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Abstract
This paper studies a hierarchical risk model where an accident can cause a combination of different types
of claims, whose sizes could be dependent. In addition, the frequencies of accidents that cause the different
combinations of claims are dependent. We first derive formulas for computing risk measures, such as the
Tail Conditional Expectation and Tail Variance of the aggregate losses for a portfolio of businesses. Then,
we present formulas for performing the associated capital allocation to different types of claims in the
portfolio. Themain tool we used is themoment (or size-biased) transform of themultivariate distributions.
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1. Introduction
Insurance companies typically write policies in multiple lines of business and each line of business
may cause claims of different types. For example, in auto insurance, as illustrated in Frees and
Valdez (2008), an accident can lead to any combination of the claims of the following three types:
(1) injury to the third party, (2) property damage (PD) to the third party, and (3) injury/PDs to
the policyholder. In insurance pricing, actuaries need to ensure that the aggregate premium level
for a portfolio of business is fair and adequate and that the premium for each type of risk coverage
reflects its contribution to the total risk of the portfolio. Therefore, it is important to accurately
evaluate the risk of the aggregate losses and allocate the total capital requirement to different
types of risks in the portfolio of business. To this end, effective modeling of the joint distribution
of losses from different types of risks is essential.

Multivariate aggregate loss models with different types of dependence structures have been dis-
cussed extensively in the literature. Some of them, for example, Hesselager (1996), Vernic (1999),
Walhin and Paris (2000), Cossette et al. (2012), and Kim et al. (2019), assumed that claim fre-
quencies are dependent but claim sizes are mutually independent and independent of the claim
frequencies. Others, such as Sundt (1999) and Sundt and Vernic (2004), assumed that the claim
number is univariate, but each claim can generate several types of losses whose sizes are depen-
dent. Models that allow dependence between claim frequencies and claim sizes have also been
developed recently. For example, Gschlößl and Czado (2007), Frees et al. (2011), and Garrido
et al. (2016) took a regression approach where the claim frequency is treated as an explanatory
variable in the regression model for the claim sizes; Boudreault et al. (2006), Cossette et al. (2008),
and Marri and Furman (2012) assumed that the inter-claim times and claim sizes are dependent;
Czado et al. (2012), Frees et al. (2016), Cossette et al. (2019), and Oh et al. (2020) employed bivari-
ate copulas to model the dependency relationship between the number of claims and the average
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claim amount; Shi and Zhao (2020) used a copula to model the relation between the frequency
and the individual severity directly; Yang and Shi (2019) proposed a multivariate framework for
pricing property insurance contracts with multiperil coverage in the longitudinal context by using
copulas to capture the dependence within and between perils.

In this paper, following Cummins and Wiltbank (1983) and Frees and Valdez (2008), we con-
sider a hierarchical risk model where an accident can cause a combination of different types of
claims, whose sizes could be dependent. In addition, the frequencies of accidents that cause the
different combinations of claims are dependent. As pointed out in Cummins andWiltbank (1983),
this structure of multivariate compound distribution modeling of risk explicitly considers the
intrinsic dependencies among the different components of the generating process. It is advan-
tageous to the traditional approach of pooling the data from the entire portfolio of risks to obtain
collective estimates of the frequency and severity parameters. Frees et al. (2009) provided statis-
tical tools to apply this hierarchical model to analyze the risk profile of either a single policy or a
portfolio of risks. It was argued that the model allows actuaries to “unbundle” insurance contracts
and price more primitive elements of insurance coverages.

It is usually challenging to compute the risk measures of compound distributions explicitly.
However, some results exist in the actuarial literature. For example, Cossette et al. (2012) used
a top-down approach to derive closed-form expressions for Tail Conditional Expectation (TCE)
based capital allocation for multivariate compound distributions; Kim et al. (2019) derived recur-
sive algorithms to compute TCE for the sum of dependent compound mixed Poisson variables
and to perform the associated capital allocation computation.

In this paper, we first derive formulas for evaluating TCE and Tail Variance (TV) of the aggre-
gate loss amount in the hierarchical multivariate risk model. Then, we provide explicit expressions
and computation methods for allocating the required capital to the different types of risks. Note
that the multivariate loss model and the corresponding capital allocation studied here pertain to
the portfolio of businesses level, not to the individual policyholder level. For the latter, data on the
characteristics of individual policyholders are needed, as illustrated in Frees et al. (2009).

In terms of methodology, we apply the method introduced by Furman and Landsman (2005),
Furman and Landsman (2006), and Furman and Zitikis (2008), which showed that tail moments
risk measures can be analyzed through the moment (size-biased) transform of distributions. The
theory of moment transformation has a long history and is widely used in statistics. For details,
one is referred to, for example, Patil and Ord (1976), Arratia and Goldstein (2010), and references
therein. Based on this method, Denuit (2020) presented explicit expressions for TCE of some
univariate compound distributions; Denuit and Robert (2022) illustrated how to apply moment
transform to analyze TCE of multivariate random variables. Ren (2022) derived formulas for TCE
and TV of multivariate compound models based on Sundt (1999), where claim frequency is one-
dimensional, and one claim can yield multiple dependent losses; Jiang and Ren (2022) provided
methods for computing the TCE and TV of the multivariate aggregate losses, where the claim
frequencies are dependent but the claim sizes are mutually independent and independent of the
claim frequencies.

The remainder of the paper is organized as follows. Section 2 provides some preliminary results
and definitions needed. Section 3 presents results for computing the hierarchical risk model’s
TCE and TV and performing the corresponding capital allocations. Section 4 provides numerical
examples with details of the computations and then extends the model by considering a case when
the distribution of the claim counts and the claim size are dependent. Section 5 concludes.

2. Models and definitions
We first introduce the hierarchical multivariate compound aggregate loss model studied in this
paper. Assume that an insurance policy covers K categories of risks, denoted by K = {1, · · · ,K}.
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An accident can cause different types of claims in combinations, h= (h1, . . . , hK)�, where the kth
coordinate hk equals to 1 if type k claim occurs and 0 otherwise.

Let M= {1, · · · ,M}, where M = 2K − 1 be the set of indexes of possible combinations that
include at least one claim. Form ∈M, letNm denote the number of accidents resulting in themth
combination of claims for a portfolio of policies during a time period. The random variables Nm,
m ∈M, can be dependent. Let N= (N1, · · · ,NM)� and denote its joint probability function by

pN(n)= Pr [N= n] ,
where n= (n1, · · · , nM)� ∈NM .

For a given claim combination m ∈M, let X(m) =
(
X(m),1, . . . , X(m),K

)� denote the random
vector of claim sizes, where X(m),k for k= 1, . . . ,K represents the claim size of type k risk in this
combination. X(m),k = 0 if the mth combination does not include a type k claim. Since the claim
size vector X(m) is generated by one accident, its elements are stochastically dependent. However,
since the loss size vectors X(1), . . . ,X(M) result from different accidents, we assume that they are
mutually independent and are independent of N. A slight extension of the model where N and
(X(1), . . . ,X(M)) are dependent is considered in Section 4.2 of the paper.

For the portfolio of policies, let the aggregate amount of the K types of claims resulting from
themth combination be represented by the vector

SNm = (
SNm,1, . . . , SNm,K

)� =
Nm∑
i=1

X(m)i =
Nm∑
i=1

(
X(m)i,1, . . . , X(m)i,K

)� ,

where X(m)i, i≥ 1 are independent copies of X(m).
Let

SN = (
SN1 , . . . , SNM

)
be the K ×M dimensional compound loss matrix. Equivalently,

SN =

⎡⎢⎢⎣
SN1,1 SN2,1 · · · SNM ,1
SN1,2 SN2,2 · · · SNM ,2
...

...
. . .

...

SN1,K SN2,K · · · SNM ,K

⎤⎥⎥⎦ , (2.1)

where the element SNm,k represents the aggregate amount of the type k claims that result from the
claim combinationm. Then, the total amount of claims of all types for the portfolio of business is
given by

S• =
M∑

m=1

K∑
k=1

SNm,k.

Example 2.1. Suppose that an auto insurance policy covers two types of risks: PD and bodily
injury (BI). An accident can cause a PD claim only, a BI claim only, or a claim that combines both
PD and BI. Then we may denote the type of risk by K = {1, 2}; and the possible combinations of
claims caused by an accident can be represented by three two-dimensional vectors h1 = (1, 0)�,
h2 = (0, 1)�, and h3 = (1, 1)�. Then we haveM= {1, 2, 3}, and the numbers of claims of the three
combinations of risk types, i.e., PD only, BI only, and both PD and BI, incurred in a time period
is given by N= (N1,N2,N3)�. The claim sizes are given by X(1) = (X(1),1, 0)�, X(2) = (0, X(2),2)�
and X(3) = (X(3),1, X(3),2)�, respectively.

For this case, the multivariate aggregate loss matrix SN is given by

SN =
[
SN1,1 0 SN3,1
0 SN2,2 SN3,2

]
=
[∑N1

i=1 X(1)i,1 0
∑N3

i=1 X(3)i,1
0

∑N2
i=1 X(2)i,2

∑N3
i=1 X(3)i,2

]
.
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For q ∈ (0, 1), let sq denote the Value-at-Risk (VaR) of S• at the 100q% confidence level.
The TCE at level q of S• is defined by

TCES•(q)=E[S•|S• > sq] .
According to the TCE-based capital allocation rule (Dhaene et al., 2008), the total capital

requirement in a portfolio of business is TCES•(q) for some q and the part allocated to the type k
risk in the portfolio is

TCES•,k(q)=
M∑

m=1
E[SNm,k|S• > sq], k ∈K . (2.2)

The capital required for themth combination of risk type is given by

TCESNm ,•(q)=
K∑

k=1

E[SNm,k|S• > sq], m ∈M . (2.3)

Note that
K∑

k=1

TCES•,k(q)=
M∑

m=1
TCESNm ,•(q)= TCES•(q) .

Likewise, if the total required capital is determined by the TV of S• at probability level q, which
is defined by (Furman and Landsman, 2006)

TVS•(q)=Var[S•|S• > sq] ,
then, according to the TV-based capital allocation rule, the capital allocated to the type k risk is
given by

TVS•,k(q)=
M∑

m=1
Cov[(SNm,k, S•)|S• > sq] , (2.4)

and the capital required for themth combination of risk type is given by

TVSNm ,•(q)=
K∑

k=1

Cov[(SNm,k, S•)|S• > sq] . (2.5)

Notably,
K∑

k=1

TVS•,k(q)=
M∑

m=1
TVSNm ,•(q)=Var[S•|S• > sq] .

For more details about the TCE- and TV-based capital allocation, one can refer to, for exam-
ple, Cummins (2000), Dhaene et al. (2008), Furman and Zitikis (2008), and references therein.
We note that other frameworks of risk measures exist in the literature. As an example, Furman
et al. (2017) proposed Gini-type risk measures and developed the corresponding capital alloca-
tion rules. Notably, this framework requires only finiteness of the first moment of the underlying
random variable.

In the next section, we derive formulas for computing the TCE and TV risk measures of the
proposed multivariate compound loss model and performing the associated capital allocation.
The main tool we use is the concept of moment (size-biased) transforms, which is widely used in
statistics. For detailed studies of the moment transforms, one is referred to, for example, Patil and
Ord (1976), Arratia and Goldstein (2010), Furman and Landsman (2005), Denuit (2020), Denuit
and Robert (2022), Mohammed et al. (2021), and Furman et al. (2021).
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For completeness of this paper, we provide definitions for the size-biased transform of
univariate and multivariate random variables in the following.

Definition 2.1. Consider a non-negative random variable X with the distribution function FX and
moments E[Xα]<∞ for some positive integer α. A random variable X̃α is said to be a copy of the
αth moment transform of X if its cumulative distribution function (c.d.f.) is given by

FX̃α (x)=
∫ x
0 tαdFX(t)
E[Xα]

= E[XαI(X ≤ x)]
E[Xα]

, x≥ 0.

The first-moment transform ofX is commonly referred to as the size-biased transform. It is simply
denoted by X̃.

Definition 2.2. Consider a random vector X= (X1, . . . , XK)� with the c.d.f. FX and moments
E[Xαk ]<∞ and E[Xα1k1 X

α2
k2 ]<∞ for some k, k1, k2 ∈ {1, . . . ,K} and non-negative integers, α, α1,

and α2.
The kth component αth moment transform of X is any random vector X̃α [k] with the c.d.f.

FX̃α [k] (x)=
∫ x1
0 . . .

∫ xK
0 tαk dFX(t1, . . . , tK)

E[Xαk ]
= E[Xαk I(X≤ x)]

E[Xαk ]
, x≥ 0 ,

where x= (x1, . . . , xK)�.
The (k1, k2)th component, (α1, α2)th moment transform of X is any random vector X̃α1,α2

[k1,k2]

with the c.d.f.

F
˜Xα1,α2

[k1,k2] (x)=
∫ x1
0 . . .

∫ xK
0 tα1k1 t

α2
k2 dFX(t1, . . . , tK)

E[Xα1k1 X
α2
k2 ]

= E[Xα1k1 X
α2
k2 I(X≤ x)]

E[Xα1k1 X
α2
k2 ]

, x≥ 0 .

The kth component first-moment transform of X is denoted as X̃[k], and the (k1, k2)th
component (1, 1)th moment transform of X is denoted as X̃[k1,k2].

For discrete distributions, following Patil and Ord (1976), we consider the factorial moment
transform. For a positive integer I, define

I(α) =
{
I(I − 1) . . . (I − α+ 1), if α ≤ I

0, otherwise .

Then we have

Definition 2.3. Consider a non-negative discrete random variable N with the probability mass func-
tion (p.m.f.) pN. A random variable Ñ(α) is said to be a copy of the αth factorial moment transform
of N if its p.m.f. is given by

pÑ(α) (n)= E[N(α)I(N = n)]
E[N(α)]

= n(α)pN(n)
E[N(α)]

, n≥ 0 .

The first factorial moment transform of N is denoted by Ñ.

Definition 2.4. Consider a vector of discrete random variables N= (N1, . . . ,NK)� having the
p.m.f. pN(n).

The kth component, αth moment transform of N is any random vector Ñ(α)[k] with p.m.f.

p
Ñ(α)[k]

(n)= n(α)k pN(n)
E[Nαk ]

= E[N(α)
k I(N= n)]
E[Nαk ]

, n≥ 0 .
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The (k1, k2)th component, (α1, α2)th moment transform of N is any random vector

Ñ(α1),(α2)
[k1,k2]

with the p.m.f.

p
˜N(α1),(α2)

[k1,k2] (n)=
n(α1)k1 n(α2)k2 pN(n)

E[N(α1)
k1 N(α2)

k2 ]
= E[N(α1)

k1 N(α2)
k2 I(N= n)]

E[N(α1)
k1 N(α2)

k2 ]
, n≥ 0 .

The kth component, first-moment transform of N is denoted as Ñ[k], and the (k1, k2)th
component (1, 1)th moment transform of N is denoted as Ñ[k1,k2].

3. Risk measures and capital allocation for the multivariate compound loss model
In this section, we present results for calculating the risk measures and capital allocation for the
multivariate compound loss model represented by the matrix SN defined in equation (2.1). To this
purpose, we define the (k,m)th (kth row,mth column) component, first-moment transform of SN
to be a matrix of random variables S̃N[m]

[k]
, which has the same size as SN and the c.d.f.

F
˜SN[m]

[k] (s)= E[SNm,kI(SN ≤ s)]
E[SNm,k]

,

where s is a matrix of non-negative constants

s=
⎡⎢⎣ s1,1 · · · sM,1

...
. . .

...

s1,K · · · sM,K

⎤⎥⎦ ,

and the ≤ operation is defined piecewisely.
Then, following Proposition 1 of Furman and Landsman (2005), Proposition 3.1 of Denuit and

Robert (2022), or Lemma 2.1 in Jiang and Ren (2022), we have, form ∈M and k ∈K,

E[SNm,k|S• > sq]=E[SNm,k]
Pr (S̃•m[k]

> sq)
Pr (S• > sq)

, (3.1)

where

S̃•m[k] =
M∑
i=1

K∑
j=1

S̃N[m]
[k]
i,j

and S̃N[m]
[k]
i,j is the i, jth element of S̃N[m]

[k]
.

In addition, define the [(k1,m1), (k2,m2)]th components joint moment transform SN to be a

random matrix ˜SN[m1,m2]
[k1,k2]

with c.d.f.

F
˜SN[m1,m2]

[k1,k2] (s)=
E[SNm1 ,k1SNm2 ,k2I(SN ≤ s)]

E[SNm1 ,k1SNm2 ,k2 ]
.

Then, form1,m2 ∈M and k1, k2 ∈K,

E[SNm1 ,k1SNm2 ,k2 |S• > sq]=E[SNm1 ,k1SNm2 ,k2 ]
Pr (S̃•m1,m2[k1,k2] > sq)

Pr (S• > sq)
, (3.2)
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where

S̃•m1,m2[k1,k2] =
M∑
i=1

K∑
j=1

˜SN[m1,m2]
[k1,k2]
i,j

and ˜SN[m1,m2]
[k1,k2]
i,j is the (i, j)th element of ˜SN[m1,m2]

[k1,k2]
.

Therefore, together with Equations (2.2) to (2.5), it is seen that if we can compute the distribu-
tion function of S•, S̃•m[k] and S̃•m1,m2[k1,k2], then the TCE and TV of S• can be determined and
the associated capital allocation can be performed.

To determine the distribution of S•, S̃•m[k], and S̃•m1,m2[k1,k2], we need the distribution
functions of SN, S̃N[m]

[k]
, and ˜SN[m1,m2]

[k1,k2]
, for which we have the following results.

Theorem 3.1. For m ∈M, let 1[m] denote an M dimensional vector with the mth element being
one and all others zero. Let

L[m] = Ñ[m] − 1[m] ,

and

SL[m] =
(
SL[m]

1
, . . . , SL[m]

M

)
,

where

SL[m]
i

=
L[m]
i∑
j=1

X(m)j =
L[m]
i∑
j=1

(
X(m)j,1, . . . , X(m)j,K

)� =
(
SL[m]

i ,1, . . . , SL[m]
i ,K

)�

and L[m]
i , i ∈M, is the ith element of L[m]. Then, for k ∈K,

S̃N[m]
[k] d= SL[m] + X̃(m)1

[k] × 1[m]� , (3.3)

where X̃(m)1
[k]

is an independent copy of the kth component, first-moment transform of X(m).
Further, let

L(2)[m] = Ñ(2)[m] − 2× 1[m] ,

then, for k1, k2 ∈K,

Pr
(
S̃N[m,m]

[k1,k2] ≤ s
)

= E[Nm]E[X(m)1,k1X(m)1,k2 ]
E[SNm,k1SNm,k2 ]

Pr
(
SL[m] + X̃(m)1

[k1,k2] × 1[m]� ≤ s
)

(3.4)

+ E[N(2)
m ]E[X(m)1,k1 ]E[X(m)2,k2 ]

E[SNm,k1SNm,k2 ]
Pr
(
SL(2)[m] + (X̃(m)1

[k1] + X̃(m)2
[k2])× 1[m]� ≤ s

)
,

where X̃(m)1
[k1] and X̃(m)2

[k2] are copies of the first-moment transform of X(m), and X̃(m)1
[k1,k2] is a

copy of the (k1, k2)th component (1,1)th moment transform ofX(m). The random variables X̃(m)1
[k1],

X̃(m)2
[k2], X̃(m)1

[k1,k2], and X(m) are mutually independent.
In addition, for m1,m2 ∈M and m1 �=m2, let

L[m1,m2] = Ñ[m1,m2] − 1[m1] − 1[m2],
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then

˜SN[m1,m2]
[k1,k2] d= SL[m1,m2] + X̃(m1)1

[k1] × 1[m1]� + X̃(m2)1
[k2] × 1[m2]�. (3.5)

The proof of this theorem is provided in the appendix of the paper.

Remark 3.1. Equation (3.4) shows that the distribution of S̃N[m,m]
[k1,k2]

is a mixture of

SL[m] + X̃(m)1
[k1,k2] × 1[m]�

and

SL(2)[m] + (X̃(m)1
[k1] + X̃(m)2

[k2])× 1[m]�,

with weights

E[Nm]E[X(m)1,k1X(m)1,k2 ]
E[SNm,k1SNm,k2 ]

and

E[N(2)
m ]E[X(m)1,k1 ]E[X(m)2,k2 ]

E[SNm,k1SNm,k2 ]
,

respectively.

Remark 3.2. If one accident can only give rise to one type of claim, then M=K and the claim
size variables are univariate. In this case, Theorem 3.1 was reduced to Theorem 3.1 by Jiang and
Ren (2022). On the other hand, if the claim number random vectorsN is univariate and the claim
size random vector contains all risk types, Theorem 3.1 reduces to Theorem 3 in Ren (2022).

We summarize the procedures for performing the capital allocation computation as follows:

Computation Procedure 3.1.
Step 1. Determine the distributions of N, L[m], and L[m1,m2] for m,m1,m2 ∈M. Some commonly

used distribution functions of N, such as multinomial, additive common shock, and com-
mon Poisson mixture, were studied in the literature by, for example, Hesselager (1996) and
Kim et al. (2019). In these cases, as shown by Jiang and Ren (2022), the distributions of L[m]

and L[m1,m2] are in fact mixture of some distributions in the same family as N and can be
conveniently computed.

Step 2. Determine the distributions of SN, SL[m] , and SL[m1,m2] for m,m1,m2 ∈M. When the distri-
bution ofN is as described in Step 1, this can be implemented by using the recursive methods
introduced by Hesselager (1996) and Kim et al. (2019). Alternatively, the Fast Fourier trans-
form (FFT) method, as discussed by Robertson (1992) and Wang (1998), can be applied if
the characteristic function of SN, SL[m] , and SL[m1,m2] for m,m1,m2 ∈M can be determined.
This is possible if the characteristic functions of N (therefore L’s) and X(m) are known. For
the cases discussed in this paper, both methods can be applied. We choose to use the FFT
method since it can be implemented conveniently using software such as R and Matlab.

Step 3. Determine the distributions of X(m), X̃(m)1
[k]
, and X̃(m)1

[k1,k2] for m ∈M and k, k1, k2 ∈
K. The probability density function (p.d.f.) of X̃(m)1

[k]
and X̃(m)1

[k1,k2] for m ∈M and
k, k1, k2 ∈K can be determined by applying Definition 2.2 for the continuous case and
Definition 2.4 for the discrete case.
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Step 4. Determine the distributions of S̃N[m]
[k]

and ˜SN[m1,m2]
[k1,k2]

for m,m1,m2 ∈M and
k, k1, k2 ∈K. This can be done by applying Theorem 3.1. The required convolutions can
be computed using the FFT method.

Step 5. Determine the distributions of S•, S̃•m[k], and S̃•m1,m2[k1,k2] for m,m1,m2 ∈M and
k, k1, k2 ∈K. The FFT of the distribution of S•, S̃•m[k], and S̃•m1,m2[k1,k2] is given by the

diagonal term of the FFT of distributions of SN, S̃N[m]
[k]
, and ˜SN[m1,m2]

[k1,k2]
. Their dis-

tributions can be obtained using the one-dimensional inverse Fast Fourier transformation
(IFFT).

Step 6. Determine the TCE- and TV-based capital allocations. The TCE- and TV-based capital
requirement and the capital allocation can be determined by applying Equations (3.1) and
(3.2).

Remark 3.3. Notice from equations (3.1) and (3.2) that in calculating TCE, TV, and the associate
capital allocation, we only need the distribution of univariate random variables S•, S̃•m[k], and
S̃•m1,m2[k1,k2], not the whole joint distributions. Consequently, when computing their distributions
by applying the FFT method, we do not need to apply multi-dimensional IFFT to the array of the

FFT of SN, S̃N[m]
[k]
, and ˜SN[m1,m2]

[k1,k2]
. Instead, we only need to apply one-dimensional IFFT to

the diagonal terms to obtain the distribution of the sums.

4. Numerical examples
In this section, we illustrate how to apply the formulas derived in last section to compute the
risk measures and to perform the capital allocations for the proposed multivariate aggregate loss
models.

4.1 Themultivariate aggregate claimmodel
In this subsection, we provide the general structure of the model that will be used in the numerical
examples. LetW be a counting random variable that follows NB(r, β) distribution with probability
mass function

pW(w)=
(
r +w− 1

w

)(
β

1+ β

)w ( 1
1+ β

)r
, w≥ 0 .

Conditional on W =w, let the claim number vector N= (N1, . . . ,NM)� follow a multinomial
distribution with parameters (w, q1, . . . , qM). That is,

Pr (N= n|W =w)= w!
n1!n2! . . . nM!q

n1
1 qn22 . . . qnMM , n1 + n2 + . . .+ nM =w .

This model was introduced by Hesselager (1996), and Jiang and Ren (2022) denoted the uncondi-
tional distribution of N by HMN(W, q1, . . . , qM). Regression analysis of this model was provided
by Frees et al. (2009).

We could easily obtain that
E[Nm]=E[W]qm = rβqm, m ∈M ,

E[N(2)
m ]=E[W(2)]q2m = r(r + 1)β2q2m, m ∈M ,

and
E[Nm1Nm2 ]=E[W(2)]qm1qm2 = r(r + 1)β2qm1qm2 , m1,m2 ∈M, m1 �=m2 .
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10 Dechen Gao and Jiandong Ren

The joint p.g.f. of N is

PN(z1, . . . , zM)= [
1− β(q1z1 + . . .+ qMzM − 1)

]−r .

As shown in Theorem 4.1 of Jiang and Ren (2022), for m,m1,m2 ∈M and m1 �=m2, we
have

L[m] = Ñ[m] − 1[m] ∼HMN(W̃ − 1, q1, . . . , qM) ,

L(2)[m] = Ñ(2)[m] − 2× 1[m] ∼HMN(W̃(2) − 2, q1, . . . , qM) ,

and

L[m1,m2] = Ñ[m1,m2] − 1[m1] − 1[m2] ∼HMN(W̃(2) − 2, q1, . . . , qM) .

In addition, W̃ − 1 follows NB(r + 1, β) distribution, and W̃(2) − 2 follows NB(r + 2, β) dis-
tribution. Therefore, the distribution of L[m], L(2)[m], and L[m1,m2] is all in the same family
as N.

For claim severity, we assume that if a claim combinationm only consists of a type k ∈K claim,
then its size follows a Poisson distribution with mean ak. Then we have

E[X(m),k]= ak,

and

E[X2
(m),k]= ak + a2k.

If a claim combination m consists of non-zero claims of types {k1, . . . , kh}, then the joint distri-
bution of the claim sizes is assumed to be a common Poisson mixture. That is, conditional on
a mixing variable �= λ, for j= 1, . . . , h, the size of type kj claim follows a Poisson distribution
with mean bkjλ. Further, we assume� follows a gamma distribution with shape parameter α and
p.d.f.

f�(λ)= ααλα−1e−αλ

�(α)
.

Consequently, E[�]= 1 and for i, j ∈ {1, . . . , h} and i �= j, we have

E[X(m),kj]= bkj ,

E[X2
(m),kj]= bkj +

α + 1
α

b2kj ,

E[X(m),kiX(m),kj]=
α + 1
α

bkibkj .

In addition, for claim combinationsm,m1,m2 ∈M,m1 �=m2, and k1, k2 ∈K, we have

E[SNm,k1SNm,k2 ]=E[Nm]E[X(m),k1X(m),k2 ]+E[N(2)
m ]E[X(m),k1 ]E[X(m),k2 ] ,

and

E[SNm1 ,k1SNm2 ,k2 ]=E[Nm1Nm2 ]E[X(m1),k1 ]E[X(m2),k2 ] .

Let

ψSN(t)=E
[
exp(i · tr(t�SN))

]
,
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where

t=
(
(t1,1, . . . , tK,1)�, . . . , (t1,M , . . . , tK,M)�

)
,

denote the characteristic function (c.f.) of SN. Let PN( · ) denote the probability generating
function (p.g.f.) of N and φX(m)( · ) the c.f. of X(m). Then

ψSN(t)=E

⎡⎣exp
⎛⎝i

M∑
m=1

K∑
k=1

tk,m
Nm∑
j=1

X(m)j,k

⎞⎠⎤⎦
=E

⎡⎣ M∏
m=1

Nm∏
j=1

exp

(
itk,m

K∑
k=1

X(m)j,k

)⎤⎦=E

⎡⎣E
⎡⎣ M∏
m=1

Nm∏
j=1

exp

(
itk,m

K∑
k=1

X(m)j,k

) ∣∣∣∣∣N
⎤⎦⎤⎦

=E

⎡⎣ M∏
m=1

Nm∏
j=1

E

[
exp

(
itk,m

K∑
k=1

X(m)j,k

)]⎤⎦=E

⎡⎣ M∏
m=1

(
E

[
exp

(
itk,m

K∑
k=1

X(m),k

)])Nm
⎤⎦

=PN
(
φX(1)(t1,1, . . . , tK,1), . . . , φX(M)(t1,M , . . . , tK,M)

)
= [

1− β
(
q1φX(1)(t1,1, . . . , tK,1)+ . . .+ qMφX(M)(t1,M , . . . , tK,M)− 1

)]−r .

The c.f. of SL[m] , SL(2)[m] , and SL[m1,m2] can be derived similarly. Specifically,

ψSL[m] (t)=
[
1− β

(
q1φX(1)(t1,1, . . . , tK,1)+ . . .+ qMφX(M)(t1,M , . . . , tK,M)− 1

)]−(r+1) ,

and

ψS
L(2)[m] (t)=ψSL[m1,m2]

(t)

= [
1− β

(
q1φX(1)(t1,1, . . . , tK,1)+ . . .+ qMφX(M)(t1,M , . . . , tK,M)− 1

)]−(r+2) .

With the above, all steps in computation procedure 3.1 can be carried out, and the risk analysis
of SN can be performed.

We remark that the selection of the distribution of N and X(m) is arbitrary in this section.
Other distributions of N and X(m) can be used as long as their moments, characteristic function,
and moment transforms can be evaluated.

4.1.1 An example with two types of risks
We apply the setting in Example 2.1 where two types of claims, PD and BI, are considered. Recall
that the claim number vector isN= (N1,N2,N3)� and the claim sizes beX(1) = (X(1),1, 0)�,X(2) =
(0, X(2),2)�, and X(3) = (X(3),1, X(3),2)�, respectively.

We assume that N∼HMN(W, q1 = 0.9, q2 = 0.02, q3 = 0.08) andW ∼NB(r = 10, β = 1).
Let X(1),1 ∼ Poi(a1 = 1), X(2),2 ∼ Poi(a2 = 5), and X(3) follow a common Poisson mixture,

where conditional on �= λ, X(3),1 ∼ Poi(1.2λ) and X(3),2 ∼ Poi(6λ), and � follows a gamma
distribution with shape parameter α = 2 and mean one.

These parameter values are selected hypothetically to reflect the fact that accidents that cause
only PDs usually have high frequency and low severity; it is unlikely (q2 = 0.02) that an acci-
dent causes BI but no PDs; accidents that cause both BI and PDs have low frequency and high
severity. Note that we assume discrete distributions for the claim sizes for simplicity. If con-
tinuous distributions are assumed, they need to be discretized to apply the FFT or recursive
methods.

The proportions of capital allocated to the two types of risks according to TCE with selected
values of q in (0, 1) are plotted in Figure 1, panel (a). It shows that the proportion of risk capital
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The proportion of capital allocated under TCE

(a)

(c)

(b)

(d)

The proportion of capital allocated under TV

The amount of capital allocated under TCE The amount of capital allocated under TV

Figure 1. The proportions and amounts of capital allocated to the two types of risks according to TCE and TV criteria.

allocated to PD (BI) claims decreases (increases) with q. When q is small, more capital is allocated
to PD claims, whereas more risk capital is allocated to BI claims when q is large.

The proportions of capital allocated according to TV are shown in panel (b) of Figure 1. We
observe that when q is small, the proportion allocated to BI claims is a decreasing function of q,
and when q is large, the proportion allocated to BI claims increases with q. The opposite pattern
is observed for PD claims.

The amounts of capital allocated to the two types of risks according to both TCE and TV criteria
increase with q, as shown in panels (c) and (d) of Figure 1.

Figure 2 compares the proportions of capital allocated to the two types of risks according to
TCE and TV criteria obtained by using the moment transform method proposed in this paper
and those by using the Monte Carlo simulation (with 107 runs). It shows that the results based on
the moment transform are accurate. We note that the moment transformmethod takes much less
computation time than the Monte Carlo simulation.

The capital allocation to the three combinations of risk types according to TCE and TV criteria
can be performed following the same procedure. To avoid redundancy, we omit the analysis here.

Tables 1 and 2 show the numerical values of the amounts and proportions of capital allocated
to the two types of risk according to TCE and TV criteria for the HMN models under different
values of α, which is the parameter of the mixing random variable � for X(3) = (X(3),1, X(3),2).
Since Var(X(3),1)= b1 + b21/α, Var(X(3),2)= b2 + b22/α, and

r(X3, X4)= Cov(X3, X4)√
Var(X3)

√
Var(X4)

= b1b2/α√
b1 + b21/α

√
b2 + b22/α

=
√

b1b2
α2 + (b1 + b2)α+ b1b2

,
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Table 1. Comparison of the amounts of capital allocated to the two risk types under Tail Conditional
Expectation (TCE) criterion

q= 0.995 sq TCES•,1 (q) TCES•,2 (q) TCES• (q)
TCES•,1 (q)
TCES• (q)

TCES•,2 (q)
TCES• (q)

α=0.1 151 41.6 157.1 198.7 21.0% 79.0%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α=1 64 24.0 49.8 73.8 32.5% 67.5%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α=10 51 24.2 32.6 56.8 42.7% 57.3%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α→ ∞ 49 24.2 30.3 54.5 44.5% 55.5%

Table 2. Comparison of the amounts and proportions of capital allocated to the two risk types under Tail
Variance (TV) criterion

TVS•,1 (q) TVS•,2 (q) TVS• (q)
TVS•,1 (q)
TVS• (q)

TVS•,2 (q)
TVS• (q)

α=0.1 8794.7 33920.4 42715.0 20.6% 79.4%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α=1 1793.8 3794.1 5587.9 32.1% 67.9%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α=10 1386.3 1877.0 3263.3 42.5% 57.5%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α→ ∞ 1328.7 1667.6 2996.3 44.3% 55.7%

Figure 2. Comparison of the simulated and theoretical results.

we see that the variance of X(3),1 and X(3),2 and their correlation increases as α decreases. In par-
ticular, when α→ ∞, X(3),1, and X(3),2 are uncorrelated; when α→ 0, the corelation coefficient
approaches to one.

From Tables 1 and 2, we observe that larger variance of and stronger dependence betweenX(3),1
andX(3),2 lead to greater values of VaR and TCE of the total losses and higher proportion of capital
allocated to BI risks.

4.1.2 An example with three types of risks
In this subsection, we consider the automobile insurance claim model discussed by Frees and
Valdez (2008), in which three types of claims, own damage (OD), third-party property (TPP),
and third-party injury (TPI), are considered. An accident can cause any combination of the three
types of claims with proportions shown in Table 3. Frees and Valdez (2008) proposed a hierarchi-
cal, three-component (loss frequency, severity, and dependence) regression model to analyze this
highly complex data structure.
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Table 3. Possible combinations and their occurrence frequencies

Combination m Frequency

TPI 1 0.4%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OD 2 73.2%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TPP 3 12.3%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TPI & OD 4 0.3%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TPI & TPP 5 0.1%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OD & TPP 6 13.5%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TPI & OD & TPP 7 0.2%

In this example, we study the risk measure and capital allocation problem for the model. We
assume that the vector of the number of claim combinations is given by

N= (N1,N2, . . . ,N7)� ∼HMN(W, q1, . . . , q7),

where W ∼NB(r = 10, β = 1), with q1 = 0.004, q2 = 0.732, q3 = 0.123, q4 = 0.003, q5 = 0.001,
q6 = 0.135, q7 = 0.002. The claim size vectors are denoted by X(1) = (X(1),1, 0, 0)�, X(2) =
(0, X(2),2, 0)�, X(3) = (0, 0, X(3),3)�, X(4) = (X(4),1, X(4),2, 0)�, X(5) = (X(5),1, 0, X(5),3)�, X(6) =
(0, X(6),2, X(6),3)�, and X(7) = (X(7),1, X(7),2, X(7),3)�.

Frees and Valdez (2008) fitted the claim sizes by the generalized beta of the second kind (GB2)
distribution and modelled their dependence by multivariate t-copula. Here, for illustration of our
method, we simply assume that X(1),1 ∼ Poi(a1), X(2),2 ∼ Poi(a2), X(3),1 ∼ Poi(a3), and the non-
zero elements of X(4), X(5), X(6), X(7) follow common Poisson mixtures. Specifically, let �i for
i= 1, 2, 3, 4 assumed to be independent; all follow a gamma distribution with shape parameter
α = 2 and mean one. Conditional on�1 = λ1, X(4),1 and X(4),2 are independent Poisson variables
Poi(b1λ1) and Poi(b2λ1); conditional on �2 = λ2, X(5),1 and X(5),3 are independent Poisson vari-
ables Poi(b1λ2) and Poi(b3λ2); conditional on �3 = λ3, X(6),2 and X(6),3 are independent Poisson
variables Poi(b2λ3) and Poi(b3λ3); and conditional on �4 = λ4, X(7),1, X(7),2, and X(7),3 are inde-
pendent Poisson variables Poi(b1λ4), Poi(b2λ4), and Poi(b3λ4). The parameter values are set to be
a1 = 5, a2 = 1, a3 = 0.8, b1 = 6, b2 = 1.2, and b3 = 0.96.

The proportions and amounts of capital allocated to the three types of risks according to
TCE and TV with selected values of q are plotted in Figure 3. As we can see, the pattern for
TPI (OD) is similar to BI (PD) in the last example, and the pattern for TPP is somewhat in the
middle.

Remark 4.1. Applying simulation methods to estimate risk measures and compute capital allo-
cations for this complex hierarchical risk model can be time-consuming and/or inaccurate. Our
proposed method, based on moment transform and FFT, can solve the problem efficiently. This
is especially true because, as pointed out in Remark 3.3, we do not need to apply multivariate
IFFT to obtain the joint distribution of the seven possible combinations of the three types of
losses. Instead, we only need to perform one-dimensional IFFT to the diagonal terms to get the
distribution of the total.

4.2 Amodel with dependent claim frequency and size
In this subsection, we study a model in which the claim frequency and size are depen-
dent through a common mixing variable, 	 defined on (0, ∞). Similar to the example in
Section 4.1.1, we suppose that insurance policies cover two types of claims, PD and BI. The
claim frequency vector N= (N1,N2,N3)� follows the HMN(W, q1, q2, q3) distribution defined
in Section 4.1, where W ∼NB(rξ , β). The claim sizes are denoted by X(1) = (X(1),1, 0)�, X(2) =
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The proportion of capital allocated under TCE

(a) (b)

(c) (d)

The proportion of capital allocated under TV

The amount of capital allocated under TCE The amount of capital allocated under TV

Figure 3. The proportions and amounts of capital allocated to the three types of risks under TCE and TV criteria.

(0, X(2),2)�, and X(3) = (X(3),1, X(3),2)�, respectively. We assume that, conditional on 	= ξ ,
X(1),1 ∼ Poi(a1ξ ),X(2),2 ∼ Poi(a2ξ ), andX3 follows a common Poissonmixture, where conditional
on �= λ, X(3),1 ∼ Poi(b1λξ ) and X(3),2 ∼ Poi(b2λξ ). Finally, we assume that 	 and � are inde-
pendent and follow gamma distribution with shape parameters α1 and α2, respectively. Both have
unit mean.

The characteristic function of SN is given by

ψSN(t)=E

⎡⎣E
⎡⎣exp

⎛⎝i
3∑

m=1

2∑
k=1

tk,l
Nm(	)∑
j=1

X(m)j,k(	)

⎞⎠ ∣∣∣∣∣	
⎤⎦⎤⎦

=E

⎡⎣E
⎡⎣ 3∏
m=1

(
E

[
exp

(
itk,m

2∑
k=1

X(m),k(	)

)])Nm(	) ∣∣∣∣∣	
⎤⎦⎤⎦

=E

[
E

[
PN(	)

(
φX(1)(	)(t1,1, t2,1), φX(2)(	)(t1,2, t2,2), φX(3)(	)(t1,3, t2,3)

) ∣∣∣∣∣	
]]

=E
[PN(	)

(
φX(1)(	)(t1,1, t2,1), φX(2)(	)(t1,2, t2,2), φX(3)(	)(t1,3, t2,3)

)]
. (4.1)

Since it is difficult to calculate the explicate expression of integral in Equation (4.1), even with
the simple assumptions for the distributions of claim frequency and severity, in computation, we
discretize the distribution of	 and compute the expectation in Equation (4.1) numerically.
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The computation for capital allocation can be performed by using the following equations. For
m,m1,m2 = 1, 2, 3 and k, k1, k2 = 1, 2

E[SNm,k|S• > sq]= E[SNm,kI(S• > sq)]
Pr (S• > sq)

= E
[
E[SNm,kI(S• > sq)|	]

]
Pr (S• > sq)

=
E
[
E[SNm,k(	)|	] Pr

(
S̃•m[k](	)> sq|	

)]
Pr (S• > sq)

,

and

E[SNm1 ,k1SNm2 ,k2 |S• > sq]=
E[SNm1 ,k1SNm2 ,k2I(S• > sq)]

Pr (S• > sq)

=
E
[
E[SNm1 ,k1 (	)SNm2 ,k2 (	)|	] Pr

(
S̃•m1,m2[k1,k2](	)> sq|	

)]
Pr (S• > sq)

.

Conditional on 	= ξ , the above quantities can be calculated by applying Theorem 3.1.
Specifically, form= 1, 2, 3 and k1, k2 = 1, 2, we have the following:

E[SNm,k1 (ξ )SNm,k2 (ξ )]=E[Nm(ξ )]E[X(m),k1 (ξ )X(m),k2 (ξ )]+E[N(2)
m (ξ )]E[X(m),k1 (ξ )]E[X(m),k2 (ξ )],

where
E[Nm(ξ )]= rξβqm , m= 1, 2, 3 ,

E[N(2)
m (ξ )]= rξ (rξ + 1)β2q2m , m= 1, 2, 3 ,

E[X(m),k(ξ )]= akξ , m= 1, 2, 3, k= 1, 2, and X(m),k �= 0 ,

E[X2
(m),k(ξ )]= akξ + a2kξ

2, m= 1, 2, k= 1, 2, and X(m),k �= 0 ,

E[X2
(3),k(ξ )]= bkξ + α2 + 1

α2
b2kξ

2, k= 1, 2 ,

E[X(3),1(ξ )X(3),2(ξ )]= α2 + 1
α2

b1b2ξ 2 .

Form1,m2 = 1, 2, 3, k1, k2 = 1, 2, andm1 �=m2, we have
E[SNm1 ,k1 (ξ )SNm2 ,k2 (ξ )]=E[Nm1 (ξ )Nm2 (ξ )]E[X(m1),k1 (ξ )]E[X(m2),k2 (ξ )],

where
E[Nm1 (ξ )Nm2 (ξ )]= rξ (rξ + 1)β2qm1qm2 , m= 1, 2, 3 .

Then, the expectation with regard to 	 can be computed numerically by discretizing the
distribution of	.

In the following, we set the value of the shape parameter of the gamma distributed variable 	
to α1 = 10 and assume that all other parameters are the same as those in Section 4.1.1.

The proportions and amounts of capital allocated to the two types of risks according to TCE
and TV are shown in Figure 4. It shows a similar pattern to that in Figure 1 in Section 4.1.1. That is,
according to TCE, the proportion of risk capital allocated to PD (BI) claims decreases (increases)
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Table 4. Comparison of the amounts and proportions of capital allocated to the two types of risks accord-
ing to Tail Conditional Expectation (TCE) criterion when the dependence between loss frequency and sizes
changes

q= 0.995 sq TCES•,1 (q) TCES•,2 (q) TCES• (q)
TCES•,1 (q)
TCES• (q)

TCES•,2 (q)
TCES• (q)

α1=0.1 147 1550.8 917.0 2467.8 62.8% 37.2%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α1=1 122 130.3 83.7 214.0 60.9% 39.1%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α1=10 88 48.1 53.0 101.2 47.5% 52.5%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α1 → ∞ 56 23.6 39.9 63.5 37.2% 62.8%

The proportion of capital allocated under TCE

(a) (b)

(c) (d)

The proportion of capital allocated under TV

The amount of capital allocated under TCE The amount of capital allocated under TV

Figure 4. The proportions and amounts of capital allocated to the two types of risks according to TCE and TV criteria for the
model with dependent frequency and severity.

with q; and according to TV, the proportion allocated to BI(PD) claims decreases (increases) with
q when q is small and increases (decreases) when q is large. Also, the amounts of capital allocated
to the two types of risks increase with q in all cases.

Tables 4 and 5 show the numerical values of the amounts of capital allocated to the two types
of risk according to TCE and TV criteria for different values of α1, the coefficient of the mixing
random variable	. Recall that a smaller value of α1 indicates a larger variance of	, and a stronger
dependence between the claim frequency and severity. When α1 → ∞, the loss frequency and
severities are independent.

From Tables 4 and 5, we conclude that larger variance of the claim frequency and size, and
stronger dependence between them, leads to greater values of VaR, TCE and TV of the total losses.
The total capital allocated to each type of risk also increases.
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Table 5. Comparison of the amounts and proportions of capital allocated to the two types of risks according
to Tail Variance (TV) criterion when the dependence between loss frequency and sizes changes

TVS•,1 (q) TVS•,2 (q) TVS• (q)
TVS•,1 (q)
TVS• (q)

TVS•,2 (q)
TVS• (q)

α1=0.1 594980.2 448985.5 1043965.7 57.0% 43.0%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α1=1 34731.6 30199.2 64930.8 53.5% 46.5%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α1=10 5107.9 5427.7 10535.6 48.5% 51.5%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α1 → ∞ 1513.6 2590.5 4104.1 36.9% 63.1%

5. Conclusions
This paper presents formulas for computing TCE and TV and performing corresponding capital
allocation for a hierarchical multivariate compoundmodel introduced by Cummins andWiltbank
(1983) and Frees and Valdez (2008), where both the claim frequencies and the claim sizes are
dependent. The main methodology we used is the multivariate moment transform.

Future research will study the risk measures and capital allocation problems for multivariate
compound models with more complicated dependence structures between claim frequencies and
claim sizes.
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Appendix: Proof of Theorem 3.1

Proof. We firstly assume that N takes fixed values N= n= (n1, . . . , nM)�. Form ∈M, let

Snm =
nm∑
i=1

X(m)i =
nm∑
i=1

(
X(m)i,1, . . . , X(m)i,K

)� = (
Snm,1, . . . , Snm,K

)� ,

and

Sn = (
Sn1 , . . . , SnM

)
.
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Then, similar to the results in Denuit and Robert (2022) and Ren (2022), for m ∈M, i ∈
{1, . . . , nm}, and k ∈K, we have

E[X(m)i,kI(Snm ≤ sm)]=E[X(m)i,k]Pr
(
Snm −X(m)i + X̃(m)i

[k] ≤ sm
)
.

Since X(m)i’s are assumed to be i.i.d.,

E[Snm,kI(Snm ≤ sm)]= nmE[X(m)1,k]Pr
(
Snm −X(m)1 + X̃(m)1

[k] ≤ sm
)
.

Further, for i, j ∈ {1, . . . , nm}, i �= j, and k1, k2 ∈K, we have

E[X(m)i,k1X(m)i,k2I(Snm ≤ sm)]=E[X(m)i,k1X(m)i,k2 ]Pr
(
Snm −X(m)i + X̃(m)i

[k1,k2] ≤ sm
)
.

and

E[X(m)i,k1X(m)j,k2I(Snm ≤ sm)]=E[X(m)i,k1 ]E[X(m)j,k2 ]×
Pr
(
Snm −X(m)i −X(m)j + X̃(m)i

[k1] + X̃(m)j
[k2] ≤ sm

)
, .

Then,

E[Snm,k1Snm,k2I(Snm ≤ sm)]

= nmE[X(m)1,k1X(m)1,k2 ]Pr
(
Snm −X(m)1 + X̃(m)1

[k1,k2] ≤ sm
)

+ nm(nm − 1)E[X(m)1,k1 ]E[X(m)2,k2 ]Pr
(
Snm −X(m)1 −X(m)2 + X̃(m)1

[k1] + X̃(m)2
[k2] ≤ sm

)
.

Since Sn1 , . . . , SnM are mutually independent, we have

E[Snm,kI(Sn ≤ s)]= nmE[X(m)1,k]Pr
(
Snm −X(m)1 + X̃(m)1

[k] ≤ sm
) ∏
ξ∈M−{m}

Pr(Snξ ≤ sξ ) ,

(A.1)
and

E[Snm,k1Snm,k2I(Sn ≤ s)]

=
{
nmE[X(m)1,k1X(m)1,k2 ]Pr

(
Snm −X(m)1 + X̃(m)1

[k1,k2] ≤ sm
)

+ nm(nm − 1)E[X(m)1,k1 ]E[X(m)2,k2 ]× (A.2)

Pr
(
Snm −X(m)1 −X(m)2 + X̃(m)1

[k1] + X̃(m)2
[k2] ≤ sm

)} ∏
ξ∈M−{m}

Pr(Snξ ≤ sξ ) .

In addition, form1,m2 ∈M,m1 �=m2,

E[Snm1 ,k1Snm2 ,k2I(Sn ≤ s)] (A.3)
= nm1nm2E[X(m1)1,k1 ]E[X(m2)1,k2 ]×∏

i∈{1,2}
Pr
(
Snmi

−X(mi)1 + X̃(mi)1
[ki] ≤ smi

) ∏
ξ∈M−{m1,m2}

Pr(Snξ ≤ sξ ) . (A.4)
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Therefore, applying the law of total probability to Equation (A.1) leads to

E[SNm,kI(SN ≤ s)]

=
∞∑

n1=0
. . .

∞∑
nM=0

pN(n)nmE[X(m)1,k]Pr
(
Snm −X(m)1 + X̃(m)1

[k] ≤ sm, Snξ ≤ sξ , ξ ∈M− {m}
)

=
∞∑

n1=0
. . .

∞∑
nM=0

pÑ[m] (n)E[Nm]E[X(m)1,k]Pr
(
Snm−X(m)1+X̃(m)1

[k] ≤ sm, Snξ ≤ sξ , ξ ∈M−{m}
)

=E[Nm]E[X(m)1,k]Pr
(
SÑm

[m] −X(m)1 + X̃(m)1
[k] ≤ sm, SÑξ [m] ≤ sξ , ξ ∈M− {m}

)
,

which leads to Equation (3.3).
Similarly, applying the law of total probability to Equations (A.2) and (A.3), respectively, yields

E[SNm,k1SNm,k2I(SN ≤ s)]

=
∞∑

n1=0
. . .

∞∑
nM=0

pN(n)×{
nmE[X(m)1,k1X(m)1,k2 ]Pr

(
Snm −X(m)1 + X̃(m)1

[k1,k2] ≤ sm, Snξ ≤ sξ , ξ ∈M− {m}
)

+ nm(nm − 1)E[X(m)1,k1 ]E[X(m)2,k2 ]×

Pr
(
Snm −X(m)1 −X(m)2 + X̃(m)1

[k1] + X̃(m)2
[k2] ≤ sm, Snξ ≤ sξ , ξ ∈M− {m}

)}

=
∞∑

n1=0
. . .

∞∑
nM=0

{
pÑ[m] (n)E[Nm]E[X(m)1,k1X(m)1,k2 ]×

Pr
(
Snm −X(m)1 + X̃(m)1

[k1,k2] ≤ sm, Snξ ≤ sξ , ξ ∈M− {m}
)

+ p
Ñ(2)[m] (n)E[N(2)

m ]E[X(m)1,k1 ]E[X(m)2,k2 ]×

Pr
(
Snm −X(m)1−X(m)2 + X̃(m)1

[k1]+X̃(m)2
[k2] ≤ sm, Snξ ≤ sξ , ξ ∈M−{m}

)}

=E[Nm]E[X(m)1,k1X(m)1,k2 ]Pr
(
SÑm

[m]−X(m)1+X̃(m)1
[k1,k2] ≤ sm, SÑξ [m] ≤ sξ , ξ ∈M− {m}

)
+E[N(2)

m ]E[X(m)1,k1 ]E[X(m)2,k2 ]×

Pr

(
S
Ñ(2)
m

[m] −X(m)1 −X(m)2 + X̃(m)1
[k1] + X̃(m)2

[k2] ≤ sm, S
Ñ(2)
ξ

[m] ≤ sξ , ξ ∈M− {m}
)
,

which leads to Equation (3.4).
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In addition,
E[SNm1 ,k1SNm2 ,k2I(SN ≤ s)]

=
∞∑

n1=0
. . .

∞∑
nM=0

pN(n)
{
nm1nm2E[X(m1)1,k1 ]E[X(m2)1,k2 ]

∏
i∈{1,2}

Pr
(
Snmi

−X(mi)1 + X̃(mi)1
[ki] ≤ smi

)
∏

ξ∈M−{m1,m2}
Pr(Snξ ≤ sξ )

}

=
∞∑

n1=0
. . .

∞∑
nM=0

pÑ[m1,m2] (n)
{
E[Nm1Nm2 ]E[X(m1)1,k1 ]E[X(m2)1,k2 ]×

Pr
(
Snm1

−X(m1)1 + X̃(m1)1
[k1] ≤ sm1 , Snm2

−X(m2)1 + X̃(m2)1
[k2] ≤ sm2 ,

Snmξ ≤ sξ , ξ ∈M− {m1,m2}
) }

=E[Nm1Nm2 ]E[X(m1)1,k1 ]E[X(m2)1,k2 ]×
Pr
(
SÑm1

[m1,m2] −X(m1)1 + X̃(m1)1
[k1] ≤ sm1 , SÑm2

[m1,m2] −X(m2)1 + X̃(m2)1
[k2] ≤ sm2 ,

SÑξ [m1,m2] ≤ sξ , ξ ∈M− {m1,m2}
)
,

which leads to Equation (3.5). This ends the proof.
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