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ABSTRACT

In the usual model of the collective risk theory, we are interested in the severity
of ruin, as well as its probability. As a quantitative measure, we propose G(u, y),
the probability that for given initial surplus u ruin will occur and that the deficit
at the time of ruin will be less than y, and the corresponding density g(u, y). First
a general answer in terms of the transform is obtained. Then, assuming that the
claim amount distribution is a combination of exponential distributions, we
determine g; here the roots of the equation that defines the adjustment coefficient
play a central role. An explicit answer is also given in the case in which all claims
are of constant size.
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1. INTRODUCTION

In the following we shall use the model and the notation of Bowers et al. (1987,
chapter 12). Thus we consider a company with initial surplus U(0) = u, whose
surplus at time t is given by the expression

(1) U(t) = u + ct - S(t), t>0.

Here c is the constant rate at which the premiums are received, and S(t), the
aggregate claims up to time t, is a compound Poisson process given by the
parameter X (the expected number of claims per unit time) and the claim amount
distribution P(x). It is assumed that c contains a loading. Let T denote the time
of ruin (with the convention that T= <x>, if ruin does not occur), and let ^(M)
denote the probability of ruin considered as a function of the initial surplus.

It has been argued that the probability of ruin is a very crude stability criterion.
We are not just interested in the probability of ruin, but we also want to know
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FIGURE 1. The interpretation of g(u, y) dy.

how serious the situation is when ruin occurs. To obtain a quantitative answer
we introduce the function

(2) G{u, y) = Pr(7 < oo, - y < U{T) < 0),

which is a function of the variables u > 0 and y ^ 0 and is the probability that
ruin occurs and that the deficit at the time of ruin is less than y. We shall also
consider the corresponding density

\i) g(M,y) = —G{u,y)
dy

whose existence will be shown in Section 6. Thus g(u, y) dy is the probability that
ruin occurs and that U(T) will be between - y and -y+ dy (see Figure 1).
Theorem 12.2 of BOWERS et al. (1987) tells us that

(4) = - [l-P(y)].

Our main goal is to explore g(u, y) in the more interesting case when u is positive.

2. A FUNCTIONAL EQUATION

According to theorem 12.2 of BOWERS et al. (1987), the probability that the
surplus will ever fall below the initial level u and will be between u - x and
u - x + dx when it happens for the first time is

~ [ 1 - P(x)] dx.

We use this and the law of total probability to see that

(5) G(u-x,y)[l- P(x)] dx + -
C u

- P(x)] dx.

Note that \j/(u) = G(u, oo). Thus the equation for \p(u) of exercise 11 of BOWERS
et al. (1987, chapter 12) is a special case of (5).
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Differentiating (5) with respect to y, we obtain a functional equation for g:

(6) g(u,y) = - \" g{u-x,y)[\-P{x)] dx + - [l-P(u + y)].
c o J c

In the terminology of FELLER (1966), equations (5) and (6) are renewal equations
of the defective type.

Instead of determining g directly, we shall first find its transform y(r, y), which
is defined as

(7) y(r,y)= \ er"g{u,y) du.
o J

We multiply (6) by eru and integrate over u from 0 to oo. On the left-hand side
we get y(r, y). If we replace the variable u by the new integration variable
z = u - x we can simplify the resulting double integral on the right-hand side as
follows:

- [ \" en"-x) g(u-x,y)erx [I-P(x)] dx du
c o J o J

= - C C erz g(z,y) erx [1 - P(x)] dz dx
c o J o J

= — y(r>y) \ e [\ — P{x)\ dx.
C 0 J

The second term on the right-hand side can be written as

- ( er" [l-P(u + y)] du = -e~'y [ erx [ 1 - P(x)] dx.
C () J C y J

This way we obtain from (6) a linear equation for y(r,y):

X I" °° X f °°
y(r>y)--y(.i'>y) \ e" [ 1 - P W 1 c?x + - e ^ ° ' 1 erjr [ l - P ( x ) ] dx.

c o J c v J

Its solution is

(8)

J e" [ 1 - P(x)] dxlU - (X/c) j en [ 1 - P(x)] dx\ .

The remaining task is to invert this transform to obtain g(u, y). In the following
we shall look at a family of claim amount distributions in which this can be done
in a transparent way.

3. COMBINATIONS OF EXPONENTIAL DISTRIBUTIONS

Let us assume that the claim amount distribution is a combination of exponential
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distributions, i.e. that it has a probability density function of the form

(9) pW=E Afije-tj", x>0,
7=1

with fa positive and

(10) Ai + A2+--- + An=\.

In the special case when all Aj are positive, we speak of a mixture of exponential
distributions. From (9) it follows that

(11) 1 - P(x) = | ] Aj e-0'x, x>0.
7=1

We substitute this into (8) and obtain

(12) y(r, y) = (X/c) J] e~^' AJ^J - r)\\\ - (X/c) J] AJK&J - r)l .

Applying the method of partial fractions, we can write this expression in the
following form:

(13) y(r,y)=t f< CJke-^l(rk-r).
7=1 k=\

Here r\,r2,...,rn are the zeros of the denominator, i.e. the solutions of the
equation

(14) (X/c) J Ajl(0j-r)=l.
7=1

It is assumed that the n roots are distinct; of course some may be complex.
Condition (14) is the same as the condition that defines the adjustment coefficient,
see exercise 8 of BOWERS et al. (1987, chapter 12). Thus the adjustment coeffi-
cient is one of the roots; without loss of generality we may set rx = R.

The coefficients Cjk can be calculated as follows. We multiply y(r,y) by
{rm — r) and let r -> rm. If we do this in (13), the coefficient of exp( — j3jy) is Cjm.
In (12) we divide the denominator by (rm — r) and let r-*rm. Since the
denominator vanishes for r = rm, this operation gives minus the derivative of the
denominator at rm. Thus the coefficient of exp(-(3jy) is

(15) CJm = Aj\{ & - r m ) /S A,j{^-rm)2.
j

Once the roots have been determined, the coefficients can be calculated easily
from this formula.

The inversion of (13) is simple: one verifies that

(16)
7= 1 *=1

satisfies (7); therefore expression (16) is the desired solution.
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These results can also be used to determine the probability of ruin. Since

J oo

g(u, y) dy,

if follows from (16) that

(18) ^ ( M ) = 2 Ck e~r"",

where

(19) Ck=% Cjkl&j.

Formula (18) can be found in CRAMER (1955) and more recently in BOWERS et
al. (1987); in both cases the discussion is limited to mixtures of exponential
distributions. A related discussion can be found in DlCKSON and GRAY (1984).

The class of mixtures of exponential distributions is somewhat limited; for
example, the mode of such a distribution is necessarily at 0. On the contrary, the
family of combinations of exponential distributions is rather rich, though not
every choice of Aj, fij gives a probability density function. A subset of this family
consists of the sums of n independent exponential (ft,) distributed random
variables with unequal parameters (see FELLER (1966, problem 12 of chapter
1.13)). An elegant proof can be obtained by looking at the moment-generating
functions and applying the method of partial fractions. Taking the limit ft,-*- /3,
one obtains the T{n, 0) density. One may also show that the Gamma distribution
with arbitrary values of the non-scale parameter, say n-b with 0 < 8 < 1, is in
the closure of this class. It is sufficient to show that such a Gamma distribution
is a mixture of Gamma distributions with non-scale parameter n. The definition
of the Gamma function implies

~ e-txt6'1 ,

Using this we may write the Gamma (n - 8,1) density as:

" W " ' dt.
T(n-8) oJ T(«) r(n-b)T(b)

We shall show in the following section that a mixture or combination of Gamma
distributions can be handled in quite the same way as a combination of
exponential distributions.

4. COMBINATIONS OF GAMMA DISTRIBUTIONS

The advantage of considering combinations of exponentials rather than just mix-
tures lies in the fact that this class also contains distributions with mode not equal
to zero. Another way to include such distributions is to consider mixtures, or
combinations, of Gamma distributions with integer-valued non-scale parameter.
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To avoid unnecessarily complicated formulae, we shall limit our discussion to the
case where this parameter equals two, but generalization to other integer values
is straightforward. We shall not give all details of the proofs in this section. Note
that as the Gamma distribution can be written as a limit of combinations of
exponential distributions, no new situations are added when an explicit
expression for g(u, y) can be found.

Consider the following density function p(x):

(20) p(x) = t Afijxe-*", x > 0,
7=1

with (3j positive and

(21) Ai + A2+ ••• + An= 1.

From (8) one obtains after some calculation:

(22) y(r,y) =

@ 2R • — r 1

jf-^
pj / f

(X/c) S Aj - f -3 (tfy - (Sjyr + 2/3j - r) 1 - (X/c) £ Aj jf-^ •
7=1 \Pj- r) / [ j=\ (pj- r) J

Again applying the method of partial fractions, we can rewrite expression (22)
in the following form:

(23) y(r,y)= £ £ Cjk(y) e'^\{rk-r).
7=1 * = 1

Note that in this case we obtain coefficients Cjk depending on y. Here r\, ri,..., rm
are the zeros of the denominator of (22), i.e. the solutions of the equation:

(24)
7=1 KPj~r)

Once more we assume all these roots to be distinct, although the more general
case presents no insuperable difficulties. One of the roots equals the adjustment
coefficient. In the same way (15) was derived, one has:

(25) CJm(y)= -^ .2((3?y
(Pj~rm)

Inversion of (23) leads to

(26) g(u,y)=t "f
7=1 k = l

Again the probability of ruin can be obtained as:

(27) W=Sc{«-"",
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where

(28) Ck=± r CMy) e^ dy=±
Jj=\ o J j= I (Pj - rk) jj= i (Pj- rk)

The above exposition can be generalized to other integer values of the non-scale
parameter, and also to arbitrary positive real values.

5. ILLUSTRATIONS

E X A M P L E 1. Suppose that n = 2, A{ = A2 = j, /3i = 3, 02 = 7, X = l and

c = 1/3; these are the specifications of example 12.10 of B O W E R S et al. (1987).
The roots of equation (14) are n = R = 1 and r2 = 6. Then we obtain from (15)
the following coefficients:

Thus

C,,

C21

-« .

= 9/5
= 3/5

Cl2

C22

= -3 /10.
= 9/10.

V o ' - " - 'g(u, y) = 9-e~iy-" + 3-e~ ly~" - ± e~3^6" + ̂  e~

Integration over y gives

which is the result found by B O W E R S et al. (1987).

E X A M P L E 2. Let X = l , c = l and

p(x)= \2e~ix- \2e~4x, x^O.

This distribution has non-zero mode ln(4/3) = 0.288, and mean 7/12 = 0.583. In
this example/3i = 3, (32 = 4, Ai = 4, A2 = - 3 . The roots of (14) are n = R = 1 and
r2 = 5. This leads to the following coefficients:

Thus

which

£(«>

we can use

>0

to

c,,=
C21 =

obtain

3

- 3 / 2

3 _,
26

C,2 =

C22 =

4 - v ~ " + e -

1

- 3 / 2 .

- 3 , - 5 .
r-

4y-5"

EXAMPLE 3. Let X= 1, c= 1, and

p(x) = l(5e~2x- \2e~4x + 15e-6*),
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Thus « = 3, (31 = 2,/32 = 4,/33 = 6, Al = A3 = 5/4, A2 = - 3 /2 . From (14) we find
A"I = R = 1 and a pair of conjugate complex roots: r2 = 5 + i, ri = 5 — /. From (15)
we get

75. 5 ^ 2 0 , , r
 5 2 0 ;

C " ~ 68' C l 2 " 6 8 + 6 s ' ' C ' 3 ~ 68~68'

30. 36 42 3 6
 +

 4 2 /

15. 35 30 3 5 ^ 3 0 , -
C 3 I = 68 ' C 3 2 " 68~68 Z ' C " " 68 + 68'

Substituting all these parameters into (16), we get an answer that is quite accept-
able, if the calculations are done in complex mode. Alternatively, we remember
that

e'" = cos u + i sin u;

and observe that the coefficients Cji and Q3 are conjugate complex. This way we
see that

Cj2e'r^ + Cjie-r'u = 2e~ 5"[Re(C,2) cos u + Im(Q2) sin u)

and the answer can be written in the following form:

g(u, y) = (75/68)e" 2y~" - (30l68)e-4y-" + (15/68)e" 6y~ "

+ e-
2y-Su{(5l34) cos u + (20/34) sin u]

- e-
4y~4u{ (36/34) cos u + (42/34) sin u)

+ e - 6 j . - 5 w ( (35/34) cos «-(30/34) sin wj.

From this and (17) we get

65 _„ _5

EXAMPLE 4. Suppose we have good estimates of the first three moments
of a claim distribution. We want to estimate the distribution of the severity
of ruin using a combination of two Gamma (2, /3) densities, i.e. a distribution
with density:

p(x) = Ai/32e-l3'xx+ A1$\e.-filXx.

To determine the unknown parameters of p(x) by the method of moments, we
have to get A\, A2,(3i and /32 from the following set of equations:

^+A2
Pi p2
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Writing A = A\,bj = 1//3,and q3= E[XJ]j{j + 1)!, the equations can be rewritten
in a simpler form as:

Abx + (\- A)b2 = qu Ab\ + (1 - A)bl = q2, Ab\ + (1 - A)b\ = qi.

The first two equations yield

Oi - 0 2 Qi- b2

Assuming without loss of generality that /3i < 02, we must have A ^ 0, otherwise
p(x) is negative for large values of x. By the above equations, this implies
<7i < I/ft. Note that a value A € [0,1] is obtained if and only if the ratio
Var[X]I(E[X] )2 exceeds the value \ corresponding to a Gamma (2, (3) density.

Substituting the above expressions in the third equation, we obtain a quadratic
function of b2, with the following roots:

. _ (<7i<72 - qi) ± v[(<?ii?2 - qy) - 4(<?2 - <?i)(<7i<73 - qi)]

2(q\-q2)

A similar system of equations must be solved if one wishes to fit a combination
of two exponential distributions to three given moments, or to a given mean,
mode and variance.

Another necessary condition for p{x) to be non-negative is that either
p(0) > 0, or p(0) = 0 and p'(0) > 0 must hold. By fitting moments, this condi-
tion is sometimes violated, as can be seen by taking a distribution with mean and
variance 6, and third central moment 36.

To make comparison possible with results previously obtained, assume that the
moments of the distribution to be estimated are those of an exp(l) distribution,
so mean and variance are 1, and the third central moment equals 2. We obtain
the following values for the parameters of p(x):

A, = A2 = l 01 = 3-^3=1.268, /32 = 3 + J3 = 4.732.

The mode of this distribution equals 0.235. Taking X = 1, and c = 2, we find the
following roots for (24):

ri = 0.506 (This is the adjustment coefficient. For this value of the premium
rate c, the adjustment coefficient of an exp(l) distribution equals
0.5.)

r2 = 1.765, /-3 = 3.544, rA = 5.685.

The coefficients Cjk(y) for use in (26) can be obtained as:

C,', (y) = 0.147 y + 0.066, Ch (y) = 0.218.y + 0.458,
d2(y)= -0.099.y-0.054, Ch(y) = O.158j>- 0.193,
C[,(y) = 0.629^ + 0.663, Ch(y)= -O.O88.y- 0.031,
CU(y) = 0.506J- - 0.424, C24{y) = 0.029^ + 0.016.
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The probability of ruin, obtained from (27) and (28) is:

i£(«) = O.517e" °-506" - 0.070?- 1 7 6 5 u + 0.089e"3544" - O.O36e~5 685u.

The probability of ruin corresponding to the exp(l) distribution and this value
of c equals

The maximum deviation of the ruin probability obtained with the approximating
combination of Gammas and the exponential) ruin probability is 0.004.

6. A DIRECT METHOD

Equations (5) and (6) are defective renewal equations and can be solved (at least
in principle) without the use of transforms. With the notation

(29) h(x) = - [ 1 - P(x)]
c

we can write equation (5) as

S
u r> u +y

G(u- x,y) h(x) dx+ h(x) dx.
u J

By successive substitution we obtain first the following formal solution:
(30) G(u,y)= f § h*n(x) \" ^h{z) dz dx.

0 J n=0 u-x J

A rigorous proof follows from the following interpretation (combined with the
law of total probability):

S
it — x +y

h(z) dz dx

is the probability of the event that the «th record low of the surplus process is
between u-x and u - x + dx and that ruin occurs with the following record low,
such that the deficit is less than y; see theorem 12.2 of BOWERS et al. (1987).

Expression (30) shows that G{u,y) has indeed a density g(u, y). Taking
derivatives we obtain

(31) g{u,y)= f § h*n(x)h{u-x+y) dx.

In the following section we shall illustrate the application of (31) in a particular
case.

REMARK. If we set y = <x> in (30), we obtain a well-known representation for
the probability of ruin (the so-called "convolution formula").

https://doi.org/10.2143/AST.17.2.2014970 Published online by Cambridge University Press

https://doi.org/10.2143/AST.17.2.2014970


ON THE PROBABILITY AND SEVERITY OF RUIN 161

7. UNIT CLAIM AMOUNTS

Suppose that all claims are of size one. Thus, by (29),

h{x)=\jc if 0 < jf < 1; 0 otherwise.

We can write this defective probability density as

= af(x),

where a = \/c and f{x) is the uniform (0,1) density. There is an explicit
expression for the «-fold convolution of / :

(32) f*n(x) = —^-—i

This formula can be found in FELLER (1966, theorem 1, 1.9), and a very elegant
derivation is given by SHIU (1985). We prefer to write it as

Then

£ h*"(x)= £ a"fn{x)
«=0 n=0

Interchanging the order of summation, we obtain more simply:

03) 2 h*"w = Tr 2 ^ < ^ K 2 rH^-y'
n=o ax j=o y! n=j(n-j)\

dXj^o jl

Note that this is in fact a finite sum, as terms with j > x vanish. If we substitute
this expression in (31), the integration can be limited from x= (u + y— 1)+ to
x- u, where h{u - x + y) = a. The resulting integral is trivial; for u ̂  0 and
0 < y < 1, we obtain

(34)

_ y1
oa(u

f-

APPENDIX: COMPUTER IMPLEMENTATION

Implementation of the algorithm suggested in Section 3 on a computer involves
mainly elementary operations on polynomials. To solve (14), however, we must
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have a routine to compute all roots, real as well as complex, of a real polynomial.
Any textbook on numerical mathematics contains material on this; see for
instance STOER (1972). Also, any library of numerical routines such as the NAG
or the IMSL library provides adequate software. One may also consult the ACM
algorithms. Note that only for n ^ 5 may the need to iteratively compute complex
roots arise. One of the roots is the adjustment coefficient, so at least one of the
roots is real. In case all coefficients Ai are positive, one may show that all roots
of (14) are real and non-negative. In this case, simpler algorithms will suffice, for
instance the Newton-Maehly algorithm described in STOER (1972, pp. 220-221).

An algorithm to compute complex roots of real polynomials that can be pro-
grammed easily, even using an electronic spreadsheet, is the method of Bairstow.
For a motivation of the method, see STOER (1972, pp. 226-227). Its main advan-
tage is that no complex arithmetic is involved. A disadvantage is that convergence
cannot be guaranteed. PRESS et al. (1986) recommend a two-step procedure: first
find approximations to all roots and then "polish" the roots found using Bair-
tow's method.

This method works as follows. First write (14) as the following polynomial
equation:

(Al) aor" + ctir"~ ' + ••• + an-\r+ an = 0.

Next determine a quadratic divisor r2 + pr + q, where p2 — Aq < 0, as follows.
Choose a starting point (q, p) and calculate the vector (Bo, B\,..., Bn) by means
of the following recursive scheme:

Bo = tfo,

Bi = ai - pB0,

B2= 02- pB\ - qB0,

(A2) :

Bn-i = fl«-i - pBn-2- qBn-i,

Bn= a»- pBn-i-qBn-2.

Similarly, compute the vector (Co, C\,..., Cn~i) as follows:

Co = Bo,

Ci = By - pC0,

C2 = B2- pCi - qCo,

Cn~2 = Bn-2 — pCn-i — (?Cn-4,

Cn - 1 = — pCn - 2 — qCn - 3 •

With the auxiliary quantities

D = Cn-2 — C«_iC«-3,

(A4) P=Bn-iCn-2-BnCn-l,

Q = BnCn-2 ~ Bn-\Cn-\,
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we find the next approximation (q, p) as:

(A5) p:=p+PjD, q:=q + QlD.

Now restart the algorithm with these values of q and p until the old and new
values of q and p differ by less than the prescribed precision. A divisor
r2 + pr + q of the left-hand side of (14) gives two complex conjugate roots. Hav-
ing divided out this factor, run the algorithm again to determine the other roots.
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