radon t-partitions dependent on the number of vertices of
core«_i (S) for finite sets S in R n ? That is, does the set have the minimum
number of Radon ^-partitions when the (t — l)-core is a single point?

It is well-known that 7-element sets in (R2 , conv) have 3-Radon partitions (see
[13]). Now we give two examples of a 7-element set in the plane. As we will see, there
need not be a strict connection between the number of vertices of (t — l)-core and the
number of Radon ^-partitions. Indeed, consider set Si given in Figure 1. In this case
core2(5i) = {0}. It is easy to check that Si has the following ten different Radon
3-partitions:

({1, 3}, {2, 4}, {5, 6, 7}), ({1, 3}, {5, 6}, {2, 4, 7}),

({1, 3}, {2, 7}, {4, 5, 6}), ({1, 6}, {3, 5}, {2, 4, 7 » ,

({1, 6}, {2, 7}, {3, 4, 5}), ({1, 6}, {2, 4}, {3, 5, 7}),

({2, 7}, {5, 6}, {1, 3, 4}), ({2, 7}, {3, 5}, {1, 4, 6}),

({2, 4}, {5, 6}, {1, 3, 7}), ({2, 4}, {3, 5}, {1, 6, 7}).

Now examine the set S2 given in Figure 2. Note that core2 (52) has 7 vertices and
this is the greatest number of vertices for any 7-element set. However, as can be simply
verified, 5 2 has only the following seven Radon 3-partitions:

({A, C}, {E, F}, {B, D, G}), ({A, C}, {B, G}, {D, E, F}),

({A, G}, {B, D}, {C, E, F}), ({A, G}, {C, E}, {B, D, F}),

({B, D}, {E, F}, {A, C, G}), ({B, G}, {D, F}, {A, C, E}).

({C, E}, {D, F}, {A, B, G}).

In a similar way, we may also give examples showing that there is no connection between
the number of Radon partitions and the number of vertices of coret_i (5) in higher
dimensions and for greater t.
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core2(S()

Figure 1. Figure 2.

4. LARMAN TYPE GENERALISATION OF HELLY AND

RADON NUMBERS

The next two definitions are taken from [11]. Let n > 0 be an integer. The number
LR(t, n) is the infimum of all positive integers k such that for each set 5 in X with
\S\ ^ k and each set T in S with \T\ ^ n there exists a i-partition

5 = Si U . . . U 5,

such that

The number LH(t, n) of a convexity space is defined as the infimum of all non-
negative integers k such that each S in X with \S\ ̂  k + 1 and each T in 5 with
\T\ < n has the property that

f|{C(5\(M\T)):McS, \M\ < t} f 0.

Sierksma asks if the inequality LH[t, n) < LR(t + 1, n) - 1 holds ([11, Problem
13a]). Note that in the case when t — 1 and n — 0 it reduces to the well-known Levi's
inequality ft(l) ^ r(2) — 1 [7]. We show that the answer to Sierksma's question is in
the affirmative.
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We begin by listing some properties of the numbers LR(t, n) and LH(t, n) which
we will need.

(1) LH(t, 0) = h(t) and LR(t, 0) = r ( t ) .

(2) LR(tu n) < LR(t2, n) for ti < t2.

(3) LR(t, nx) < LR(t, n2) for m < n2.
(4) LH(t,n)^h(t).
(5) LJ?(<, n)=r( t ) + n.

To show (4), take any set 5 with l̂ l = h{t) + 1. Obviously

){( \ ) , \ \ t } ? 0.

For each T C 5 we have

C(5\M)CC(S\(M\T)).

Hence

f|{C(S \ M) : M C 5, |M| < t} C f]{C(S \ (M \ T)) : M C 5, |M| < <}•

This means that LH(t, n) < h(t).

Concerning (5), we first show that LR(t, n) ^ r(t) + n. To this end take any
(r(t) + n)-element set 5 in X and a subset T of 5 with |T| < n. The set S\T has
at least r(t) elements, hence there exists a Radon t-partition

S\T = SiU...USt.

The sets Sf = S,, i = 1, . . . , t - 1, and 5 ; = St U T form a partition of S for which
we have

So LR(t, n) < r(t) + n. To establish the reverse it suffices to show that any
(LR(t, n) — n)-element set S in X has a Radon t-partition. For each LR(t, n)-element
set B containing S and the set T = B\S there exists a partition

B = Bi U . . . U Bt

suchthat f

From this it follows that the sets Si = BiD S, i = 1, . . . , t, form the desired Radon
{-partition for 5. This gives r(t) < LR(t, n) —n and completes the proof.
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THEOREM 2 . For any convexity space having the Radon number r(2) t i e follow-

ing inequalities

LH(t, n) ^ LR(t + 1, n) - 1

are true.

PROOF: From results in [1] and [2] it follows that the existence of r(2) implies
the existence of all Radon numbers r(t). By the inequality h(t) < r(t + 1) — 1, due
to Doignon, Reay and Sierksma (D-R-S inequality) [1] we have existence of all Helly
numbers h(t). Now using the above mentioned properties and the D-R-S inequality we
get

LH(t, n) ^ h(t) < r(t + 1) - 1 = LR(t + 1, 0) - 1 < LR(t + 1, n) - 1,

which gives LH(t, n) < LR{t + 1, n) — 1 and establishes the theorem. D

Note that from the established inequaltiy we get Levi's inequality (in the case t = 1
and n = 0) and the D-R-S inequality (for n = 0).

We have just solved the Problem 13a in its original form; however we cannot leave it
without any comment. The names of the numbers LR(t, n) and LH(t, n) suggest their
connection with Larman's consideration [6]. However, Larman considered partitions of
the type S — S1US2 which remain Radon partitions even after "stealing" any arbitrary
element of S, that is,

C(Si \ {*}) n C(S2 \ {x}) ^ 0, for each x £ S.

We are now going to change the definition of the LR(t, n) numbers in the following
way: The LR*(t, n) number is the infimum (if such exists) of all integers k such that
each set 5 in X with \S\ > k has a partition 5 = Si U . . . U St such that

f]{C(Si \ M) : i = 1, . . . , t} ^ 0 for each M C 5, \M\ < n.

For such LR*{t, n) numbers we have the following estimates.

THEOREM 3 . If a convexity space has Radon number r(2) then all LR*(t,n)
numbers exist and moreover

(n + l)t < LR*(t, n) < T{nt + t).

PROOF: For the same reason as in Theorem 2 all numbers r(t) exist. So, take a
set 5 in X, \S\ = T(nt + t). The set has a Radon (ni + t)-partition

5 = (Si U . . . U St) U (S«+i U . . . U S2t) U . . . U ( 5 n l + 1 U . . . U Snt+t)
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such that

Now consider the sets

Ai<= \JiSi<t+J • k = 0 »} for i = l , . . . , « .

As we will see the sets form a Larman-type ^-partition for S. Indeed, for each M C S

with \M\ ^ n and for each j there exists, fc(j') such that Sk(j)t+j C Aj\M. Moreover,
we have

f[{C(Si) : i = 1, ..., nt + t) C f lWwt+i) : i = 1, • • •, 0

The above inclusions and (*) imply that the intersection f*){C(A7- \ M) : j — 1, ..., t}
is non-empty for all M. This establishes the right side inequality in our theorem. The
left side inequality is obvious. So the proof is complete. D

It is worth adding that the bounds cannot, in general, be improved. Indeed, con-
sider any convexity space having Radon number r(2) = 2 and, of course, r(t) = t (such
spaces exist!). It is easy to check that in such a space we also have LR*(t, n) = (n+ l)t.

It would be interesting to find better estimates for LR*(t, n) in special cases. In partic-
ular, does the inequality h(t + n) ^ LR*(t + 1, n) — 1 hold for the ordinary convexity
space (R.'', conv) ?
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