J. Austral. Math. Soc. (Series A) 35 (1983), 373-385

INVERSE SEMIGROUPS WITH IDEMPOTENTS DUALLY WELL-ORDERED

A. CLEMENT and F. PASTIJN

(Received 17 May 1982)

Communicated by T. E. Hall

Abstract

All inverse semigroups with idempotents dually well-ordered may be constructed inductively. The techniques involved are the constructions of ordinal sums, direct limits and Bruck-Reilly extensions.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 M 10, 03 E 10.

1. Introduction

We use the terminology and the results of Howie [3] and Sierpiński [12]. The axiom of choice will be assumed throughout.

A study of inverse semigroups with idempotents dually well-ordered can be motivated by the findings of Feller and Gantos [1]. They may also be studied within the context of the investigations by Megyesi and Pollák ([5], [6], [7]) concerning principal ideal semigroups. Recall that a principal ideal semigroup is a semigroup where the left, right and two-sided ideals are all principal, or equivalently, it is a semigroup for which the posets of left, right and two-sided ideals are dually well-ordered chains. In a [simple] principal ideal semigroup, the set of regular elements—if non-empty—constitutes a [simple] inverse semigroup with idempotents dually well-ordered. In fact, a principal ideal semigroup is regular if and only if it is an inverse semigroup with idempotents dually well-ordered.

Particular structure theorems for inverse semigroups with idempotents dually well-ordered were given by Hogan [2], Kočin [4], Munn [8], Reilly [11], and Warne ([13], [14]).

© 1983 Australian Mathematical Society 0263-6115/83 \$A2.00 + 0.00

A. Clement and F. Pastijn

2. Main results

Let δ be any ordinal. An inverse semigroup S will be called a δ -regular semigroup if the set E_S of idempotents of S constitutes a chain whose order type is $\overline{E}_S = \delta^*$.

Recall that an inverse semigroup S is called a fundamental inverse semigroup if the greatest idempotent-separating congruence on S is the identity relation. Let us consider a fundamental inverse semigroup S whose idempotents form a chain E_S . Then Green's equivalence relation \mathcal{G} is the least semilattice congruence on S, and S is a chain S/\mathcal{G} of its \mathcal{G} -classes, which are all simple inverse semigroups. Each \mathcal{G} -class is the disjoint union of \mathfrak{P} -classes which all constitute bisimple inverse semigroups. In general it is not straightforward how to describe S as a chain composition of its \mathcal{G} -classes. There is however an important instance in which things simplify. Indeed, let us consider the case where the principal ideals of E_S each have a trivial automorphism group. Since S is fundamental, one can embed S isomorphically into the Munn semigroup T_{E_S} (see, for example, Howie [3]). It follows that S must be combinatorial (= \mathcal{K} -trivial), and for any $a, b \in S$, with $J_a < J_b$ in S/\mathcal{G} , we have ab = ba = a. The situation described here is satisfied whenever E_S is a dually well-ordered chain. We thus have the following.

THEOREM 1. Let $\delta = \sum_{\xi < \alpha} \alpha_{\xi}$ be an ordinal such that for each $\xi < \alpha$, S_{ξ} is a combinatorial simple α_{ξ} -regular semigroup, with $S_{\xi} \cap S_{\eta} = \emptyset$ if $\xi \neq \eta$. On $S = \bigcup_{\xi < \alpha} S_{\xi}$ define a multiplication by the following. If $a \in S_{\xi}$, $b \in S_{\eta}$, then ab coincides with the product of a and b already defined in S_{ξ} if $\xi = \eta$, whereas ab = a if $\xi > \eta$ and ab = b if $\eta > \xi$. Then S is a fundamental δ -regular semigroup.

Conversely, every fundamental δ -regular semigroup can be so obtained.

COROLLARY 2. Let $\delta = \sum_{\xi < \alpha} \alpha_{\xi}$ be an ordinal such that for each $\xi < \alpha$, S_{ξ} is a simple α_{ξ} -regular semigroup, with $S_{\xi} \cap S_{\eta} = \emptyset$ if $\xi \neq \eta$. For every $\xi < \eta < \alpha$, let $\phi_{\xi,\eta}$ be a homomorphism of S_{ξ} into the group of units of S_{η} , such that $\phi_{\xi,\eta}\phi_{\eta,\zeta} = \phi_{\xi,\zeta}$ whenever $\xi < \eta < \zeta < \alpha$. For each $\xi < \alpha$, let $\phi_{\xi,\xi}$ be the identity transformation on S_{ξ} . Let S be the strong chain of the semigroups in the system

(1)
$$(\alpha; \{S_{\xi} | \xi < \alpha\}; \{\phi_{\xi,\eta} | \xi \leq \eta < \alpha\}).$$

Then S is a δ -regular semigroup.

Conversely, every δ -regular semigroup can be so obtained.

PROOF. The direct part can be verified without difficulty.

Let us conversely suppose that S is a δ -regular semigroup. Since the principal ideals of E_S have trivial automorphism groups, Green's relation \Re is a congruence

relation on S (see also Theorem 5 in Megyesi and Pollák [5]). Therefore S/\mathcal{H} is a fundamental δ -regular semigroup, and we can apply Theorem 1. The results of Theorem 1 guarantee that we can write S as a chain α of simple α_{ξ} -regular semigroups S_{ξ} , $\xi < \alpha$, with $\delta = \sum_{\xi < \alpha} \alpha_{\xi}$. Further, if $\xi < \eta$, and if 1_{η} denotes the identity element of S_{η} , then the mapping

(2)
$$\phi_{\xi,\eta}: S_{\xi} \to S_{\eta}, a \to al_{\eta}$$

is a homomorphism of S_{ξ} into the group of units of S_{η} . As a result we obtain a system (1), and one easily shows that S is the sum of this system.

If the semigroup S is obtained in the way described in Corollary 2, then we shall say that S is the ordinal sum of the system (1).

We exemplify Theorem 1 by describing the Munn semigroup T_E of a chain Ewhose order type \overline{E} is the dual δ^* of an ordinal δ . One may identify T_E with the inverse semigroup consisting of the isomorphisms among principal filters of δ (where δ stands for the well-ordered chain of ordinals that are less than δ). The latter inverse semigroup will be denoted by T_{δ} . Remark that T_{ω} is the bicyclic semigroup, whereas $T_{\omega^{\pi}}$ (*n* a positive integer) is Warne's *n*-dimensional bicyclic semigroup [13], and $T_{\omega^{\pi}}$ (α any ordinal) is the α -bicyclic semigroup in Hogan [2] and Megyesi and Pollák [7]. Let ξ and η be ordinals such that $\delta = \xi + \tau = \eta + \tau$ for some ordinal τ . Then the principal filter generated by ξ is isomorphic to the principal filter generated by η : the two filters are of order type τ . We denote by $(\frac{\xi}{\eta})$ the unique isomorphism of the principal filter generated by ξ onto the principal filter generated by η . Thus,

(3)
$$(\xi + \kappa) {\xi \choose \eta} = \eta + \kappa, \quad \kappa < \tau.$$

The inverse of $\binom{\xi}{\eta}$ in T_{δ} is $\binom{\eta}{\xi}$. Clearly T_{δ} precisely consists of the elements $\binom{\xi}{\eta}$ where $\delta = \xi + \tau = \eta + \tau$ for some ordinal τ , and the multiplication in T_{δ} is given by

(4)
$$\binom{\xi}{\eta}\binom{\xi'}{\eta'} = \binom{\xi + [\xi' - \eta]}{\eta' + [\eta - \xi']},$$

where for any ordinals ρ , σ

(5)
$$[\rho - \sigma] = \begin{cases} \rho - \sigma & \text{if } \sigma \leq \rho, \\ 0 & \text{otherwise} \end{cases}$$

(we use the notation of Megyesi and Pollák [7]).

Recall that for any ordinal δ there exists a unique decomposition $\delta = \delta_1 + \cdots + \delta_k$ (k a positive integer), where $\delta_1 \ge \cdots \ge \delta_k$ is a finite nonincreasing sequence of prime (= indecomposable) ordinals. This decomposition is called the normal expansion of δ .

THEOREM 3. Let δ be an ordinal, and $\delta = \delta_1 + \cdots + \delta_k$ its normal expansion. Then T_{δ} is a k-chain of the bisimple combinatorial δ_i -regular semigroups T_i , $i = 1, \ldots, k$. For each $i = 1, \ldots, k$, T_i is isomorphic to T_{δ_i} .

PROOF. Let ξ , η be ordinals such that $\delta = \xi + \tau = \eta + \tau$. The ordinal τ must be of the form $\delta_i + \cdots + \delta_k$ for some $1 \le i \le k$. Putting

(6)
$$T_i = \left\{ \begin{pmatrix} \xi \\ \eta \end{pmatrix} | \delta = \xi + \delta_i + \cdots + \delta_k = \eta + \delta_i + \cdots + \delta_k \right\}$$

for i = 1, ..., k, we obtain a partitioning $T_{\delta} = \bigcup_{1 \le i \le k} T_i$. Let $\binom{\xi}{\eta}$, $\binom{\xi'}{\eta'} \in T_i$ for some $1 \le i \le k$. Then

$$\binom{\xi}{\eta} \Re \binom{\xi}{\eta'} \mathbb{E} \binom{\xi'}{\eta'} \Re \binom{\xi'}{\eta} \mathbb{E} \binom{\xi}{\eta}$$

in T_{δ} . Consequently T_i is contained in a \mathfrak{P} -class. Further, if $\binom{\ell}{\eta} \in T_i$, $\binom{\ell'}{\eta'} \in T_j$, i < j, then $\binom{\ell}{\eta}\binom{\ell'}{\eta'} = \binom{\ell'}{\eta'}\binom{\ell}{\eta} = \binom{\ell'}{\eta'}$. Thus elements belonging to different components in the partitioning $\bigcup_{1 \le i \le k} T_i$ cannot be \mathcal{G} -related. We see that $\mathcal{G} = \mathfrak{P}$ in T_{δ} , and that the T_i , $i = 1, \ldots, k$, constitute the k \mathfrak{P} -classes of T_{δ} ; T_{δ} is a k-chain of these \mathfrak{P} -classes.

The \mathfrak{D} -classes T_i , $i = 1, \ldots, k$, form bisimple inverse semigroups (see the remark made before Theorem 1). T_{δ} is combinatorial since well-ordered chains have a trivial automorphism group. Thus the T_i , $i = 1, \ldots, k$ are combinatorial as well. The idempotents of T_i are of the form $(\frac{\xi}{\xi})$, with $\xi < \delta_1$ if i = 1, or $\delta_1 + \cdots + \delta_{i-1} \le \xi < \delta_1 + \cdots + \delta_i$ otherwise. Therefore T_i is a δ_i -regular semigroup.

The mapping

$$T_1 o T_{\boldsymbol{\delta}_1}, \qquad \begin{pmatrix} \boldsymbol{\xi} \\ \boldsymbol{\eta} \end{pmatrix} o \begin{pmatrix} \boldsymbol{\xi} \\ \boldsymbol{\eta} \end{pmatrix}$$

is easily seen to be an isomorphism of T_1 onto T_{δ_1} , whereas in the case $1 \le i \le k$,

$$T_i \to T_{\delta_i}, \qquad \begin{pmatrix} \boldsymbol{\xi} \\ \boldsymbol{\eta} \end{pmatrix} \to \begin{pmatrix} \boldsymbol{\xi} - (\delta_1 + \cdots + \delta_{i-1}) \\ \boldsymbol{\eta} - (\delta_1 + \cdots + \delta_{i-1}) \end{pmatrix}$$

is an isomorphism of T_i onto T_{δ_i} .

COROLLARY 4. Let E be a chain such that \overline{E}^* is an ordinal. In the Munn semigroup T_E , \mathcal{G} and \mathfrak{D} coincide. The number of \mathfrak{D} -classes in T_E is finite. It is the number of terms in the normal expansion of \overline{E}^* .

COROLLARY 5 (Hogan [2], Munn [9], White [15]). If S is a simple δ -regular semigroup, then δ is a prime ordinal. If E is a chain such that $\overline{E}^* = \delta$ is a prime ordinal, then T_E is a bisimple δ -regular semigroup.

Inverse semigroups

Theorem 1 and Corollary 2 show that the problem of describing the structure of [fundamental] inverse semigroups with idempotents dually well-ordered can be reduced to the case of simple [fundamental] inverse semigroups with idempotents dually well-ordered. Therefore we shall from now on concentrate on simple δ -regular semigroups. From Corollary 5 we know that δ must then be a prime ordinal, that is, $\delta = \omega^{\alpha}$ for some ordinal α (well-defined by δ). The aim of our considerations will be to construct simple ω^{α} -regular semigroups in terms of ξ -regular semigroups, with $\xi < \omega^{\alpha}$. This will enable us to construct inductively all inverse semigroups with idempotents dually well-ordered.

If T is a δ -regular semigroup and θ an endomorphism of T into the unit group of T, then one can consider the Bruck-Reilly extension $BR(T, \theta)$ of T determined by θ . This inverse semigroup $BR(T, \theta)$ must be a simple $\delta\omega$ -regular semigroup (see for example III.2 of Petrich [10]). Thus, any δ -regular semigroup can be embedded into a simple $\delta\omega$ -regular semigroup. Note that $BR(T, \theta)$ is fundamental if and only if T is fundamental. If this is the case, then θ is simply the constant mapping of T onto the identity of T. The following characterizes the inverse semigroups with idempotents dually well-ordered which are obtained by considering Bruck-Reilly extensions.

THEOREM 6. Let S be a δ -regular semigroup, with $E_S = \{e_{\xi} | \xi < \delta\}$, where $e_{\xi} < e_{\eta}$ in E_S if and only if $\eta < \xi$. Then S is a Bruck-Reilly extension $BR(T, \theta)$ if and only if the following conditions are satisfied:

(i) $\delta = \omega^{\alpha+1}$ for some α ,

(ii) there exists a $\omega^{\alpha} \leq \gamma < \omega^{\alpha+1}$ such that $e_0 \mathfrak{D}e_{\gamma}$ and such that the elements $x \in S$ for which $e_{\gamma} < (xx^{-1})(x^{-1}x)$ form a subsemigroup of S.

PROOF. Let $S = BR(T, \theta)$ for some inverse semigroup T, and for some appropriate endomorphism θ of T. From the fact that S is a δ -regular semigroup it follows that T is an inverse semigroup with idempotents dually well-ordered. In other words, T is a γ -regular semigroup for some ordinal γ , where $\delta = \gamma \omega$. Let ω^{α} be the first term in the normal expansion of γ . Then $\delta = \omega^{\alpha+1}$, and so (i) is satisfied. Let us denote the set of idempotents of T by $\{f_{\zeta} | \zeta < \gamma\}$, where $f_{\zeta} < f_{\tau}$ in E_T if and only if $\tau < \zeta$. The idempotents of S are then of the form

(7)
$$e_{\gamma n+\zeta} = (n, f_{\zeta}, n), \quad n \in N, \zeta < \gamma,$$

and one sees that (ii) is satisfied.

Let us conversely suppose that S satisfies (i) and (ii). Let T be the subsemigroup of S which is given by (ii). Since T is clearly closed with respect to the taking of inverses, we have that T is an inverse subsemigroup of S. Consequently, T is a γ -regular subsemigroup of S. Let a be an element of S for which $aa^{-1} = e_0$ and $a^{-1}a = e_{\gamma}$. Let $x \in S$, with $xx^{-1} = e_{\xi}$ and $x^{-1}x = e_{\eta}$. Then

$$S \to T_{\delta}, \qquad x \to \left(\begin{array}{c} \xi \\ \eta \end{array} \right)$$

is a representation of S which is equivalent to the Munn representation. In particular, if $x \in T$, then $\binom{\xi}{\eta}$ must fix γ since T forms a subsemigroup, and since T_{δ} is combinatorial. In this case we must have $\binom{\xi}{\eta}\binom{\gamma}{\gamma} = \binom{\gamma}{\gamma}\binom{\xi}{\eta} = \binom{\gamma}{\gamma}$, and consequently

(8)
$$e_{\gamma} x \mathcal{H} e_{\gamma} \mathcal{H} x e_{\gamma}$$
 for all $x \in T$.

It follows that

(9) $\theta: T \to H_{e_0}, \quad x \to axa^{-1}$

is an endomorphism of T into its group of units.

For $m, n \in N$, let $S_{m,n}$ consist of the elements x of S for which $e_{\gamma m} \ge xx^{-1} > e_{\gamma(m+1)}$ and $e_{\gamma n} \ge x^{-1}x > e_{\gamma(n+1)}$. Then $S = \bigcup_{m,n \in N} S_{m,n}$ yields a partitioning of S. Remark that $T = S_{0,0}$. The mapping $T \to S_{m,n}, x \to a^{-m}xa^n$ is a bijection of T onto $S_{m,n}$, and the mapping $S_{m,n} \to T, y \to a^m ya^{-n}$ is its inverse. For this reason

(10)
$$\psi: S \to BR(T, \theta), \quad a^{-m}xa^n \to (m, x, n), \qquad m, n \in N, x \in T,$$

is a well-defined bijection of S onto $BR(T, \theta)$. It is easy to show that ψ is in fact an isomorphism.

THEOREM 7. Let S be a simple ω^{α} -regular semigroup, with α a limit ordinal. Then there exists a well-ordered system

(11)
$$(\beta; \{S_{\xi} | \xi < \beta\}; \{\phi_{\xi,n} | \xi \leq \eta < \beta\})$$

of simple $\omega^{\alpha_{\xi}+1}$ -semigroups $S_{\xi}, \xi < \beta$, where

(i) for $\xi < \beta$, $S_{\xi} = BR(T_{\xi}, \theta_{\xi})$ is a Bruck-Reilly extension of a $(\omega^{\alpha_{\xi}} + \delta_{\xi})$ -regular semigroup T_{ξ} , with $\delta_{\xi} < \omega^{\alpha_{\xi}+1}$,

(ii) $\alpha = \lim_{\xi < \beta} (\alpha_{\xi} + 1),$

(iii) for $\xi \leq \eta < \beta$, $\phi_{\xi,\eta}$ is a monomorphism of S_{ξ} into S_{η} , such that S is the direct limit of the system (11).

Conversely, if the well-ordered system (11) satisfies the above conditions (i), (ii) and (iii), then its direct limit is a simple ω^{α} -regular semigroup.

PROOF. The proof of the converse part is routine, and is left to the reader. We now proceed to show the direct part.

Let $\{e_{\zeta} | \zeta < \omega^{\alpha}\}$ be the set of idempotents of S, where $e_{\zeta} < e_{\eta}$ in E_{S} if $\eta < \zeta$. Let A be a set of ordinals, where $\kappa \in A$ if and only if there exists a $\omega^{\kappa} \leq \gamma < \omega^{\kappa+1}$ such that $e_{0} \oplus e_{\gamma}$ in S. Let β be the order type of the chain A. We shall denote the

378

chain A by $A = \{\alpha_{\xi} | \xi < \beta\}$. We have $\lim_{\xi < \beta} \alpha_{\xi} = \lim_{\xi < \beta} (\alpha_{\xi} + 1) = \alpha$ since S is simple. Therefore (ii) is satisfied.

For $\xi < \beta$, let γ_{ξ} be an ordinal such that $e_0 \oplus e_{\gamma_{\xi}}$, and $\omega^{\alpha_{\xi}} \leq \gamma_{\xi} < \omega^{\alpha_{\xi}+1}$, and let a_{ξ} be an element of S such that $a_{\xi}a_{\xi}^{-1} = e_0$ and $a_{\xi}^{-1}a_{\xi} = e_{\gamma_{\xi}}$. Let T_{ξ} be the subset of S consisting of the elements $x \in S$ for which $e_{\omega^{\alpha_{\xi}}} < (xx^{-1})(x^{-1}x)$, together with the elements of the maximal subgroups containing the idempotents e_{ζ} , $\zeta < \gamma_{\xi}$. If $\theta: S \to T_{\omega^{\alpha}}, x \to (\frac{\mu}{\nu})$, with $xx^{-1} = e_{\mu}$ and $x^{-1}x = e_{\nu}$ in S, stands for the canonical homomorphism of S into the Munn semigroup $T_{\omega^{\alpha}}$, then $T_{\xi}\theta$ consists of the elements

$$\begin{pmatrix} \mu \\ \nu \end{pmatrix} = x\theta$$
, with $xx^{-1} = e_{\mu}$, $x^{-1}x = e_{\nu}$, $\mu, \nu < \omega^{\alpha_{\xi}}$,

and

$$\begin{pmatrix} \zeta \\ \zeta \end{pmatrix}, \quad \zeta < \gamma_{\xi}.$$

Obviously $T_{\xi}\theta$ forms an inverse subsemigroup of the Munn semigroup $T_{\omega^{\alpha_{\xi}}}$. Further, since $T_{\xi} = T_{\xi}\theta\theta^{-1}$, we deduce that T_{ξ} forms an inverse subsemigroup of S. Let S_{ξ} be the inverse subsemigroup of S which is generated by a_{ξ} and by the elements of T_{ξ} . Using Theorem 6, we deduce that S_{ξ} is (isomorphic to) a Bruck-Reilly extension of the γ_{ξ} -regular semigroup T_{ξ} , where $\gamma_{\xi} = \omega^{\alpha_{\xi}} + \delta_{\xi}$, with $\delta_{\xi} < \omega^{\alpha_{\xi}+1}$. Thus (i) is satisfied, and S_{ξ} is a simple $\omega^{\alpha_{\xi}+1}$ -regular semigroup (since $\gamma_{\xi}\omega = \omega^{\alpha_{\xi}+1}$).

We consider the system (11), where for $\xi \leq \eta < \beta$, $\phi_{\xi,\eta}$: $S_{\xi} \to S_{\eta}$ is just the inclusion mapping. We must show that S is the direct limit of (11). Therefore, let x be any element of S. Since S is simple, there exists a γ such that $e_0 \oplus e_{\gamma} < (xx^{-1})(x^{-1}x)$. Let us suppose $\omega^{\alpha_{\xi}} \leq \gamma < \omega^{\alpha_{\xi}+1}$, with $\alpha_{\xi} \in A$. Then $x \in T_{\xi+1}$, and thus also $x \in S_{\xi+1}$. We conclude $S = \bigcup_{\xi < \beta} S_{\xi}$.

THEOREM 8. Let T be a δ -regular semigroup where $\omega^{\alpha} \leq \delta < \omega^{\alpha+1}$, and let $BR(T, \theta)$ be a Bruck-Reilly extension of T. Let e be an idempotent of $BR(T, \theta)$. Then $eBR(T, \theta)e$ is a simple $\omega^{\alpha+1}$ -regular semigroup.

Conversely, every simple $\omega^{\alpha+1}$ -regular semigroup can be obtained in this way.

PROOF. If S is a simple regular semigroup, and $e \in E_S$, then eSe is a simple regular subsemigroup of S. From this well-known fact follows the direct part of our theorem.

Let us conversely suppose that S is a simple $\omega^{\alpha+1}$ -regular semigroup. Let $E_S = \{e_{\xi} | \xi < \omega^{\alpha+1}\}$, where $e_{\xi} < e_{\eta}$ in E_S if $\eta < \xi$. Let D be the set of ordinals

 $D = \left\{ \xi | \xi = \eta - \zeta \ge \omega^{\alpha}, \, \omega^{\alpha+1} > \eta > \zeta, \, e_{\eta} \mathfrak{D} e_{\zeta} \text{ in } S \right\},\,$

and let δ be the least ordinal in D. We have $\delta = \omega^{\alpha}n + \mu$, with $\mu < \omega^{\alpha}$. Let ζ and η be any ordinals, with $\zeta < \eta < \omega^{\alpha+1}$, such that $e_{\eta} \mathfrak{D}e_{\zeta}$ in S and $\eta - \zeta = \omega^{\alpha}n + \mu$. Putting $\zeta = \omega^{\alpha}m + \mu'$, with $\mu' < \omega^{\alpha}$, we have $\eta = \omega^{\alpha}(m+n) + \mu$. Let us investigate $S' = e_{\zeta}Se_{\zeta}$.

S' is of course a $\omega^{\alpha+1}$ -regular semigroup which is simple. Let T be the subset of S' which consists of the elements of S for which $e_{\eta} < xx^{-1}$, $x^{-1}x \le e_{\zeta}$. Due to the minimality of δ in D, we have either

(12)
$$e_{\zeta+\omega^{\alpha}(i-1)} < xx^{-1}, x^{-1}x \leq e_{\zeta+\omega^{\alpha}}$$

for some $i = \{0, ..., n - 1\}$, or

$$(13) e_{\eta} < xx^{-1}, x^{-1}x \leq e_{\omega^{\alpha}(m+n)}$$

Take any other $y \in T$. Again, either

(14)
$$e_{\zeta+\omega^{\alpha}(j+1)} < yy^{-1}, y^{-1}y \leq e_{\zeta+\omega^{\alpha}j}$$

for some $j \in \{0, ..., n - 1\}$, or

(15)
$$e_{\eta} < yy^{-1}, y^{-1}y \leq e_{\omega^{\alpha}(m+n)}$$

If x and y are elements of T such that (12) and (14) or (15) hold, with j > i, then $xy \mathcal{H} y$, and so $xy \in T$. Similarly, if (14) and (12) or (13) hold, with i > j, then $xy \mathcal{H} x$, and thus $xy \in T$. Further, if (12) and (14) hold, with i = j, then

$$e_{\zeta+\omega^{a}(i+1)} < (xy)(xy)^{-1}, (xy)^{-1}(xy) \le e_{\zeta+\omega^{a}i}$$

and again $xy \in T$. Finally, let $x, y \in T$ such that both (13) and (15) hold. Let us suppose that $xy \notin T$, that is,

$$e_{\omega^{a}(n+m+1)} < ((xy)(xy)^{-1})((xy)^{-1}(xy)) = e_{\nu} \le e_{\eta}.$$

Anyway, $xy \Re e_{\nu}$ or $xy \pounds e_{\nu}$, and $xy \pounds y$ or $xy \Re x$, since E_{S} is a chain. Since both (13) and (15) hold, we conclude that there exists an idempotent $e_{\tau} \in E_{S}$, with $e_{\eta} < e_{\tau} \leq e_{\omega^{\alpha}(m+n)}$, such that $e_{\tau} \Re e_{\nu}$. Let $\kappa = \nu - \eta$. Then $\kappa < \omega^{\alpha}$. If *a* is any element of *S* such that $e_{\xi} \Re a \pounds e_{\eta}$, then $e_{\xi+\kappa} \Re e_{\xi+\kappa} a \pounds e_{\eta+\kappa} = e_{\nu} \Re e_{\tau}$, from which $e_{\xi+\kappa} \Re e_{\tau}$. Yet, $\tau - (\xi + \kappa) < \delta$, since $\omega^{\alpha}(m+n) \leq \tau < \eta$, and this contradicts the minimality of δ . Hence, also in this case $xy \in T$. We conclude that *T* is a subsemigroup of *S'*. It follows from Theorem 6 that *S'* is (isomorphic to) a Bruck-Reilly extension of *T*.

The identity e_0 of S is \mathfrak{P} -related to an idempotent $e_{\lambda} < e_{\zeta}$ since S is simple. Let b be any element of S such that $bb^{-1} = e_0$ and $b^{-1}b = e_{\lambda}$. The mapping

$$S \to e_{\lambda} S e_{\lambda}, \qquad x \to b^{-1} x b_{\lambda}$$

is an isomorphism of S onto $e_{\lambda}Se_{\lambda}$. Yet $e_{\lambda}Se_{\lambda} = e_{\lambda}S'e_{\lambda}$, where S' is (isomorphic to) a Bruck-Reilly extension $BR(T, \theta)$ of the δ -regular semigroup T, with $\omega^{\alpha} \leq \delta < \omega^{\alpha+1}$. From this follows the converse part of our theorem.

Inverse semigroups

COROLLARY 9 (Koč [4], Munn [8]). An inverse semigroup S is a simple ω -regular semigroup if and only if S is a Bruck-Reilly extension of a finite chain of groups.

Not every simple $\omega^{\alpha+1}$ -regular semigroup needs to be a Bruck-Reilly extension of a δ -regular semigroup, with $\omega^{\alpha} \leq \delta \leq \omega^{\alpha+1}$. We depict a counterexample in Figure 1. Indeed, if a is the element of the semigroup depicted in Figure 1 for which $e_1 \Re a \pounds e_{\omega}$, then $a^n a^{-n} = e_1$, and $a^{-n} a^n = e_{\omega n}$, $n \in N$, and it follows that the subsemigroup requirement of Theorem 6(ii) cannot be satisfied. The inverse semigroup under consideration is a combinatorial simple ω^2 -regular semigroup. Remark however, that every bisimple $\omega^{\alpha+1}$ -regular semigroup is a Bruck-Reilly extension of a ω^{α} -regular semigroup which is bisimple.

3. Conclusion

We note that we are now able to construct inductively all inverse semigroups with idempotents dually well-ordered. The process for doing so is based on Corollary 2, Theorem 7 and Theorem 8. The techniques involved are the constructions of ordinal sums, direct limits and Bruck-Reilly extensions.

4. The combinatorial case

We conclude with some remarks concerning combinatorial inverse semigroups with idempotents dually well-ordered.

LEMMA 10. For any prime ordinal ω^{β} , let $n(\omega^{\beta})$ denote the number of pairwise non-isomorphic combinatorial simple ω^{β} -regular semigroups. Then $\alpha < \beta$ implies $n(\omega^{\alpha}) \leq n(\omega^{\beta})$.

PROOF. Let S be a combinatorial simple ω^{α} -regular semigroup, where $\alpha < \beta$. We may suppose that S is a full inverse subsemigroup of $T_{\omega^{\alpha}}$. The mapping $T_{\omega^{\alpha}} \to T_{\omega^{\beta}}$, $\binom{\xi}{\eta} \to \binom{\xi}{\eta}$ is an embedding of $T_{\omega^{\alpha}}$ into $T_{\omega^{\beta}}$. Hence, we may suppose that S is a subsemigroup of $T_{\omega^{\beta}}$, where S consists of elements $\binom{\xi}{\eta}$, with $\xi, \eta < \omega^{\alpha}$. Let S' be the inverse subsemigroup of $T_{\omega^{\beta}}$ generated by the elements of S and by the elements $\binom{0}{\omega}$, where $\alpha \leq \nu < \beta$. Clearly S' is a combinatorial simple ω^{β} -regular semigroup.

If S_1 and S_2 are two non-isomorphic combinatorial simple ω^{α} -regular semigroups, then S'_1 and S'_2 are non-isomorphic combinatorial simple ω^{β} -regular semigroups. In other words, if we start off with a set of $n(\omega^{\alpha})$ pairwise non-isomorphic combinatorial simple ω^{α} -regular semigroups, we obtain a set of pairwise non-isomorphic combinatorial simple ω^{β} -regular semigroups. Thus $n(\omega^{\alpha}) \leq n(\omega^{\beta})$.

For any ordinal α , ω_{α} will denote an initial ordinal. In the following we assume the generalized continuum hypothesis.

Inverse semigroups

THEOREM 11. Let ω^{β} be a prime ordinal, and let $n(\omega^{\beta})$ denote the number of pairwise non-isomorphic combinatorial simple ω^{β} -regular semigroups. Then

$$n(\omega) = n(\omega^2) = \aleph_0,$$

$$n(\omega^\beta) = \aleph_1 \quad \text{if } \omega^3 \le \omega^\beta < \omega_1,$$

$$n(\omega^\beta) = \aleph_{\alpha+1} \quad \text{if } \omega_\alpha \le \omega^\beta < \omega_{\alpha+1}, \alpha \ge 1.$$

PROOF. The result $n(\omega) = \aleph_0$ follows easily from the results by Kočin [4] and Munn [8] (see also Petrich [10]). In fact one shows that the number of pairwise non-isomorphic combinatorial ω -semigroups is \aleph_0 . Therefore also, if $\omega \le \delta < \omega^2$, then there are only \aleph_0 pairwise non-isomorphic combinatorial δ -regular semigroups. From Theorem 8 one now deduces $n(\omega^2) = \aleph_0$.

Every combinatorial ω^{β} -regular semigroup can be embedded as a full inverse subsemigroup in $T_{\omega^{\beta}}$. If $\omega_{\alpha} \leq \omega^{\beta} < \omega_{\alpha+1}$, then $|T_{\omega^{\beta}}| = \aleph_{\alpha}$, thus also

(16)
$$n(\omega^{\beta}) \leq \aleph_{\alpha+1}$$
 if $\omega_{\alpha} \leq \omega^{\beta} < \omega_{\alpha+1}$.

Let us consider a mapping $f: N \to \{0, 1\}$. Let us consider the system

(17)
$$\left(\omega; \left\{S_{\xi} | \xi < \omega\right\}; \left\{\phi_{\xi,\eta} | \xi \leq \eta < \omega\right\}\right)$$

where

(i) $S_{\xi} \cap S_{\eta} = \emptyset$ whenever $\xi \neq \eta$,

(ii) S_{ξ} is a copy of the bicyclic semigroup whenever $f(\xi) = 1$, and S_{ξ} is a chain of order type ω^* whenever $f(\xi) = 0$,

(iii) $\phi_{\xi,\eta}$ maps S_{ξ} onto the identity of S_{η} if $\xi < \eta < \omega$,

(iv) $\phi_{\xi,\xi}$ is the identity transformation on S_{ξ} for $\xi < \omega$.

The sum of the system (17) is denoted by S_f . If $g: N \to \{0, 1\}$ is any other mapping, with $f \neq g$, then S_f is not isomorphic to S_g . In other words, we are able to construct $2^{\aleph_0} = \aleph_1$ pairwise non-isomorphic combinatorial ω^2 -regular semigroups. Using the method of constructing Bruck-Reilly extensions, we are able to construct \aleph_1 pairwise non-isomorphic combinatorial simple ω^3 -regular semigroups. Thus, by Lemma 10 $n(\omega^\beta) \ge \aleph_1$ whenever $\omega^3 \le \omega^\beta < \omega_1$. Using (16), we have $n(\omega^\beta) = \aleph_1$ whenever $\omega^3 \le \omega^\beta < \omega_1$.

Let us now consider an initial ordinal $\omega_{\alpha} (= \omega^{\omega_{\alpha}}), \alpha \ge 1$. Let $A_1 [A_2]$ stand for the set of ordinals $\xi < \omega_{\alpha}$, which are of the form $\xi = \zeta + n$, with *n* odd [even], and where the least primitive remainder of ζ does not equal 1. Then $\omega_{\alpha} = A_1 \cup A_2$, and A_1 and A_2 both constitute well-ordered chains of order type ω_{α} . Let *f*: $A_1 \rightarrow \{0, 1\}$ by any mapping, and let S_f be the full inverse subsemigroup of T_{ω_1} . which is generated by the elements

$$\begin{pmatrix} \xi \\ \xi \end{pmatrix}, \quad \xi < \omega_{\alpha},$$
$$\begin{pmatrix} 0 \\ \omega^{\xi} \end{pmatrix}, \quad \text{for all } \xi \in A_2,$$
$$\begin{pmatrix} 0 \\ \omega^{\xi} \end{pmatrix}, \quad \text{for all } \xi \in A_1 \text{ for which } f(\xi) = 1.$$

Then S_f is a combinatorial simple ω_{α} -regular semigroup. Further, if $g: A_1 \to \{0, 1\}$ is any other mapping, with $g \neq f$, then S_f cannot be isomorphic to S_g . Thus we constructed $\aleph_{\alpha+1}$ pairwise non-isomorphic combinatorial simple ω_{α} -regular semigroups. Using Lemma 10, we see that for all $\omega_{\alpha} \leq \omega^{\beta} < \omega_{\alpha+1}$, we have $n(\omega^{\beta}) \geq \aleph_{\alpha+1}$. Yet, by (16) we also have $n(\omega^{\beta}) \leq \aleph_{\alpha+1}$ and thus the equality $n(\omega^{\beta}) = \aleph_{\alpha+1}$ prevails.

THEOREM 12. Let S be a combinatorial simple ω^{α} -regular semigroup. The greatest group homomorphic image of S is trivial if and only if α is a limit ordinal. Otherwise the greatest group homomorphic image of S is the infinite cyclic group.

PROOF. We may assume that S is a full inverse subsemigroup of $T_{\omega^{\alpha}}$. Assume that α is a limit ordinal and let $\binom{\xi}{\eta} \in S$. Then $\xi, \eta < \omega^{\beta} < \omega^{\alpha}$ for some $\beta < \alpha$. So $\binom{\xi}{\eta}\binom{\omega^{\beta}}{\omega^{\beta}} = \binom{\omega^{\beta}}{\omega^{\beta}}\binom{\xi}{\eta} = \binom{\omega^{\beta}}{\omega^{\beta}}$, and we see that $S \times S$ is the least group congruence on S.

If α is not a limit ordinal, then $\alpha = \beta + 1$ for some β . On S we may now introduce a relation ρ by

(18)
$$\binom{\xi}{\eta}\rho\binom{\xi'}{\eta'}$$
 if and only if $\omega^{\beta}m \le \xi, \xi' < \omega^{\beta}(m+1)$ and
 $\omega^{\beta}n \le \eta, \eta' < \omega^{\beta}(n+1)$ for some $m, n \in N$.

One may verify that ρ is a congruence relation, and that S/ρ is a combinatorial simple ω -regular semigroup. If $\binom{\xi}{\eta}\rho\binom{\xi'}{\eta'}$ as in (18), and if $k = \max(m, n) + 1$, then

$$\begin{pmatrix} \omega^{eta}_k \ \omega^{eta}_k \end{pmatrix} \begin{pmatrix} \xi \ \eta \end{pmatrix} \begin{pmatrix} \omega^{eta}_k \ \omega^{eta}_k \end{pmatrix} = \begin{pmatrix} \omega^{eta}_k \ \omega^{eta}_k \end{pmatrix} \begin{pmatrix} \xi' \ \eta' \end{pmatrix} \begin{pmatrix} \omega^{eta}_k \ \omega^{eta}_k \end{pmatrix},$$

which implies that $\binom{\xi}{\eta}$ and $\binom{\xi'}{\eta'}$ are related in the least group congruence on S. Thus, the greatest group homomorphic image of S coincides with the greatest homomorphic image on S/ρ , that is, it is the infinite cyclic group.

Inverse semimgroups

References

- E. H. Feller and R. L. Gantos, 'Completely injective semigroups', *Pacific J. Math.* 31 (1969), 359-366.
- [2] J. Hogan, 'Bisimple semigroups with idempotents well-ordered', Semigroup Forum 6 (1973), 298-316.
- [3] J. M. Howie, An introduction to semigroup theory (Academic Press, London, 1976).
- [4] B. P. Kočin, 'Structure of inverse ideally-simple ω-semigroups', Vestnik Leningrad. Univ. Mat. 23, nr. 7 (1968), 41-50 (in Russian).
- [5] L. Megyesi and G. Pollák, 'Uber die Struktur der Hauptidealhalbgruppen. I', Acta Sci. Math. (Szeged) 29 (1968), 261-270.
- [6] L. Megyesi and G. Pollák, 'Uber die Struktur der Hauptidealhalbgruppen. II', Acta Sci. Math. (Szeged) 39 (1977), 103–108.
- [7] L. Megyesi and G. Pollák, 'On simple principal ideal semigroups', Studia Math., to appear.
- [8] W. D. Munn, 'Regular ω-semigroups', Glasgow Math. J. (1968), 46-66.
- [9] W. D. Munn, personal communication.
- [10] M. Petrich, Structure of regular semigroups (Cahiers Mathématiques, Université des Sciences et Techniques du Languedoc, Montpellier, 1977).
- [11] N. R. Reilly, 'Bisimple ω-semigroups', Proc. Glasgow Math. Assoc. 7 (1966), 160-167.
- [12] W. Sierpiński, Cardinal and ordinal numbers (Polish Scientific Publishers, Warszawa, 1965).
- [13] R. J. Warne, 'A class of bisimple inverse semigroups', Pacific J. Math. 18 (1966), 563-577.
- [14] R. J. Warne, 'Bisimple inverse semigroups mod groups', Duke Math. J. 34 (1967), 787-812.
- [15] G. L. White, 'The dual ordinal of a bisimple inverse semigroup', Semigroup Forum 6 (1973), 295-297.

Dienst Hogere Meetkunde Rijksuniversiteit Gent Krijgslaan 281 B-9000 Gent Belgium