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Abstract

Comments are made on the following question. Let m, n be positive integers and Sf a finite group.
Suppose that for all choices of a subset of cardinality m and of a subset of cardinality n in Sf some
member of the first commutes with some member of the second. Under what conditions on m, n is the
group abelian?
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This note arose out of a discussion of a paper presented at AGRAM 2000 at the
University of Western Australia by Howard Bell. 'Some setwise commutativity
conditions for rings': since then Professor Bell has with Professor Abraham Klein
found some interesting results related to the results below [1]. The question raised at
AGRAM 2000 was:

Let $ be a finite group of order g and assume that however a set M of m elements
and a set N of n elements of the group is chosen, at least one element of M commutes
with at least one element of N (call this condition Comm). What relations between
g, m, n guarantee that <£ is abelian?

Clearly if one of M, N contains an element of the centre of ̂  or if M and N overlap,
condition Comm is satisfied. Thus if m + n — g, or even only m + n — g — z + l,
where z is the order of the centre of &, Comm is satisfied without <3 having to be
abelian. An example is every non-abelian group, the smallest being the 53 of order 6:
if M is chosen to consist of one or two elements of order 2, the two elements of order 3
together with the remaining elements or element of order 2 can be taken to form Af,
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showing that m = 1, n — 5 or m = 2, n = 4 are needed to ensure a group of order
6 is abelian. If we choose m = 1 [which is the most interesting case, anyway] and
n = 5, Comm ensures the group is abelian, whatever g.

There are of course values of g such that all groups of that order are abelian. There
is a recent characterisation of such 'abelian' numbers in Pakianathan and Shankar [2]:
for such orders g we can choose m = n = 1. For the 'nilpotent' numbers of [2] that
are not 'abelian' (because they are not cube-free), m = 1, n = 5 is again best possible
as exemplified by the quaternion group or the dihedral group of order 8. In this case
we can do a little better: while in general m = 2, n = 4 forces a group to be abelian,
whatever its order, the case of the groups of order 8 is exceptional in that we need
m = 2, n = 5 to force the group to be abelian. More generally, if g = /?3 for p a
prime, m = p,n = g — p2 + \ will ensure commutativity. It is not very difficult to
compute optimal values for m and n for other values of g to ensure commutativity,
but sapienti sat.
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