ENSURING COMMUTATIVITY OF FINITE GROUPS

B. H. NEUMANN

To Laci Kovács on his 65th birthday

(Received 10 November 2000)

Communicated by R. A. Bryce

Abstract

Comments are made on the following question. Let m, n be positive integers and \mathcal{G} a finite group. Suppose that for all choices of a subset of cardinality m and of a subset of cardinality n in \mathcal{G} some member of the first commutes with some member of the second. Under what conditions on m, n is the group abelian?

2000 Mathematics subject classification: primary 20D99.

This note arose out of a discussion of a paper presented at AGRAM 2000 at the University of Western Australia by Howard Bell. 'Some setwise commutativity conditions for rings': since then Professor Bell has with Professor Abraham Klein found some interesting results related to the results below [1]. The question raised at AGRAM 2000 was:

Let \mathscr{G} be a finite group of order g and assume that however a set M of m elements and a set N of n elements of the group is chosen, at least one element of M commutes with at least one element of N (call this condition Comm). What relations between g, m, n guarantee that \mathscr{G} is abelian?

Clearly if one of M, N contains an element of the centre of \mathscr{G} or if M and N overlap, condition Comm is satisfied. Thus if m + n = g, or even only m + n = g - z + 1, where z is the order of the centre of \mathscr{G} , Comm is satisfied without \mathscr{G} having to be abelian. An example is every non-abelian group, the smallest being the S_3 of order 6: if M is chosen to consist of one or two elements of order 2, the two elements of order 3 together with the remaining elements or element of order 2 can be taken to form N,

^{© 2001} Australian Mathematical Society 0263-6115/2001 \$A2.00 + 0.00

showing that m = 1, n = 5 or m = 2, n = 4 are needed to ensure a group of order 6 is abelian. If we choose m = 1 [which is the most interesting case, anyway] and n = 5, Comm ensures the group is abelian, whatever g.

There are of course values of g such that all groups of that order are abelian. There is a recent characterisation of such 'abelian' numbers in Pakianathan and Shankar [2]: for such orders g we can choose m = n = 1. For the 'nilpotent' numbers of [2] that are not 'abelian' (because they are not cube-free), m = 1, n = 5 is again best possible as exemplified by the quaternion group or the dihedral group of order 8. In this case we can do a little better: while in general m = 2, n = 4 forces a group to be abelian, whatever its order, the case of the groups of order 8 is exceptional in that we need m = 2, n = 5 to force the group to be abelian. More generally, if $g = p^3$ for p a prime, m = p, $n = g - p^2 + 1$ will ensure commutativity. It is not very difficult to compute optimal values for m and n for other values of g to ensure commutativity, but sapienti sat.

References

- [1] H. E. Bell and A. A. Klein, 'Combinatorial commutativity and finiteness for rings, II', Preprint.
- [2] J. Pakianathan and K. Shankar, 'Nilpotent numbers', Amer. Math. Monthly 107 (2000), 631-634.

School of Mathematical Sciences Australian National University ACT 0200 Australia