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ON BOUNDARIES OF SCHOTTKY SPACES

HIROKI SATO

0. Introduction.

Let S be a compact Riemann surface and let Sn be the surface ob-

tained from S in the course of a pinching deformation. We denote by

Γn the quasi-Fuchsian group representing Sn in the Teichmuller space

T(Γ), where Γ is a Fuchsian group with U/Γ = S (U: the upper half

plane). Then in the previous paper [7] we showed that the limit of the

sequence of Γn is a cusp on the boundary dT(Γ). In this paper we will

consider the case of Schottky space <S. Let Gn be a Schottky group

with Ω(Gn)/Gn = Sn. Then the purpose of this paper is to show what

the limit of Gn is.

We will begin with defining the boundary of the Schottky space.

Usually the boundary is considered in C3g~\ the complex (Sg — 3)-dimen-

sional space. However, in our approach, it is more convenient to do it

in C3g. This will be illustrated by some examples.

First we treat the hyperelliptic case. Let G be a Schottky group

such that Ω(G)/G is a hyperelliptic surface whose branch points are a19

<h> > a<2g-2> 0,1, a2g-i9 °° \ o>j e R {j = 1, , 2g — 1) and whose branch cuts

are (a19 α2), , (a2g_Z9 a2g_2), (0,1), (a2g_lf oo) on R. We consider the defor-

matiom obtained by moving a2g_x to oo increasingly along the real axis

and keeping other branch points and cuts fixed. Then under the defor-

mation there exist sequences of Schottky groups Gn tending to a point

on 93© (Theorem 1) and a point on d2© U d3© (Theorem 2) (see § 1 for

the notations). Next let G be a Schottky group such that Ω(G)/G is a

compact Riemann surface of genus g ^ 2. Let Sn be a compact Riemann

surface obtained from S in the course of pinching deformation. We

denote by Gn a Schottky group with Ω(Gn)/Gn = Sn. Then we show

that the limit of subsequence of Gn may be either a cusp (Theorems 3
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98 HIROKI SATO

and 4), a point on 93<S (Theorem 3) or a "node" (Theorem 6). Observe
a big difference from the case of Teichmuller space.

In §1 we will state two definitions of a Schottky space and the
definition of a normalized Schottky space. Then we define the boundary
of a Schottky space and show by some examples that it is inconvenient
to use a normalized Schottky space. In § 2 we will show that under the
above deformation there exists a sequence of Schottky groups tending
to a point on d3© in the hyperelliptic case. We note that Lemmas 3 and
4 would be interesting and the technique of the proofs would be useful
for studying relations between locations of branch points and cuts on a
hyperelliptic surface and multipliers of generators of Schottky group
which represents the surface. In §3 we will show that when we per-
form a pinching deformation for a compact Riemann surface S, sub-
sequences of Schottky groups Gn, representing the obtained surfaces,
may tend to either a cusp, a "node" or a point on d3©.

The author is indebted to Professor Lipman Bers for pointing out
some errors in the original version of this paper and the author wishes
to express his deep gratitude to professors K. Oikawa, T. Akaza, T. Kuroda
and K. Matsumoto for their encouragement and advices.

1. Definition of boundaries of Schottky spaces.

In this section we will state two definitions of a Schottky space and
the definition of a normalized Schottky space. Then we will define the
boundary of a Schottky space and will show by some examples that it
is difficult to define the boundary of a normalized Schottky space.

1-1. Definition of a Schottky space. Let Clf C19 , Cgf Cr

g be a set
of 2g,# ^ 2, mutually disjoint Jordan curves (we call them defining
curves) on the Riemann sphere which complize the boundary of a 2#-ply
connected region D. Suppose there are g Mδbius transformations Au

"-,Ag which have the property that As maps C$ onto G's and Aj(D) Π
D = φ, 1 ^ ^ g. Then the g necessarily loxodromic transformations
Aj generate a Schottky group of genus g with D as a fundamental
region.

The first definition of a Schottky space is due to Marden [5]. Given
g >̂ 2, consider the compact manifold Pξ, where P3 denotes complex pro-
jective 3-space, with the natural topology. We represent points of this
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SCHOTTKY SPACES 99

space by ^-tuples of 2 x 2 complex matrices (A19 , Ag) (with the natural

equivalence relation). Let X be the variety determined by the equation

Π det Aj = 0 and set V = Pi — X. Fix a Schottky group G of genus

g and a set of free generators Alf -,Ag. This set of generators deter-

mines the point (Al9 , Ag) e V. To any homomorphism θ: G-+H, where

if is a group of Mδbius transformations, we will associate the point

(βiA^y , θ(Ag)) e V. For simplicity we will use the notation (H, θ) for

this point. Conversely, a point (B19 , Bg) e V can be expressed as

(H,θ), where H is the group generated by B19 , Bg and θ is the homo-

morphism determined by θ{Aό) = Z?̂  . The topology of 7 corresponds to

the "pointwise convergence" topology in the group H. Namely (Hn,θn)

-> (£Γ, 0) in V if and only if θn(Aj) -> 0(Ay) for each j , l^j^g. Define

the Schottky space ©j as follows.

©j = {(if,θ) eV: H is a Schottky group and 0 is an isomorphism} .

Remark. Let G be another Schottky group and Λ19 , Ag be gen-

erators of G. Let β x be the Schottky space constructed as above with

respect to G and Aί9 ,^V Then it is easily seen that ©x and ^ are

essentially the same and that their boundaries defined later coinside.

Since we study boundary of Schottky space in this paper, we may ignore

the letters G, A19 , Ag for the definition of the first Schottky space.

The second definition of a Schottky spaces is as follows. Let H be

any Schottky group. We denote by λj9pj and qd the multiplier, the

repelling and the attracting fixed points of Bj9 respectively, where B19

• • , β g are generators of H and 1 < | ^ | < +oo. Thus H determines

3#-tuples of complex numbers

(λ19 p19 q19 λ29 - , λg9 p g 9 qg) e C3g .

For simplicity we denote by τ such 3sr-tuples. Conversely a point τ with

χ. ^ oo (1 ^ j ^ g) determines a point (Bί9 , Bg) e V. We define the

second Schottky space ©2 with the natural equivalence relation as fol-

lows.

S 2 = {re C3g: τ determines a Schottky group} .

Then it is easily seen that ©x and ©2 are equivalent. Thus we may

denote by © instead of ©x and ©2. We note that the dimension of © is
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100 HIROKI SATO

If in the first definition of © we regard as the same point in ©x,

the points (Bl9 -**,Bg) and {TBXT~\ *-*,TBgT-1) with ΓeSL'(2,C), then

we have a normalized Schottky space [©J instead of a Schottky space

<S1# Similarly if in ©2, we regard as the same point (λl9p19ql9 -9λg9pg9

qg) and (λ19 pl9 q19 -9λg9pg9 Qg), we have a normalized Schottky space

[©2L where i^, p^ and q3 are the multiplier, the repelling and the at-

tracting fixed points of TBT~\l^j^g, respectively. Then it is easily

seen that [©J and [©2] are equivalent and so we denote them by [©].

We note that the dimension of [©] is Sg — 3 and [©] is usually called a

Schottky space.

1-2. Definition of the boundary of the Schottky space.

We consider the boundary of a Schottky space. We will use the

notation 3©x for the relative boundary of ©! in V, that is, for each

(H9 Θ) e 3©!, there is a sequence of points (Hn9 θn) e ©x converging to

(H9Θ). A point (if, 0)e3©j will be called a boundary group of G. A

point (if, θ) e 3@! will be called a cusp if there is a loxodoromic element

AeG such that Θ(A) is parabolic. Then Chuckrow [3] showed that 3©x

consists of cusps and non-Kleinian groups.

We consider the boundary of ©2 in C39. We classify the boundary

of 9©2 into the following three cases as limits of point sequences of

Schottky groups Gn = {Aln9 , Agn} (or rn).

(1) We call the first boundary point the following r0 e C 3 g. For

r0e3@2,flf Mδbius transformations AjQ are determined as the limit of

Ajn(l^j^g). We denote by 3χ©2 the set of all such points τ0. In this

case 3©! = dx<52.

(2) We call the second boundary point the following τ0 e C
3g

9 that

is, τ0 = U1(), PIOJ <Zio> 9 Ago* Vgo> qQo) with ho = lining λίn9 pjQ = lim^..^ pjn

and qj0 = lim^.,., qjn (1 ^ j ^ ^) such that at least one of λJ0 (1 <; ^ r̂)

is infinite and all p ί 0 and g i0 (1 lίhj 1ί 9) are distinct. We denote by

32©2 the set of all such points. Furthermore we call the point τo€32©2

a "node" if each λj0(^ °°)>Pjo and qj0 determine a loxodromic transfor-

mation. We show an example of τ0e32©2 which is not a "node". Set

A M = (n + *Hz a n d A ( z ) = in + 2)« + (n
A χ M z a n d Ain(z) .

n nz + (n + 2)

We denote by Gn the Schottky group generated by Aln and A2n. Then
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Tn = ((n + 4)i/n> 0, oo, λ2n, -V(n + l)(n + 3)/n, V(n + ΐ)(n

and

τ0 = lim τn = (i, 0, oo, oo, -1,1) .

Thus λ2Q = oo and A10 = l i m , ^ A ln is an elliptic transformation.

(3) We define the third boundary by setting d©2 — di©2 — 92©2>

denote it by d3@2 We give an example of a point r0ed3©2. Set

Aln(z) = (n + Ί)i z and A w ( g ) = ( 2 w + 2)z + ( 3 "
w 2^ ;̂ (2n — 2)

Then the group generated by Aln and A2n is a Schottky group. Then

τn = ((% + 7)i/w, 0, oo, ̂ 2TO, (2w - Vr3")/2n, (2w + T

and

τ0 == lim rw = (i, 0, oo, 7 + 4/ΊΓ, 1,1) .

Thus A10 = linirc^ Aln is an elliptic transformation and τ0 e d3©2.

We write d©^©, d2© and 93@ instead of 3@2,3i©2,32©2 and 93@2,

respectively.

Now we present an example showing that the normalized Schottky

space [©] is not convenient for our study.

Examples. Let

Ar(z) = z + 1 7 r 2 , 0 < r < 1
z + 1

and

n , , Ίz — 29

Let G> be the Schottky group generated by Ar and Br, that is, Gr =
{Ar,Br} and

rr = ((2 - r2 + 2Vl - r2)/r\ -VT^7\ VT^T2,

(7 + 3VT)/2, (11 - VT)/2, (11 + VT

Set
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z + VI — r2

Tr(z) = ===== ,

Ar{z) = TrArT-r\z) = 2 - r2 + 2Vl - r2

 g

r2

and

AίΛ-ψR Ψ-H.Λ - (-r 2 - 28 + SVϊ^Fjz + qiVΓ^ΠP + 30 - r2)

Let Gr be the Schottky group generated by Λr and 5 r , that is, Gr =
{4r, βr} and

τr = ((2 - r2 + 2VΓ=r*)/r*, 0, oo, (7 + 3v/T)/2, A, g2) .

For each real number r, 0 < r < 1, G> and Gr determine the same point
in [©]. It is easily seen that

is parabolic and

Bx(z) = lim Br(2) = (72 - 29)/(z - 4)
r-»l

is loxodromic. And

τ0 = lim τ r = (1, 0, 0, (7 + 3yΊΓ)/2, p2, ? a ) .
r—1

Hence the group generated by Ax(z) and Bx{z) is a cusp on dφ. On the
other hand

Ax(z) — lim Ar(z) = is
r—1

is the identity and

JSXC«> = lim £r(2) = (-29« + 29)/(-292 + 29) ,

and

f0 = limτr = (1,0, oo,(7 + 3/5)/2,1,1) .
r- l

Hence f0 is in X and on 33©.

Furthermore
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and

A0(z) = lim Ar(z) =
r-*0

Biz) = lim Br(z) = (Ίz - 29)/ (z - 4) .

Hence

r0 = lim τr = (oo, - 1 , 1 , (7 + 3yTΓ)/2,p2,
r->0

is in X and on 32©. On the other hand

and

50(z) = lim Br(z) = (-25s + 41)/(-19* + 31) .

r-»0

Hence

τ0 = lim τ r = (00, 0, 00, (7 + 3yΊΓ)/2, p29 q2)
r-0

is on d2©.

Gr and Gr represent the same point of the normalized Schottky

space [©]. However, they behave differently as r - ^ 0 or r—>1. This

shows that the Schottky space © is more convenient than the normalized

space [©].

2. The hyperelliptic case.

In this section we will discuss the case where G is a Schottky group

such that Ω(G)/G is a hyperelliptic surface, where Ω(G) denotes the

region of discontinuity of G, and we will consider limits of the Schottky

groups obtained under the following deformation.

2-1. Let S be a normalized hyperelliptic surface which has branch

points a19 - - , a2g_2, 0,1, a2g_19 00 and has branch cuts (α1? a2), (α3, α4), ,

(α2<7-3>
 a2g-2)> (0,1) and (a2g_19 00) on the real axis, where aγ < a2 < <

a2g-2 < 0 < 1 < a2g_19 \a2g_λ\ > \ax\, a^eR (j = 1, , 2g - 1) (cf, see Fig. 1

in the previous paper [7]). Take g simple loops a19 -,ag being disjoint

each other on S as follows. Each ccj (2 <; j <: ^) surrounds the cut

(a2j_39a2j_2) and not other cuts in its interior and ax surrounds the cut
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(a2g_19 oo) and not other cuts in its interior. Now we consider the defor-

mation under which the branch points al9 ,α 2 α_ 2,0,1, co and the cuts

(al9 α2), ., (α2{7_3, a2g_2), (0,1) are fixed, and the point a2g_γ increasingly

tends to oo along the real axis.

Let G be a Schottky group of genus g such that Ω(G)/G is the above

hyperelliptic surface S and Sn be the hyperelliptic surface which has

branch points aί9 α2, , a2g_290,1, a2g_19 oo and has cuts (a19 α2), , (a2g_3,

^-2)9 (0,1), (αgLi, 00) on the real axis, where a2g_λ < α ^ . Now we may

take ax as the circle about 0 of the radius r with lαj < r < a2g_λ. On

the other sheet we denote by a[ the circle which has the same projec-

tion as ax. Let A be the ring domain containing 00 bounded by ax and

a[ on S. Furthermore we write ax and a[ for the corresponding loops

on Sn. Let Dln be the ring domain containing 00 bounded by ax and a[

on Sn. To the loops al9---9ag on S we assign Mδbius tranformations

A19 , Ag, respectively.

We consider the conf ormal mapping of the Grotzsch extremal region

to the concentric annulus (cf. see Fig. 4 in [7]). We map Dx and Dιn to

annuli Kλ: {pγ < \z\ < 1} and Kίn: {pιn < \z\ < 1} by conf ormal mappings

Φ and Φn9 respectively. Then

and

Φn<tXlr)a%ld = 1/VpΓn .

We define a q.c. mapping fn: S-> Sn as follows. Let fn be an arbi-

trary quasi-comformal mapping of Kx onto Kιn such that ΦnιfnΦ = id.

on SDj. We define /„ by setting

/ n = ίφnlfnΦ on A
lidentity on S — A .

LEMMA 1. (Sato [7]).

lim pιn = 0 i/ αwd ô Zi/ if lim αg_i = 00 .

LEMMA 2. -For / n defined above, there uniquely exists a q.c. map-

ping Fn which satisfies the following conditions:

(1) With respect to Gn = FnGFz\Fn(Ω(G))IGn = Sn

(2) With respect to πn9 the natural projection from Ω(Gn) onto Sn,
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πnFn = Λπ and

(3) Fn(0) - 0,Fn(l) - 1 and Fn(oo) = oo,

where π expresses the natural projection from Ω(G) onto S.

Proof. We can prove the lemma by the same method as in the

proof of Lemma 2 in [7], hence we omit the proof here.

Let A1 be an element of G with the following property: If a path

zz' is a lift of al9 then z' = Ax(z). Set Aιn = FnAxF-1. We denote by

>lln the multiplier of Aln. Then by a similar method to the proof of

Lemma 3 in [7] we have the following lemma, but for the completeness

here we give a proof.

LEMMA 3. // l i m , ^ αgί-i = oo, then l i m , ^ log|Λln| = 0.

Proof. Let pln and qln be the fixed points of Aln and we may as-

sume that pln = 0 and qln = oo. We denote by Γ l κ the set of all simple

closed rectifiable curves γ separating 0 and oo and denote by Mln the

extremal length modulo {Aln} (the quantity introduced by Bers [2]), that

is,

(inf ί σ(z)\dz\)2

Mιn = SUP \rerJrer / _

σ(z)2dxdy
JJ Fn{C)/{Aln\

where σ(z) is a non-negative measurable function which satisfies the

identity

σ(Aιn(z))\dAln(z)\ = σ(

We call the function σ(z) an admissible function. Then (Bers [2])

Mln = — ? ί — .
lOglΛl

We denote by Sn the lift of the branch cut (αg}_i, oo) which joins pln and

qln9 and denote by Eln the lift of the ring domain Dln such that £n e Eln.

We denote by fln the set of all rectifiable curves joining the boundary

\z\ = 1 and another boundary \z\ = pln in the annulus Kln and denote by

Mln the extremal length of fln in Kιn. It is known that

Mm= -log(hn/&π) . ( 2 )
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For each curve γeΓln, there exists a curve f* in Eln being a lift of

f e fln such that f* is a part of f. It is not difficult to prove that

Mln^Mln. ( 3 )

By Lemma 1, if l i m , ^ a^lx = oo, then l im^^ pίn = 0. Hence from (1),

(2) and (3), we have the desired result. Our proof is now complete.

For each j = 2,3, , gy let Aά be an element of G with the follow-

ing property: If a path Qίs be a lift of aj9 then z'y = A fa). We con-

sider the variations of A2, , Ag under the above deformation. Let a'2,

• , a!g be the loops on the other sheet which have the same projections

as a2, •",ag, respectively. Let Dj (j = 2, ,g) be the ring domain

containing the cut (α2</_3, a2j_^} bounded by ad and a'j. Map the ring do-

main Dj to the annulus Ks\ {pj < \z\ < 1} by a conformal mapping gjm

Let / n be the q.c. mapping constructed above. We set ajn = fn(<Xj), oίjn =

fnWj) and D i ? ϊ = fn(Dj). Let 5riπ be a conformal mapping from JDin to

the annulus Kjn: {pjn < \z\ < 1}.

Let fj be the set of curves joining the boundary \z\ = 1 of Kj and

another boundary \z\ = pj in Kj. Let ΓyTO be the set of all curves join-

ing the boundary \z\ = 1 of KJn and another boundary \z\ = pJn in X i Λ.

We denote by Mj and Mjn the extremal length of fj in ίC^ and of fjn

in Z^n, respectively. Then fjn = gjnfngγ - Kό -> Kjn is conformal, hence

Set A r̂e = FnAjF'1 (j = 2, ,#). We denote by ^ n the multiplier

of A^. We denote by M ^ the extremal length modulo {Ajn} by the same

method as in the proof of Lemma 3. Then

By the same way as in the proof of Lemma 3, we have

\og\λJn\
 = aΐ

Hence

'* = - l o g ^
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2-2. Next we consider the "/3"-cycles on S. Let β19 , βg be a basis

of "/3"-cycles as in the Figure 1 below, that is, βό are mutually disjoint

and as X βk — δjk (Kronecker's δ) and $ is a loop which bounds a ring

domain Df together with βj for each j = 1, , g. Furthermore we as-

sume that βj and β>f (2 <; y ^ g) are contained in S — A We set /fyn =

/»(&), β» - /»(#) and D% = /n(Z)p 0* - 1, , g).

We fix j,2^j^g. We assume that Ain(«) = λjnz. Let C,« and C%

be defining curves of Gn such that Ajn(Cjn) = C% and one of the lifts

of D^ lies between Cjn and Cyw. Then C i n and C% both separate 0 and

oo. We denote by ωjn the ring domain bounded by Cjn and Cyn. We

denote by Γfn the set of all curves γθ (Q <^ θ ^ 2π) which are the inter-

sections of ωjn and rays emanating from the origin, where each γθ e Γfn

consists of finitely many line segments and arg2 = 0 for each zeγβ.

We denote by Mfn the extremal length of Γ% in ωjn, that is,

Mfn = SUP
(inf J σ(s)|cfe|y

σ(z)2dxdy
J J ωjn

where σ(z) is a non-negative measurable function. Then one of the lifts

of the curves βj is in ωJn, and it is a closed curve which separates 0

and oo. We denote the curve by βf. Similarly we denote by βf the

closed curve separating 0 and oo which is a lift of $ in ωjn. By

conformal mappings gf and g%, we map Df and Dfn to the annuli

Kf: {pf< \z\ < 1} and Xft: {rfk < \z\ < 1}, respectively. Let ff and /% be

the sets of curves joining \z\ = 1 and |^| = #f, and |^| = 1 and \z\ = pfn9

respectively. We denote by Mf and M% the extremal length of ff in

Kf and of /% in Kfn, respectively. Then by the conformal invariance

of the extremal length we have

• « a2 a3 \ \ &4 a2g-Z » \&2Q-2 0 / /' / / I } \ \

\ \ \ * ' / / / / / V"
\v " ' S / /

Figure 1.

Mf = M% . ( 4 )
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Furthermore by the

We easily see that
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same method as in the

M* — —ΪOgpf

proof of Lemma 3, we have

(

(

5)

6)

Next we show that

M * w < ς l o g l ^ l . ( 7 )

Set m(σ) = inf σ(z)\dz\. Then for any function σ(z) and for each
r<? he

TeeΓ%,

m(σ) ^ I σ(reίθ)dr , where £ = reίθ .

Hence

Γ" m(σ)dθ ^ f2ff ί σ{reiθ)drdθ .
Jo Jo Jr0

By using the Schwarz inequality, we have

4τr2m0)2 ^ f2ίΓ ί σ(z)2rdrdθ Γ f (l/r)drdθ
Jo JΪΘ J o Jre

= fί σ(z)2dxdy Γ ί (l/r)drdθ .
JJωjn JO Jΐθ

Hence

Π σ(z)2dxdy rθ r

On the other hand let ώjn be the image region of ωjn under the loga-
rithmic function ζ = log z, ζ = £ + iη (see Fig. 2).
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2π

A

l\
Figure 2.

Then (l/r)dr expresses the total length of line segments in ώjn Π {ζ|Im
he

= θ}. Hence

Γf (l/r)drdθ
Jo he

is the area

we have

of ώjn. Since

π
Jo Jrβ

m{σf
/ -A 9 .7 7 . . = 2π

By the arbitrariness of σ, we have (7).
By (4), (5), (6) and (7) we have

lOg \λjn\ > -
2π = 2π

hence
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Thus we have the following

LEMMA 4. Under the same deformation as in Lemma 3,

L ^ \hn\ ̂  exp^ \hn\ ^ exp (
P* \-log P

Remark. It would be interesting to compare this with a result of

Abikoff [1].

2-3. Now we have

THEOREM 1. Let G be introduced at the beginning of 2-1. Let Gn =

{Aιn, , Agn} be the Schottky group constructed in Lemma 2. Then

(1) if Go e d& is the limit of TnjGnjT-}> whose {ns} c {n} and Tnj

are Mόbius transformations, then Go is a cusp.

(2) There exists a subsequence {rij} c {n} and Mδbius transforma-

tions Tn. such that the limit Go of the sequence TnfinjT~j is on d<β Π X.

Proof. (1) If the limit Go is a point on dχ(3, then by Lemma 3,

A10 = lim^oo TlnjAl7ljT^. is parabolic, elliptic or the identity and by

Lemma 4, Aj0 = lim^..^ TjnjAjniTjnS is loxodromic for each j , 2 <^ j <^ g.

Hence by Chuckrow [3], A10 must be parabolic. Thus Go is a cusp on

(2) We denote by pjn and qjn the repelling and the attracting fixed

points of Ajn {j = 1, , g). Let Tn be the Mδbius transformation such

that Tn(pln) = 0, ΓΛ(ί l n) = oo and Tn(p2n) = 1. Then

lim iί l n = lim TnAlnT~l = id. or elliptic

since # l n — 0, $ l n = oo and lim^..^ |^ l n | = 1, where pln and qln are the

repelling and the attracting fixed points of Aln, respectively.

If P20 ̂  <?2o> then by Lemma 4, A20 = lim^^^ ΓTOA2TO27-1 is loxodromic,

where p20 = lim^̂ oo p2TO and g20 = lim^^^ q2n and p2re and g2w are the re-

pelling and the attracting fixed points of TnA2nT~ι. But by Lemma 4

and its corollary in Chuckrow [3] this case does not occur. Hence p2Q =

q20 = 1. Set

ί _ /4n S2n\ ^ J g A _ 1
\ /
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Then by Lemma 4,

;i/2 _ ;-i/2

d2n = % % L _ _> oo (n -> oo) .
P271 Q.2Π

Since

^2TO = = ^27lQ.2n *2?ι

02re = —^2nVlnQ.2n

and

^ 2 7 i = ^2np27l *2w ,

we have that

Hence Go = l i m , ^ Gn is in X. Furthermore let τn e © be the associated

element with Gn. Then

τ0 = lim τn = (1, 0, oo, λ20,1,1, , λg0, pgQ, qg0) .
71—»oo

Hence r o 6 93©. Our proof is now complete.

2-4. Next we consider "^"-cycles. Let β19'"9βg be a basis of "/}"-

cycles on S. We denote by β3 the symmetric loop of βj with respect to

the real axis (j = 1, ' ',g) We denote by Df (1 ^ / ^ g) the ring domain

bounded by βj and ^ . Let G* be a Schottky group generated by Mδbius

transformations B19 -,Bg assigned to the loops β19 '"9βg9 respectively,

in a similar sense for "^"-cycles. Let Sn be the Riemann surface con-

structed in front of Lemma 1 and let /„ be the same q.c. mapping from

S to Sn defined there. Then by the same method as in Lemma 2, we

have

LEMMA 5. There exists a unique q.c. mapping F* which satisfies

the following conditions:

(1) With respect to G* - F*G*F*-\F*(Ω(G*))IG* = Sn,

(2) with respect to the natural projection π* : <Q(G*) —> Sn, π*F* —fnπ*

and

(3) F*(0) = 0,F*(l) = l α ^ ί τ * ( o o ) = oo,

where π*: Ω(G*) —> S is the natural projection.
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If we set Bjn =-. F*BjF*-1 (1 ^ j£ g), then G* - {Bln, . . •, B,B}. We

denote by ^ n the multiplier of Bjn. We set ftn = /„(&) and &n = /»(&)

(2<* j <^ g). Let &j be the intersection point of β1 and the segment (0,1).

Let βln be a simple closed curve through the points 6t and 2cw which

does not intersect with βjn (2 <^ j <^ g).

Let #y 0" = 2, , g) be mutually disjoint simple loops homotopic to

aj in S — A so that each of άό bounds a ring domain Df together with

aj9 and let aγ be a simple loop homotopic to ax so that ^ is disjoint

from άj (2 <^ j <^ g) and bounds a ring domain Df together with aγ.

Then Z)y and ^ are conformally mapped to the annuli Kά: {βj <\z\< 1}

and Kf: {pf < \z\ < 1}, respectively. Then by using similar method to

the proofs of Lemma 3 and Lemma 4, we have the following lemmas.

LEMMA 6. Under the above deformation,

4 ^ \λ%\ £ exp
-logpf

for j = 2,3, ...,flr.

LEMMA 7. //

lim α2g_! = oo , ίfcen lim Λ& = oo .

By using Lemma 6 and Lemma 7 we obtain the following theorem.

Here we shall omit the proof.

THEOREM 2. Let G* be the Schottky groups constructed above.

Then the limit G? e d@ of the sequence TnjG*/Γ~}9 whose {nό} c {%} and

Tnj are Mδbius transformations, is always on d2© U d3© but not on ^(δ.

Remark. It is not known whether there exists a subsequence

TnjG*jT~J- tending to a "node" or not.

3. The general case.

In this section let S be a compact Riemann surface of genus g and

let G be a Schottky group with Ω(G)/G = S. Fix the Schottky group

G. Here we study limits of subsequence of Schottky groups Gn with

Ω(Gn)/Gn = Sn, where Sn is the Riemann surfaces obtained from S in

the course of the following pinching deformation.
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3-1. Let a19 -,ag be a basis of 'V-cycles on S and D19 -,Dg be

mutually disjoint ring domains such that each Dj contains a3 (j = 1, ,

g). We will construct the Riemann surface Sn from S as follows. Let

fn be a q.c. mapping with a finite maximal dilatation D ( / J ^ K on S,

where ί is a fixed positive constant not depending on n. For j = 1,

• ,0, we set ά,n =fn(aj),Djn =fnΦj) and /n(S) = 5n. Map Dιn to the

annulus ifln: {pιn < \z\ < 1} by a conformal mapping 0 l n such that the

image oίάln is homotopic to the circle \z\ = Vpln in ivln. Let j£ l n be the

annulus { p l n < | z | < l } and let fn be an arbitrary q.c. mapping from Kίn

to Kιn. Now we let Sn be the Riemann surface obtained by joining

Sn — Dln and X l n so that each point p e d(Sn — Dln) is identified with

We define a q.c. mapping fn: Sn->Sn by setting that fn = / n ^ l n on

J9ln and / n is a conformal mapping in STO — Dιn with the given boundary

correspondence. We set ajn = fn(άjn) and DJn = fn(Djn). And set /„ =

/ π / w . Then / n is a q.c. mapping from S to Sn and has a maximal di-

latation D(fn) ^ Z on S — A We call the above deformation a pinching

deformation for aλ on S if ^oln tends to zero for n—» oo. We note that

by Bers [2], l i m , ^ L(|0ln) = 0 in this case, where L(pln) is the least length

of the loops homotopic to aln in Dln.

We denote by G a Schottky group generated by Mδbius transfor-

mations AU' yAg assigned to the loops a19"',ag, respectively, in a

similar sense in 2-1. We obtain a similar result to Lemma 2. The ob-

tained q.c. mapping is denoted by Fn. Set Gn = FnGF~ι and Ajn =

FnAjF-1 (j - 1, , g). Then Gn = {Aln, , A,,}. We denote by J i n

(j — 1, . . . , g) the multipliers of A3n. Then we have the following lemma

by the same method as in the proof of Lemma 3.

LEMMA 3'. Under the above pinching deformation for al9

limlog|Λ ln | = 0 .

Next we take a basis βl9 , βg of "β"-cycles and choose the loops

βΊ> 9 fig as in § 2. We denote by DJ the ring domain bounded by βj

and fa. By conformal mappings Dά and DJ are mapped to the annuli

Kj:{pj <\z\< 1} and KJ: {pj < \z\ < 1}, respectively. Then by slightly

modyfying the proof of Lemma 4 in § 2, we have the following important

lemma.
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LEMMA 4'. Under the above pinching deformation for alf

4
pf

for j = 2, , g.

3-2. Then we have the following main theorems. Theorem 3 is

proved by the same method as in the proof of Theorem 1.

THEOREM 3. Let Gn be the Schottky groups constructed above.

Then

(1) if Go e Si© is the limit of TnjGnjT~j, whose {nό} c {n} and Tnj

are Mδbίus transformations, then Go is a cusp.

(2) There exist a subsequence {nj} c {n} and Mδbίus transformations

Tnj such that the limit Go of the sequence TnjGnjT~) is on d3© Π X.

THEOREM 4. Set Ajn = (aJn h \ ajndjn - bjncjn = 1 (1 ̂  j ^ g). By

taking Tn suitably, consider the sequence normalized so that cln = 4,

Aln(0) = 0 and A2n(2) = 2. Furthermore suppose that the following con-

ditions are satisfied. (1) cjn ±? 0, / = 1, , g and n = 1,2, , cmd (2)

Tfeerβ exist defining curves Cjn and C'jn of Ajn (j = 1, -,g), respectively

such that Cjn and C% are the isometric circles Ijn of Ajn and Ij* of

Aj*, respectively, and Cjn and C'jn (2 ^ j ^ g) are all outside the disk

{|21 5j 1} cmd π~\Dιn) Γ) ωn a {\z\ <^ 1}, where ωn is the 2g-ply connected

region bounded by Cln, C'm, , Cgn. Then the limit Go of an infinite sub-

sequence {Gn} with {rtj} c {n} is always a cusp.

Remark. As is seen from the proof, it seems that the assumptions

of Theorem 4 would be weakend considerably, although the present one

is sufficient for our purpose. It is not known whether Theorem 4 is

true or not in the hyperelliptic case.

Proof. First we prove the theorem for the case of genus g = 2.

Let Aιn and A2n be generators of Gn. By the assumption, A ln(0) = 0,

A2n(2) = 2 and cln = 4. We denote by pjn and qjn the repelling and the

attracting fixed points of Ajn (j = 1,2). We assume that qίn = 0 and

q2n = 2.

Suppose r2n, the radius of the isometric circle I2n of A2n, tends to

zero. Since 1 < lim^*, |Λ2»I < +oo by Lemma 4 and
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we have l i m , ^ p2n — 2. We note that by the assumption the 4-ply con-

nected region bounded by Imliίfhn and 1£ is a fundamental region for

Gn. Let γ2n be the circle of radius | l/c 2 n | + |(α2n + d2n)/c2n\ centered at

&in\Cin, and let γιn be the unit circle. Then for large n,γln surrounds Iln

and lϊJ and is disjoint from γ2n. Let γίn) and γin) be the inverse image

of γιn and γ2n under the mapping Fn, respectively. Then γin) and γin) are

disjoint simple closed curves containing the points 0, p1 and the points

2, p2 in their interiors, respectively, where px and p2 are the repelling

fixed points of Aλ and A2 (defined in 3-1), respectively. Let Rin) be the

doubly connected region bounded by γin) and γin) and let RZn be the dou-

bly connected region bounded by γln and γ2n. We denote by M(Rln)) and

M(R3n) the moduli of Rin) and jβ3n, respectively. It is known that there

exists a constant M such that M(Rin)) <; M, n = 1,2, . By the well-

known property of modulus,

M{RP)K ^ M(R3n) ,

since FTO is the q.c. mapping with maximal dilatation D(Fn) ^ K on βf }.

On the other hand it is easily seen that

lim M(R3n) = oo .
n-*oo

Hence

oo = lim M(R3n) ^ lim M(Rin))κ ^ Mκ = a finite constant.

This contradiction shows that l i m , ^ r2w ^F 0.

Since r20 = lim^^^ r2w ^ 0, q20 = lim^.,^ g27l = 2 and μ20| = l i m ^ \λ2n\ > 1,

we have p20 = lim^^^ p 2 n ^ 2, that is, A20 = lim^,,^ A2n is a loxodromic

transformation.

We show that A10 = lim^oo Aln is a parabolic transformation.

Suppose that lim^^^ pln = p10 ^ 0. Since c l n = 4, g ln = 0 and cιn —

(X£ ~ kn

1/2)/(Pm - Qm), we have

4 - «/2 - Λ-0

1/2)/p10 .

Then λl0 ^F 1 and so by \λί0\ = l w e have λ10 = e<β (ί ^ 0). Thus A10 =

^ Aln is an elliptic transformation. This does not occur by Chuckrow
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[3], since A20 is a loxodromic transformation. Hence plQ = 0, so λ10 — 1.

Thus A10 is a parabolic transformation. Thus Go = {A10, A20} is a cusp.

Next we prove the theorem for the case of genus g ^ 3. Let pJn

and # j 7 l be the fixed points of Ajn (1 <Ξ ^ #). Suppose that l i m , ^ p f c n

= l i m , ^ qkn for some k,2 <^ k <* g. We denote by 7 i n and 1^ the iso-

metric circles of Ajn and Aj,,1 (1 <* / ^ #), respectively. The radius rkn

of /Λn becomes 0 as n to oo. By the assumption, 7iTO and I]* (2<^j <*g)

are mutually disjoint. Let γjn be mutually disjoint simple closed curves

surrounding Ijn and 7jw* which lie outside the disk{|2| <^ 1}, 2 <; j ^ ^.

We may take {̂ fcw} as a sequence of simple closed curves as follows: (1)

each γkn surrounds Ikn and Ij£, (2) γkn does not intersect with Ijn and

Ijn (j *v k,l<^ j <* g) and (3) γkn tends to the point l i m , ^ pkn for n —> oo.

Let p ln be the unit circle. Then by the assumption Iιn and 1^ are con-

tained in the interior of γln and ωn Π π KAn) c (the interior of yln) for

large n.

Now we consider the #-ply connected region ω'n bounded by γjn

(1 <* j <^ g). By using the well-known theorem of the theory of con-

formal mappings, ω'n is conformally mapped to the following circular

slit annulus, that is, γιn to the circle \z\ = Rln,γkn to the circle \z\ — Rkn

and γjn (2 <L j <L g,j ^ k) to the circular arc slits on \z\ = β^w, where

β*n < Rjn < Rln (2^j^ g, j * k). Set yf - F~ι(γjn)y l^j^g. We de-
note by ωnn) the ^-ply connected region bounded by these g curves.

Then ωnn) is conformally mapped to the circular slit annulus like above.

Thus for the image \z\ = R[n) of γ^ and the image \z\ = i2in> of ^in),

> 7? ?
ίkn

since F w is the q.c. mapping with maximal dilatation D(/w) ^ K on ωnn).

But by the above construction

lim Rln/Rkn = oo .

On the other hand limn^ R{n) /Rk

n) is finite. For, γf (1 ^ ^ ^) contains

a curve Cf} joining the fixed points of A3 in its interior for each n and

/. Let ω*(n) be the #-ply connected region with C^) as the boundaries.

If ω*U ) is mapped to the circular slit annulus, we denote by Rf{n)/R%in)

the ratio of the inner and outer radii of ω*(n), where Rf{n) (j = l,k)

has similar meanings to the above. Then for each n,
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R*Cn)/R*(n) ^ R[n)/Rk

n) .

It is known that there exists a constant Mlk such that Rf(n)jRt{n) ^

Mlk9n = 1,2, . Thus for all large n we have

This contradiction shows that lim^^ pkn ±? lim^oo qkn (2 ^ k <^ #). Thus

by Lemma 4/, ^ = l i m ^ λjn, pj0 = lim^^^ p,n and gi0 = lim^..^ qjn deter-

mine loxodromic transformations Aj09 2<^ j <^ g. As in the case g — 2,

A10 = limn_0O A^n is parabolic. In this case the fixed points of AjQ, 1 ^ j

^ g, are all distinct by Marden [5], since AjQ are all Mδbius transfor-

mations. Hence GQ — {A10, , Ag0} is a cusp. Our proof is now com-

plete.

3-3. To illustlate our result we shall present an example of the

sequence {Ajn} which satisfies the assumptions in Theorem 4. For brevity

we consider the case of genus g — 2.

Set

A (z) -
- ((1/70 - Vl +

and

~ 1 3

A - ( Z ) 4.-6 '

Let Gn = {Aln, A27J. Then Gn is a Schottky group and

τn = (1 + (2/n2) + (2/n)Vl + ( W ) , 0, l/(2w), 4,13/8, 2) .

We have

A10(s) = lim Aln(s) = g ,

w _oo 4z + 1
(17 /2)z 13

A2o(^) ::= iwcί A2n(z) =
π->co 42; — 6

and

τ0 = lim rn = (1, 0, 0,4,13/8,2) .

Then it is easily seen that Aln and A2n satisfy the assumptions in Theo-

rem 4.
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With respect to this example, let us construct explicitly S,Sn,D19

Dln,alfaln,Fn and fn9 which we constructed at the beginning of 3-1.
We define S and Sn by setting S = Ω(G1)/G1 and Sn = Ω(Gn)/Gn. We
have the isometric circles Iιn9I^fI2n and I£ of Aln,A^,A2n and A£,
respectively, as follows:

Iln:\z - (l/4)((l/w) - Vl + ( W ) ) | = 1/4 ,

/i 1 : |* - (l/4)((l/w) + Vl + ( W ) ) | = 1/4 ,

/ 2 Λ : |«-(3/2) | = 1/4

and

= 1/4.

Let ωn be the 4-ply connected region bounded by the above 4 isometric
circles. Let άln be the closed interval

- Vl + (1/n2) + 1), (l/4)((l/w) + Vl + ( W ) + 1)] .

Let δίn and 3'ln be the segment joining (l/4)((l/w) - Vl + (l/^2) + i) to
(l/4)((l/τθ + Vl + (1/tι2) + 0 and the segment joining
Vl + (1/tι2) - i) to (l/4)((l/n) + Vl + (1/n2) - i), respectively. We de-
note by Eln the simply connected region bounded by δln9d[n9Iιn and Z^1.
Set ^ = {\z\ ^ 1} Π α>n. Then E2n = £?21 for each n. Set ^ 3 n = ωn —
Em U £72w Then we define A, D lw, ax and α ln by setting Dx = π(En),
Dln = πn(Eιn), ax = π(άn) and α ln = ττw( l̂w), where TΓ and πn are the natural
projections from β(Gx) onto S and from β(G») onto S», respectively.
Furthermore we define q.c. mappings Fn and fn as follows.

First we define a q.c. mapping Fn from α̂  to ωn as follows. Let
Fn be the identity mapping in E2l. If we set z = a? + iy, then we define
F n in En Π o)! by setting

Furthermore it is easily seen that there exists a q.c. mapping Fn from
EZ1 to E3n with the following boundary correspondences, which has a
maximal dilatation D(Fn) <; K for a fixed positive constant not depending
on n: Fn = id. on \z\ = 1,

_ ί i L ^ ^ Σ ± I W ) + 1 on
4 4n
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and

- 4 + 4n

on

1 » on
4

F,« - Ξ
V2

_ 1 )
4/

+ 1 _ 1; on
4w 4

Then we extend the mapping Fn to the whole Ω(G) by using the identity
FnGF~ι = 6rn, and denote by the same letter Fn the extended mapping. We
define fn as the projection of Fn, that is, fn satisfies the identity fnπ =

It is easily seen that the modulus of the ring domain Dιn tends to
00 as n to 00, i.e., l i m , ^ ^ = 0 for the annulus Kln:{pln<\z\<l} con-
formally equivalent to Dίn.

3-4. Let β19'-9βg be a basis of "^"-cycles on S. Let G* be a
Schottky group generated by Mδbius transformations Blf , Bg assigned
to β19 , /if, respectively, in a similar sense for "α"-cycles. Similarly
to Lemma 5, there exists a q.c. mapping F*. And set G* = F*G*F*~1.
If we set B,w = F J ^ F * " 1 tf = 1, , ff), then G* - {Bln, . . . , βαn}. We
denote by λ% the multiplier of Bjn. By the same method as before, we
have the following lemmas. Here βs and pj have similar meanings in

LEMMA 67. Under the pinching deformation for a19

ί 1 \1/κ / Aτr2K \

( i ) Sμ,,lSexp(^!A_)

/or / = 2, , flr.

LEMMA 77. Under the pinching deformation for a19

limμ*l = oo .

3-5. Then we have the following main theorems.

THEOREM 5. Let G* be the Schottky groups constructed above.
Then the limit G? e 5© of the sequence Tn.G^T~^ whose {n3} c {n} and
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Tnj are Mδbius transformations, is always on d2© U d3© but not on dφ.

We can prove it by using Lemma 7'.

We consider the sequence TnG*T^ such that TnBlnT~ι{-l) = - 1 ,

TnBlnT-\l) = 1 and TnB2nT-\0) = 0. For brevity we write G* and Bkn

instead of TnG*T;1 and TnBknT~ι (1 ^ k ^ g), respectively. By using

Lemma 7', we note that the radii of the isometric circles of Bιn tend to

zero for n —» co. Then we have

THEOREM 6. Set Rx = {\z + 1| £ ε} and R[ = {\z - 1| ^ ε} for a fixed

small positive number ε. If for large n, there exist the mutually dis-

joint isometric circles Ifn and IJ'1 (j = 1, , g) of BJn and Bj^, respec-

tively such that 1% and If'1 (j = 2, , g) are outside Rt U R{ and

π%~ι(Dm) Π ω* C R1 U R[, where ω* is the 2g-ply connected region bounded

by the above 2g isometric circles and π* is the natural projection from

Ω(G*) to Sn, then the limit Gf of the sequence G* is always on 32@ and

a "node".

Proof. First we prove the theorem for the case of genus g = 2.

Let the fixed points of B2n be 0 and qfn. Suppose that l i m ^ qfn == 0.

Then lim^^o. c2n = oo, so the isometric circles Ifn and Ifn-
1 of B2n and

Bin, respectively, are contained in the disk

for large n, where B2n = (^2W , 2 w ) , α2wd2w - 62wc2w = 1. By Lemma 7',

\c2w cι2w/

the radii of the isometric circles Ifn and /&-1 of β l 7 l and ^i^1, respective-

ly, are small for large n. Hence for large n, Ifn and Ifn~
x are contained

in Rγ and R{, respectively. By the assumption, the 4-ply connected re-

gion bounded by the above four isometric circles is a fundamental region

for G*. Set
Re = {1 _ e < \z\ < 1 + ε} Π {Im z < ε}

and let a/2e be the boundary of Re. For large n, Rε => /£ U 7&-1, β e 3 cyw

Π π*-KDln) and the complement of Rε contains R2n. Set Rin) = F^iRJ

and JKίn) = F * - 1 ^ . ) . We denote by (# 2 n ,# e ) and (#f\#<w )) the ring

domains bounded by dR2n and cλRe, and bounded by 9J2,(n) and 9i?lw), re-

spectively. Let M* and Min)* be the moduli of (R2n,Rε) and (#ί n ) ,#ί n ) ),

respectively. By the well-known fact on modulus property,
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M* ^ (M{n)*)κ .

It is known that there exists a finite positive constant M* such that

j|f c«> ^ M*, w = 1,2, . Hence

On the other hand lining M* = oo. This contradiction shows that

l i m , ^ qfn ±r 0. Hence by Lemma 6', B2Q = lim,^*, B2n is a loxodromic

transformation. Thus by Lemma 7', τ0* = l i m , ^ τ* is on d2©, where τ*

is the point associated with G*. It is easily seen that τf is a "node",

since the fixed points of B20 are outside of Rx U i?ί

Next we prove the theorem for the case of genus g =Ξ> 3. Suppose

that lim^oo pfn = l i m , ^ g& for some k,2 <: k <: g. Let ^ be a simple

closed curve having the following properties: (1) γkn contains the iso-

metric circles /*> of Bkn and 7*fx of B^ in its interior, (2) γkn+1 c ft.n

(n = 1,2, •), (3) γkn converges to the point l i m ^ p%n for n -> oo and

(4) γkn does not intersect with and not contain the isometric circles 1%

of Bjn and If'1 of BTJ (1 ^ j ^ ^, y ^ k) in its interior. We denote by

ϊjn (1 ^ j ^ >̂ / ^F fc) mutually disjoint simple closed curves which do not

intersect with γkn such that each γjn (2 ^ y ^ #, y ^F fe) contains the iso-

metric circles of Bjn and Bj* in its interior and γln contains Rx and R[

in its interior and is apart from γkn with a constant distance not de-

pending on n. We denote by ω* the #-ply connected region bounded by

γJn(X^j^g). For ω*,γkn and ^ l n, we use the same argument as in

the proof of Theorem 4. Then we arrive at the same contradiction.

Hence for 2 ^ j ^ g, l i m ^ p*n ^ lim^^^ g*Λ. Then by Lemma 6', λ% =

lim^.,^ ^ n , pfo = lim^^o. p% and g* = l im w _ q% determine loxodromic trans-

formations (2^j^g)f where p% and q% are the fixed points of Bjn.

In this case τf = lim^.,^ τ* e 52©, where r* is the point associated

with G*. For the proof, let G'n* = {B2n, ., Bgn}. Then by Chuckrow

[3], G'n* is a Schottky group for each n. Then since BJ0 = lining Bjn

(2 ^ j ^ ^) are loxodromic transformations by the above, the fixed points

of Bj0 are all distinct by Marden [5]. Furthermore limn^λfn= oo by

Lemma 7', so τ0* = l i m , ^ τ* is a "node". Our proof is now complete.

3-6. To illustlate our result we shall present an example of the

sequence {Bjn} which satisfies the assumption in Theorem 6. For brevity

we consider the case of genus g = 2.
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Set

r> (iΛ _ Vn2 + lz + n

nz + \n2 + 1

and

R M (V37 + 6)z* - W - 4, + V37 - 6 '

Let G* = {Bιn9 B2n}. Then G* is a Schottky group and

τ* = (2n2 + 1 + 2 ^ ^ ^ + " ! , -1,1,73 + 12^37,0,3) .

Thus

τ* = lim τ* = (oo, -1,1,73 + 12i/§7,0,3) .

Hence τf is a "node". Furthermore (?* satisfies the assumption in
Theorem 6.

With respect to this example, let us construct explicitly S, Sn, Dly Dln,
JP* and fn, which we constructed previously. We define S and Sn by
setting S = Ω(Gf)/Gf and Sn = fl(G*)/G*. We have the following iso-
metric circles:

Ifn:\z

and

/2V1:1^ — (V37 + 6)/4| = 1/4 .

Let ω* be the 4-ply connected region bounded by IfnJf^Jtn and I$r\
Give some fixed small positive number ε. We fix an integer nQ as
ε/2 > 2/n0. We set

and

Elnΰ:[{ί

U [{1

Eln: [{1

U [{1

./»<, < \z + (Vwo

./%„ < \z — (\/»o

./«• < \z + (Λ/»2 •

/% <\z — (vV -

+ i/«0)l} n {\z +

f l/n)|} Π {\z + 1

f i/»)i} n {|« - 1

1| < β/2}]

1| < β/2}]

•1 < ε/2}]

•1 < β/2}]
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for n > nQ. We define Dln by setting Dίn = π*(Eίn), where π* is the
natural projection from Ω(G*) onto Sn.

Next we define F* as follows. Let F* be the identity in the set

[{\z - 1| ^ ε/2} U {\z + 1| ^ ε/2}] Π ω* .

It is easily seen that there exists a q.c. mapping F* in Eίno with the
following boundary correspondences: F* = id. on \z — 1| = ε/2, F* = id.
on |« + 1| = ε/2,

F*(z) = (no/n)z + (l/w)(VήίTl - V i ? Π ) on /*0

and

F*(z) = (Wo/tt)s - (l/w)(VwΓFΪ - V ^ T T ) on J*;1 .

Then we extend the q.c. mapping F* to the whole Ω(G*) by using the
identity F^G*/*-1 = G*, and denote by the same letter F* the extended
mapping. It is easily seen that the modulus of the ring domain Dln

tends to oo as n to oo, i.e., lim^oo^ = 0 for the annulus Kln: {pιn < \z\
< 1} conformally equivalent to Dln. Furthermore we define a q.c. map-
ping F**o: ω?-»ω*0 as follows. It is easily seen that there exists a q.c.
mapping ί7*, with the following boundary correspondences, which has a
maximal dilatation D(F*0) = K for some positive constant K, F*o = id.
on / * , # * - i d . on I*r\Fl(z) = z/nQ + (VT - V^ΓΓDMo on /* and
F*0(z) — (z/n0) — (VΎ — Vn2

0 + l)/n0 on /fr1. Then we extend the q.c.
mapping to the whole Ω(Gf) by using the identity G* = F*0GfF*-\ and
denote by the same letter F*o the extended q.c. mapping. If we set
F% = F%F*Q, then F* is the desired q.c. mapping.

If we denote by TΓ* the natural projection from Ω(G?) onto S, then
we define /„ as the projection of F*, that is, fnπ* = ττ*F* is satisfied.
We define A by setting τr*F*-1(£r

1?Zo) = Dx.

Remark. As we see from the proof of Theorem 6, it seems that
the assumption in Theorem 6 is weakend considerably, although the
present one is sufficient for our purpose.

Conclusion. Give a compact Riemann surface S of genus g (g ^ 2).
Fix a Schottky group G such that Ω(G)/G = S. When we perform the
pinching deformation for S, the limit of a sequence of Schottky groups
representing the resulting surface Sn may be either (1) a cusp, (2) a
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"node" or (3) a point on d3@.

Remark. For the Teichmuller space T(Γ), on performing the pinch-
ing deformation, the group we get as the limit of quasi-Fuchsian groups
Γn is always a cusp (cf. Bers [2] and Sato [7]), where Γ is a fixed
Fuchsian group with U/Γ = S (£7: the upper half plane) and Ω(Γn)/Γn
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