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Log canonical thresholds of divisors on Fano manifolds

of Picard number 1

Jun-Muk Hwang

Abstract

Using a result of E. Viehweg, we study the behavior of the log canonical thresholds of
divisors along free rational curves. This leads to a bound on the log canonical thresholds
of divisors in terms of the degree of free rational curves on Fano manifolds of Picard
number 1.

1. Introduction

For a point y on a complex manifold Y and an effective divisor D on Y , the log canonical threshold
lcty(D) of D at y is defined by

lcty(D) := sup{rational number c > 0 : |f |−2c is locally integrable},
where f denotes the local defining function of D at y. This is a very important local invariant of
the divisor. See [Laz04, ch. 9] for other equivalent definitions and basic properties as well as many
applications of log canonical thresholds.

One of the motivations for the current work is the following result of Ein and Lazarsfeld
[EL97, 3.5].

Theorem 1. Let (A,Θ) be a principally polarized abelian variety. Then for any positive integer k
and D ∈ |kΘ|,

lctx(D) � 1
k

for each x ∈ A.

A principally polarized abelian variety is, among other things, a homogeneous projective variety
with a natural choice of a line bundle. It is natural to ask whether an analog of Theorem 1 holds
for other homogeneous projective varieties. In this paper we will prove the following analog of
Theorem 1 for rational homogeneous spaces.

Theorem 2. Let G/P be a rational homogeneous space of Picard number 1 and let L be the ample
generator of the Picard group of G/P . Then for any positive integer k and D ∈ |kL|,

lctx(D) � 1
k

for each x ∈ G/P.

As far as we know, this is new even when k = 1. For Grassmannians, Theorem 2 was proved in
[Hwa06]. The proof in [Hwa06] used Kapranov’s work on the derived category of coherent sheaves
on Grassmannians and vanishing theorems of Nadel and Demailly. This argument was modeled
on that of [EL97], which used Mukai’s work on the derived category of coherent sheaves on A
and Nadel’s vanishing theorem. This method seems very hard to generalize to arbitrary G/P .

Received 18 February 2006, accepted in final form 16 June 2006.
2000 Mathematics Subject Classification 14J45.
Keywords: log canonical thresholds, multiplier ideal sheaf, free rational curve.
This journal is c© Foundation Compositio Mathematica 2007.

https://doi.org/10.1112/S0010437X06002454 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X06002454


J.-M. Hwang

The method we will use in this paper is completely different. It is motivated by another problem.
To explain this, let us recall the following well-known conjecture on the degree of Fano manifolds.

Conjecture 1. Let X be a Fano manifold of Picard number 1. Then

(−KX)dimX � (dim X + 1)dim X .

Moreover, X is the projective space when the equality holds.

For dimX = 3, this follows from the classification of Fano threefolds (cf. [Isk80]). For dimX = 4,
this was proved in [Hwa03]. It is open for dimX � 5. A closely related problem is the following.

Conjecture 2. Let X be a Fano manifold of Picard number 1 and x ∈ X be a general point.
Then for any positive integer k and D ∈ |−kKX |,

multx(D) � 2k dim X.

The bound in Conjecture 2 is optimal and it is achieved when X is a hyperquadric and D is a
multiple of a singular hyperplane section. Conjecture 2 implies a slightly weaker form of Conjecture 1:
by Riemann–Roch, it gives the bound

(−KX)dimX � (2 dim X)dim X .

In [RC00], Conjecture 2 was proved under the additional assumption that the tangent bundle of X is
semi-stable. The semi-stability of the tangent bundle of X was verified when dim X � 6 in [Hwa98].
In higher dimension, the following result was proved in [Cam91], [KMM92] and [Nad91].

Theorem 3. Let X be a Fano manifold of Picard number 1 and x ∈ X be a general point. Then for
any positive integer k and D ∈ |−kKX |,

multx(D) � k(dim X) · (dim X + 1).

In this paper, we will prove the following, which can be regarded as half-way between
Conjecture 2 and Theorem 3.

Theorem 4. Let X be a Fano manifold of Picard number 1 and x ∈ X be a general point. Then for
any positive integer k and D ∈ | − kKX |,

lctx(D) � 1
k(dim X + 1)

.

Moreover, if the equality holds for some k and D, then X is the projective space.

In fact, there is a well-known relation (cf. [Laz04, 9.3.A]) between multx(D) and lctx(D) given
by the inequalities

1
multx(D)

� lctx(D) � dim X

multx(D)
.

These inequalities show that Theorem 4 implies Theorem 3, while Conjecture 2 implies a slightly
weaker form of Theorem 4, namely,

lctx(D) � 1
2k(dim X)

for each x ∈ X.

The fact that Conjecture 2 implies both Conjecture 1 and Theorem 4 in the weaker form where
dimX + 1 is replaced by 2dim X, seems to suggest that there may be a direct connection between
Conjecture 1 and Theorem 4. However, so far we are unable to find such a direct relation.

Both Theorem 2 and Theorem 4 are simple consequences of Theorem 5 below. Recall that a
rational curve C on a compact complex manifold X is free if, under the normalization f : P1 →
C ⊂ X, the pull-back f∗TX of the tangent bundle of X is numerically effective (nef).
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Theorem 5. Let X be a Fano manifold of Picard number 1 and C ⊂ X be a free rational curve.
Then there exists a Zariski dense open subset U ⊂ X determined by C such that, for any effective
divisor D on X and x ∈ U ,

lctx(D) � 1
C · D.

Theorem 5 is a consequence of the following more general result, combined with some well-known
facts about the geometry of free rational curves on Fano manifolds of Picard number 1.

Theorem 6. Let X be a compact complex manifold and C ⊂ X be a free rational curve. For any
effective divisor D on X, either lctx(D) � 1/(C · D) for each x ∈ C, or lctx(D) = lctx′(D) for
any two points x, x′ ∈ C.

The proof of Theorem 6 uses a result about log canonical thresholds, which we call the ‘product
theorem’ and explain in § 2. This result is just a slight variation of an old result of Viehweg in [Vie95].
In fact, the proof of [Vie95, Proposition 5.19] works verbatim to give our product theorem. The only
difference is that Viehweg stated his result in terms of his invariant e(D) in place of log canonical
thresholds. His invariant e(D) is different from the log canonical thresholds, but it is of the same
nature. While the log canonical threshold is defined as the supremum of rational numbers c making
|f |−2c integrable, Viehweg’s invariant is defined as the minimal positive integer N making |f |−1/N

integrable. Thus our contribution on the product theorem is just to formulate it in terms of log
canonical thresholds and highlight it by giving applications to Fano manifolds.

The name ‘product theorem’ originates from Nadel’s ‘product theorem’ in [Nad91, 2.4, 2.5],
which is the essential point in his proof of Theorem 3. In this sense, our proof of Theorem 4 follows
the line of thought of [Nad91]. Nadel’s product theorem is about the behavior of multiplicities of
a divisor on a fibered space along a fiber. Our product theorem is concerned with the behavior
of the log canonical thresholds in a similar setting. However their proofs are essentially different.
Also, it is rather remarkable that our product theorem gives the optimal bound for log canonical
thresholds in Theorem 4, while Nadel’s, up to now, cannot give the optimal bound for multiplicities
in Conjecture 2.

2. Product theorem

Given a line bundle L on a compact complex manifold Z with |L| �= ∅, define

lct(L) := inf
E∈|L|, z∈Z

lctz(E).

Product theorem. Let f : X → Y be a smooth projective morphism between two complex
manifolds. Let y ∈ Y be a point and Xy = f−1(y) be the fiber over y. Let D be an effective divisor
on X and let L be the restriction of the line bundle OX(D) to Xy. Then either lctx(D) � lct(L) for
each x ∈ Xy or lctx1(D) = lctx2(D) for any two points x1, x2 ∈ Xy.

As mentioned in the introduction, this is essentially proved by Viehweg in [Vie95, Proposi-
tion 5.19]. However, he formulated it in terms of his invariant e(D), which is different from log
canonical thresholds. Moreover, the terms used in [Vie95] do not seem to be widely known. For the
reader’s convenience, we will rewrite the proof in the language of [Laz04].

To start with, recall that the multiplier ideal sheaf of an effective Q-divisor D on a complex
manifold X is the ideal sheaf J (D) defined by

J (D) := {g ∈ OX : |g|2 · |f |−2 is locally integrable},
91
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where f is the multi-valued local holomorphic function defining D. Thus for an effective divisor D
and x ∈ X,

lctx(D) = sup{c ∈ Q : J (cD)x = Ox}.
We will use basic properties of multiplier ideal sheaves presented in [Laz04, ch. 9]. It is
interesting to note that many important results about multiplier ideal sheaves already appeared
in [Vie95], at least implicitly.

Lemma 1. Let f : X → Y be a smooth projective morphism between two complex manifolds.
Let y ∈ Y be a point and Xy = f−1(y) be the fiber over y. Let Γ be an effective divisor on X whose
support does not contain Xy. Let ∆ ⊂ Y be an effective Q-divisor with normal crossing support.
If c < lctx(Γ|Xy) for all x ∈ Xy, then

J (cΓ + f∗∆) = OX(−f∗[∆])

in a neighborhood of Xy.

Proof. If ∆ = 0, this follows from the behavior of multiplier ideal sheaves under restriction [Laz04,
9.5.1]. When ∆ �= 0, replacing [∆] by ∆− [∆], we may assume that the round-down [∆] is 0. Let Y1

be an irreducible component of ∆ with multiplicity µ < 1. Define ∆′ := ∆−µY1. Let X1 := f−1(Y1)
and consider f1 := f |X1 : X1 → Y1. By induction on dimension, we can assume that Lemma 1
holds for the morphism f1, the divisor Γ|X1 and the Q-divisor ∆′|Y1 with normal crossing support.
Thus we have J ((cΓ + f∗∆′)|X1) = OX1 in a neighborhood of Xy in X1. Then by the inversion of
adjunction [Laz04, 9.5.11],

J (cΓ + f∗∆) = J (cΓ + f∗∆′ + µX1) = OX

in a neighborhood of Xy in X.

The next lemma is precisely [Vie95, Claim 5.20]. We will omit the proof.

Lemma 2. Let f : X → Y be a smooth projective morphism between complex manifolds and D
be an effective divisor on X. Then there exists a smooth modification δ : Y ′ → Y and an effective
normal crossing divisor ∆ on Y ′ such that on the fiber product

X ′ η ��

g

��

X

f

��
Y ′ δ �� Y

the divisor Γ := η∗D − g∗∆ is effective and does not contain any fiber of g.

Lemma 3. Let f : X → Y and D be as in the product theorem. If c < lct(L) and J (cD)x1 = Ox1

for some x1 ∈ Xy, then J (cD)x2 = Ox2 for any x2 ∈ Xy.

Proof. Let us use the notation of Lemma 2. Since c < lct(L), we have c < lct(Γ|X′
y′

) for each

y′ ∈ δ−1(y). Thus by Lemma 1,

J (η∗(cD)) = J (cΓ + g∗(c∆)) = OX′(−g∗[c∆])

in a neighborhood of X ′
y′ for each y′ ∈ δ−1(y), thus in a neighborhood of η−1(Xy). By the birational

transformation rule for multiplier ideals in [Laz04, 9.2.33],

J (cD) = η∗(J (η∗(cD)) ⊗OX′(KX′/X)) = η∗(OX′(KX′/X − g∗[c∆]))

in a neighborhood of Xy. Since η is induced by the fiber product, the stalks of the sheaf on the right
hand side along a fiber of f cannot vary. This proves Lemma 3.
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Proof of the product theorem. Pick x2 ∈ Xy such that lctx(D) � lctx2(D) for all x ∈ Xy.
Suppose there exists x1 ∈ Xy such that lctx1(D) > lctx2(D). Let c be any positive rational number
satisfying

lctx1(D) > c > lctx2(D).

Then Lemma 3 says that c � lct(L). Since this is true for any choice of such c, we conclude that
lctx2(D) � lct(L).

Corollary 1. Let T be a complex manifold and D be an effective divisor in T × P1 such that,
for a general point t ∈ T , D has intersection number d with the curve {t} × P1. Then for any
to ∈ T , either lctx(D) � 1/d for each x ∈ {to} × P1, or lctx(D) = lctx′(D) for any two points
x, x′ ∈ {to} × P1.

Proof. It suffices to note that if X is a non-singular projective curve and L is a line bundle with
|L| �= ∅, then lct(L) = 1/degL.

3. Proofs of theorems

Proof of Theorem 6. Let Homfree(P1,X) be the space of free morphisms and

F : P1 × Homfree(P1,X) → X

be the evaluation morphism, as in [Kol96, II.3.5.4]. By [Kol96, II.3.5.4], Homfree(P1,X) is non-
singular and F is a smooth morphism. This implies, by [Laz04, 9.5.45], that, for each u ∈ P1 ×
Homfree,

lctu(F ∗D) = lctF (u)(D).

Thus Theorem 6 is a direct consequence of Corollary 1 applied to T = Homfree(P1,X).

Proof of Theorem 5. Denote by RatCurvesn(X) the space of rational curves on X, following [Kol96,
II.2]. Let K be a component of RatCurvesn(X) to which C belongs. By [Kol96, IV.4.14] applied
to the family P1 × K → K, there exists an open set W ⊂ X × X such that if (x1, x2) ∈ W , then
x1 and x2 can be connected by a connected chain of free rational curves belonging to K. Then we
choose U ⊂ X as a Zariski open subset in the image of the projection of W to the first factor.
Suppose that there exists a point x1 ∈ U with lctx1(D) < 1/(C ·D). We can choose a point x2 �∈ D
such that x1 and x2 can be connected by a connected chain of free rational curves belonging to K.
Applying Theorem 6 repeatedly, we get lctx2(D) = lctx1(D) < 1/(C · D), a contradiction.

Proof of Theorem 4. By [Kol96, IV.2.10], there exists a free rational curve C satisfying C ·(−KX ) �
dim X + 1. Thus the inequality in Theorem 4 follows from Theorem 5. On the other hand, if X
is different from the projective space, [CMS02] says that there exists a free rational curve C with
C · (−KX) � dim X. Thus the equality in Theorem 4 cannot hold.

Proof of Theorem 2. When X = G/P , there exists a free rational curve C satisfying C · L = 1
(e.g. [Kol96, V.1.15]). Thus Theorem 2 follows from Theorem 5 and the homogeneity of X.
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