COPERFECT MONOIDS by VICTORIA GOULD

(Received 13 September, 1985)

1. Introduction. Throughout this paper S will denote a given monoid, that is, a semigroup with an identity. A set A is a *right S-system* if there is a map $\phi: A \times S \rightarrow A$ satisfying

 $\phi(a, 1) = a$ and $\phi(a, st) = \phi(\phi(a, s), t)$

for any element a of A and any elements s,t of S. For $\phi(a, s)$ we write as and we refer to right S-systems simply as S-systems. One has the obvious definitions of an S-subsystem and an S-homomorphism.

Clearly S-systems provide the semigroup theory analogue of R-modules over a ring R. Further, many of the properties defined for S-systems are inspired by the corresponding definitions in ring theory. In particular we have projective, flat and injective S-systems, where flatness for S-systems weakens the concept of projectivity, as is the case for modules.

Many papers have been published which characterise monoids by properties of their S-systems, for example [4], [9], [10]. The properties we consider here are those of injectivity and α -injectivity, where α is any cardinal strictly greater than 1. The definition and some of the basic properties of these concepts are given in Section 2. The notion of α -injectivity was introduced for R-modules over a ring R in [3] and for S-systems in [6]. For both R-modules and S-systems the usual terminology for \aleph_0 -injective is weakly f-injective and for 2-injective is weakly p-injective. Further, if T is a semigroup or a ring and $\gamma(T)$ is a cardinal such that every right ideal of T has a generating set of fewer than $\gamma(T)$ elements, then one writes weakly injective for $\gamma(T)$ -injective. In the case of R-modules, weak injectivity coincides with injectivity, but this is not always true for S-systems [1].

Monoids over which all S-systems are α -injective (for any cardinal $\alpha > 1$) are characterised in [6]. In Section 3 we classify monoids over which all α -injective S-systems are β -injective, for various choices of cardinals α , $\beta > 1$. Our proofs are based on the construction of an α -injective S-system $A^{\{\alpha\}}$ containing any given S-system A. This method generalises the construction of the divisible S-system \overline{A} detailed in [7], where we classify monoids for whose S-systems the notions of divisibility and weak p-injectivity coincide.

The monoid S is said to be *perfect* if all flat S-systems are projective. Perfect monoids have been studied and characterised in [5] and [9]. It is clear that injectivity is a property dual to that of projectivity. By analogy with the definition of a coflat module given in [2], we introduce in [6] the concept of coflatness for S-systems as a notion dual to that of

The author acknowledges the support of the Science and Engineering Research Council in the form of a Research Studentship.

Glasgow Math. J. 29 (1987) 73-88.

flatness. However, Corollary 3.4 of [6] gives that an S-system is coflat if and only if it is weakly p-injective. In Section 4 we characterise the monoids that are dual to the perfect monoids, that is, those monoids over which all coflat S-systems are injective. We call such monoids *coperfect*.

I would like to record my thanks to Dr J. B. Fountain for his advice and encouragement whilst this work was in progress.

2. Preliminaries. An S-system A is *injective* if given any diagram of S-systems and S-homomorphisms,

where $\phi: N \to M$ is an injection, there exists an S-homomorphism $\psi: M \to A$ such that

is commutative. By imposing conditions on M and N we weaken this definition to obtain the concept of α -injectivity, as follows. Let α be any cardinal strictly greater than 1. Then an S-system A is α -injective if given any diagram of the form,

where *I* is a right ideal of *S* with a generating set of fewer than α elements, $\iota: I \to S$ is the inclusion mapping and $\theta: I \to A$ is an *S*-homomorphism, then there exists an *S*-homomorphism $\psi: S \to A$ such that

is commutative.

It is clear that an injective S-system is α -injective for any α and that an α -injective S-system is β -injective for any cardinal β such that $1 < \beta \le \alpha$. Let $\gamma = \gamma(S)$ be a cardinal such that every right ideal of S has a generating set of fewer than γ elements. As pointed out in the introduction, the usual terminology for γ -injective is weakly injective. Further, we write weakly f-injective for \aleph_0 -injective and weakly p-injective for 2-injective.

We say that an S-system A satisfies the α -Baer criterion for a cardinal $\alpha > 1$ if, given any right ideal I of S with a generating set of fewer than α elements, then for any S-homomorphism $\theta: I \to A$ there is an element a in A such that θ is given by $\theta(r) = ar$ for all r in I.

Given a system of equations Σ with constants from the S-system A, then Σ is *consistent* if Σ has a solution in some S-system containing A. If all equations in Σ are of the form xs = a, where $s \in S$ and $a \in A$, and if the same variable appears in each, then Σ is an α -system over A, where α is any cardinal larger than that of Σ . Thus Σ is an α -system over A if and only if Σ has the form

$$\Sigma = \{xs_i = a_i : j \in J, |J| < \alpha, s_i \in S, a_i \in A\}.$$

We will rely on the following two results from [6].

LEMMA 2.1. Let A be an S-system and let

 $\Sigma = \{xs_j = a_j : j \in J, |J| < \alpha, s_j \in S, a_j \in A\}$

be an α -system over A. Then the following conditions are equivalent:

(i) Σ is consistent,

(ii) for all elements h, k of S and for all elements i, j of J,

$$s_i h = s_i k \Rightarrow a_i h = a_i k.$$

PROPOSITION 2.2. Let $\alpha > 1$ be a cardinal. Then the following conditions are equivalent for an S-system A:

(i) every consistent α -system over A has a solution in A,

(ii) A satisfies the α -Baer criterion,

(iii) A is α -injective.

For an S-system A and a subset H of $A \times A$, then by $\rho(H)$ we denote the congruence generated by H, that is, the smallest congruence relation v over A such that $H \subseteq v$.

LEMMA 2.3 [10]. The ordered pair (a, b) is in $\rho(H)$ if and only if a = b or there exists a natural number n and a sequence

$$a = c_1 t_1, d_1 t_1 = c_2 t_2, \ldots, d_{n-1} t_{n-1} = c_n t_n, d_n t_n = b,$$

where t_1, \ldots, t_n are elements of S and for each $i \in \{1, \ldots, n\}$ either (c_i, d_i) or (d_i, c_i) is in H.

A sequence as in Lemma 3.3 will be referred to as a $\rho(H)$ -sequence of length n. For any congruence ρ on A the set of congruence classes of ρ can be made into an S-system, with the obvious action of S. We write A/ρ to denote this S-system and $[a]_{\rho}$, or simply [a]where ρ is understood, for the ρ -class of an element a of A.

3. Characterising monoids by their α -injective S-systems. Let α be any cardinal with $1 < \alpha \leq \aleph_0$. We begin this section by detailing a construction of an α -injective S-system $A^{[\alpha]}$ containing an arbitrary given S-system A.

Firstly, we define Σ_0, F_0, H_0 and A_1 as follows: for any natural number *n*, where $1 \le n < \alpha$, let

$$\Sigma_0^n = \{ ((s_1, a_1), \dots, (s_n, a_n)) \in (S \times A)^n :$$

s, t \in S, i, j \in \{1, \dots, n\}, s_i s = s_j t implies that $a_i s = a_j t \}.$

Then we put

$$\Sigma_0 = \bigcup_{n < \alpha} \Sigma_0^n,$$
$$F_0 = \bigcup \{ x_\sigma S : \sigma \in \Sigma_0 \}$$

that is, F_0 is the free S-system on $\{x_{\sigma} : \sigma \in \Sigma_0\}$,

$$H_0 = \{ (x_{\sigma}s_i, a_i) : \sigma \in \Sigma_0^n, n < \alpha, (s_i, a_i) = \sigma_i, i \in \{1, \ldots, n\} \},\$$

where σ_i is the *i*th component of the row vector σ . Now let

$$A_1 = (A \cup F_0)/\rho(H_0).$$

Suppose now that $a_1, a_2 \in A$ and $[a_1] = [a_2]$ in A_1 . Thus $a_1 = a_2$ or a_1 and a_2 are connected via a $\rho(H_0)$ -sequence, which it is easy to see must be of even length. If

$$a_1 = c_1 t_1, \ d_1 t_1 = c_2 t_2, \ d_2 t_2 = a_2$$

is a $\rho(H_0)$ -sequence, then $c_1 \in A$ and so $(c_1, d_1) = (a_i, x_\sigma s_i)$ for some $(x_\sigma s_i, a_i) \in H_0$, where $\sigma \in \Sigma_0^n$ say, $n < \alpha$. From $d_1 t_1 = c_2 t_2$ it follows that there exists a $j \in \{1, \ldots, n\}$ with $c_2 = x_\sigma s_j$, $d_2 = a_j$ and $(s_j, a_j) = \sigma_j$. Then $x_\sigma s_i t_1 = x_\sigma s_j t_2$ gives $s_i t_1 = s_j t_2$ and so from the definition of Σ_0 , $a_i t_1 = a_i t_2$. Hence

$$a_1 = c_1 t_1 = a_i t_1 = a_j t_2 = d_2 t_2 = a_2.$$

We now let $m \in \mathbb{N}$, m > 1 and make the inductive assumption that if b_1, b_2 are elements of A connected by a $\rho(H_0)$ -sequence of (necessarily even) length less than 2m, then $b_1 = b_2$.

Suppose that

$$a_1 = c_1 t_1, \ d_1 t_2 = c_2 t_2, \ldots, \ d_{2m} t_{2m} = a_2$$

is a $\rho(H_0)$ -sequence connecting a_1 and a_2 . As above, $a_1 = d_2 t_2$ and so

$$a_1 = c_3 t_3, \ldots, d_{2m} t_{2m} = a_2$$

is a $\rho(H_0)$ -sequence of length 2(m-1) connecting a_1 and a_2 , thus $a_1 = a_2$ by the inductive assumption. Hence A is embedded in A_1 and we may identify the element $a \in A$ with the element [a] of A_1 .

In a similar manner one constructs a sequence $A_1 \subseteq A_2 \subseteq \ldots$ using $\Sigma_1, \Sigma_2, \ldots, F_1, F_2, \ldots$ and H_1, H_2, \ldots , where Σ_i, F_i and H_i are defined using A_i in the same way that Σ_0, F_0 and H_0 are defined in terms of A. Although $\Sigma_0 \subseteq \Sigma_1 \subseteq \ldots$, at each

76

stage we choose a basis for F_i which is disjoint from the bases used for $F_0, F_1, \ldots, F_{i-1}$. For ease of notation we make the convention that for $n \in \mathbb{N}$ the $\rho(H_n)$ -class of an element a of $A_n \cup F_n$ will be denoted by $[a]_n$.

Now put $A^{[\alpha]} = \bigcup_{i \in \mathbb{N}} A_i$, where A_0 is identified with A. We claim that $A^{[\alpha]}$ is α -injective.

Let $I = \bigcup_{k \in K} s_k S$ be a right ideal of S where $|K| < \alpha$. Suppose that $\theta: I \to A^{[\alpha]}$ is an

S-homomorphism. Then for any $i, j \in K$ and $s, t \in S$, $s_j s = s_k t$ implies that $\theta(s_j)s = \theta(s_k)t$, since θ is well-defined. Since $\alpha \leq \aleph_0$, K is a finite set and so we may assume that $K = \{1, \ldots, m\}$ for some $m \in \mathbb{N}$ with $m < \alpha$. Clearly there is an $n \in \mathbb{N}$ with $\theta(s_k) \in A_n$ for all $k \in K$. Thus

$$\sigma = ((s_1, \theta(s_1)), \ldots, (s_m, \theta(s_m)))$$

is an element of Σ_n and $[y_{\sigma}]_n$ is an element of A_{n+1} , where $\{y_{\sigma} : \sigma \in \Sigma_n\}$ is the basis of F_n . Since $A_{n+1} \subseteq A^{\{\alpha\}}$, $[y_{\sigma}]_n$ is an element of $A^{[\alpha]}$. Further, for any $k \in K$,

$$\theta(s_k) = [\theta(s_k)]_n = [y_\sigma s_k]_n = [y_\sigma]_n s_k$$

and it follows that $\theta(s) = [y_{\sigma}]_n s$ for all $s \in I$. Thus $A^{[\alpha]}$ has the α -Baer criterion and so by Proposition 2.2, $A^{[\alpha]}$ is α -injective.

The results of this paper are all dependent upon the structure of $A^{[\alpha]}$.

PROPOSITION 3.1. Let $\alpha > 1$ be a cardinal. Then the following conditions are equivalent for the monoid S:

(i) all right ideals of S with a generating set of fewer than α elements are principal,

(ii) all weakly p-injective S-systems are α -injective.

Proof. (i) \Rightarrow (ii). Given (i) it is clear that the notions of weak p-injectivity and α -injectivity coincide for S-systems; thus (ii) holds.

(ii) \Rightarrow (i). To show that this implication holds we need a technical lemma.

LEMMA 3.2. Let A be an S-system and let $A^{[2]}$ be constructed as above. Suppose that there exists an element b of A_n , n > 0, such that $A \subseteq bS$. Then there exists an element c in A_{n-1} with $A \subseteq cS$.

Proof. We may assume that $b \in A_n \setminus A_{n-1}$, otherwise there is nothing to prove. If $b \in A_n \setminus A_{n-1}$ then b has the form $b = [y_\sigma u]_{n-1}$ where $u \in S$, $\sigma \in \Sigma_{n-1}$ and $\{y_\sigma : \sigma \in \Sigma_{n-1}\}$ is the basis of F_{n-1} . Given any $a \in A$ there exists $v \in S$ with a = bv, that is, $[a]_{n-1} = [y_\sigma uv]_{n-1}$. Since $a \neq y_\sigma uv$ in $A_{n-1} \cup F_{n-1}$, we have that a and $y_\sigma uv$ are connected by a $\rho(H_{n-1})$ -sequence

$$y_{\sigma}uv = c_1t_1, \ d_1t_1 = c_2t_2, \ldots, \ d_mt_m = a.$$

Thus $c_1 = y_{\sigma}s$, $d_1 = c$, where $c \in A_{n-1}$ and $\sigma = (s, c)$. Then a, ct_1 are $\rho(H_{n-1})$ -related elements of A_{n-1} and from the construction of A_{n-1} , $a = ct_1$. Hence $A \subseteq cS$ and the lemma holds.

Returning to the proof of Proposition 3.1, let $I = \bigcup_{k \in K} u_k S$ be a right ideal of S where $|K| < \alpha$. We form the weakly p-injective S-system $I^{[2]}$, which by assumption is α -injective. Thus there exists an S-homomorphism $\psi: S \to I^{[2]}$ such that

is commutative, where ι , τ are the appropriate inclusion mappings. Then for any $k \in K$,

$$u_k = \tau(u_k) = \psi\iota(u_k) = \psi(u_k) = \psi(1)u_k$$

Hence

$$I = \bigcup_{k \in K} u_k S = \bigcup_{k \in K} \psi(1) u_k S \subseteq \psi(1) S.$$

Now $\psi(1) \in I_n$ for some $n \in \mathbb{N}$. If $n \neq 0$ then we may apply Lemma 3.2 successively *n* times and obtain an element *c* in *I* such that $I \subseteq cS$. Hence in either case *I* is contained in a principal right ideal *sS* of *S*, where $s \in I$. It follows that I = sS and so *I* is principal.

COROLLARY 3.3. Let α be any cardinal such that $2 < \alpha \leq \aleph_0$. Then the following conditions are equivalent for the monoid S:

(i) all weakly p-injective S-systems are weakly f-injective,

- (ii) all weakly p-injective S-systems are α -injective,
- (iii) all weakly p-injective S-systems are 3-injective,
- (iv) all right ideals of S with a generating set of 2 elements are principal,

(v) finitely generated right ideals of S are principal.

Proof. (i) \Rightarrow (ii), (ii) \Rightarrow (iii). These implications are immediate.

(iii) \Rightarrow (iv), (v) \Rightarrow (i). These follow from Proposition 3.1.

(iv) \Rightarrow (v). Let $a, b \in S$. Then $aS \cup bS$ is a principal right ideal by (iv) and it follows that $aS \subseteq bS$ or $bS \subseteq aS$. Hence the principal right ideals of S are linearly ordered, giving that finitely generated right ideals of S are principal.

COROLLARY 3.4. The following conditions are equivalent for the monoid S:

(i) S is a principal right ideal monoid,

(ii) all weakly p-injective S-systems are weakly injective.

Proof. This is immediate from Proposition 3.1, with $\alpha = \gamma(S)$.

In order to establish our next result we need the following technical lemma.

LEMMA 3.5. Let A be an S-system and let $A^{[\aleph_0]}$ be constructed as above. Suppose that A is contained in a finitely generated S-subsystem of A_n for some n > 0. Then A is contained in a finitely generated S-subsystem of A_{n-1} .

Proof. Let $b_1, \ldots, b_m \in A_n$, n > 0, be such that $A \subseteq \bigcup_{i=1}^m b_i S$. If each b_i is in A_{n-1} then

there is nothing to prove. Thus we may assume that there is an $r \in \{1, ..., m\}$ such that $b_1, \ldots, b_r \in A_n \setminus A_{n-1}$ and $b_{r+1}, \ldots, b_m \in A_{n-1}$. From the form of A_n we have

$$b_i = [y_{\sigma_i} u_i]_{n-1} \qquad (1 \leq i \leq r),$$

where $\{y_{\sigma}: \sigma \in \Sigma_{n-1}\}$ is the basis of $F_{n-1}, \sigma_1, \ldots, \sigma_r \in \Sigma_{n-1}$ and $u_1, \ldots, u_r \in S$. Suppose further that for $i \in \{1, \ldots, r\}$, $\sigma_i \in \Sigma_{n-1}^{p(i)}$ and

$$\sigma_i = ((s_{i1}, c_{i1}), \ldots, (s_{i,p(i)}, c_{i,p(i)})).$$

Let $a \in A$. If $a \in b_i S$ for $i \in \{1, ..., r\}$ then there exists an element v of S with

$$a = [a]_{n-1} = [y_{\sigma_i} u_i v]_{n-1}.$$

As $a \neq y_{\alpha}u_iv$ in $A_{n-1} \cup F_{n-1}$, there is a $\rho(H_{n-1})$ -sequence

$$y_{\sigma_i}u_iv = c_1t_1, \ d_1t_1 = c_2t_2, \ldots, \ d_lt_l = a$$

connecting $y_{\sigma_i}u_iv$ and a. Then there exists an element $j \in \{1, \ldots, p(i)\}$ such that $c_1 = y_{\sigma_i}s_{ij}$, $d_1 = c_{ij}$. Thus a, $c_{ij}t_1$ are $\rho(H_{n-1})$ -related elements of A_{n-1} , giving that $a = c_{ij}t_1$. It follows that

$$A \subseteq \left(\bigcup_{\substack{1 \le i \le r \\ 1 \le j \le p(i)}} c_{ij}s\right) \cup \left(\bigcup_{r < k \le m} b_kS\right),$$

so proving the lemma.

PROPOSITION 3.6. Let α be a cardinal no less than \aleph_0 . Then the following conditions are equivalent for the monoid S:

(i) all right ideals of S with a generating set of fewer than α elements are finitely generated,

(ii) all weakly f-injective S-systems are α -injective.

Proof. (i) \Rightarrow (ii). Given (i) we see that the concepts of α injectivity and weak f-injectivity coincide for S-systems; hence (ii) holds.

(ii) \Rightarrow (i). Let *I* be a right ideal of *S* with a generating set of fewer than α elements. We may form $I^{[\aleph_0]}$ which is an α -injective *S*-system by assumption. Thus there is an *S*-homomorphism $\psi: S \rightarrow I^{[\aleph_0]}$ such that

is commutative, where ι, τ are the appropriate inclusion mappings. Let r be any element of I. Then

$$r = \tau(r) = \psi\iota(r) = \psi(r) = \psi(1)r$$

and so $I \subseteq \psi(1)S$. If $\psi(1) \in I$ then

$$I \subseteq \psi(1)S \subseteq IS \subseteq I$$

and so *I* is finitely generated (indeed principal). Otherwise, $\psi(1) \in I_n \setminus I_{n-1}$ for some n > 0. Then $\psi(1)S \subseteq I_n$ and so $\psi(1)S$ is a finitely generated S-subsystem of I_n . Applying Lemma 3.5 *n* times, one sees that *I* is contained in a finitely generated S-subsystem of *I*. Clearly then *I* is finitely generated.

The monoid S is *noetherian* if S satisfies the ascending chain condition on right ideals. It is well known that this is equivalent to all right ideals of S being finitely generated.

COROLLARY 3.7. Let β be a cardinal with $\gamma(S) \ge \beta \ge \aleph_1$. Then the following conditions are equivalent for the monoid S:

(i) S is noetherian,

(ii) all weakly f-injective S-systems are weakly injective,

(iii) all weakly f-injective S-systems are β -injective,

(iv) all weakly f-injective S-systems are \aleph_1 -injective,

(v) all countably generated right ideals of S are finitely generated.

Proof. (i) \Rightarrow (ii). This is immediate from Proposition 3.6, with $\alpha = \gamma(S)$. (ii) \Rightarrow (iii) \Rightarrow (iv). These are clear.

(iv) \Rightarrow (v). This follows from Proposition 3.6, with $\alpha = \aleph_1$.

 $(v) \Rightarrow (i)$. Let I be a right ideal of S. If I is not finitely generated then we may form a strictly increasing sequence of right ideals of S

$$a_1S \subset a_1S \cup a_2S \subset a_1S \cup a_2S \cup a_3S \subset \ldots,$$

where $a_i \in I$, $i \in \mathbb{N}$. Let $J = \bigcup_{i \in \mathbb{N}} a_i S$. Then J is a countably generated right ideal of S and so by assumption J is finitely generated. Thus there exist $m, n \in \mathbb{N}$ and elements b_1, \ldots, b_m of $a_1 S \cup \ldots \cup a_n S$ such that $J = \bigcup_{i=1}^m b_i S$. Then

$$\bigcup_{j=1}^{n} a_j S \subset J = \bigcup_{i=1}^{m} b_i S \subseteq \bigcup_{j=1}^{n} a_j S,$$

a contradiction. Hence I is finitely generated and as I was chosen arbitrarily, S is noetherian.

4. Coperfect monoids. The concept of a coflat module over a ring is introduced by Damiano in [2]. He develops in Proposition 1.3 of that paper an elementary criterion for a module to be coflat; we take the non-additive analogue of this criterion to define a coflat S-system. Thus an S-system is coflat if, given any elements a of A and s of S with $a \notin As$, then there exist elements h, k in S such that sh = sk but $ah \neq ak$. However, using Lemma 2.1 and Proposition 2.2, it is easy to see that an S-system A is coflat if and only if it is weakly p-injective. This fact enables us to use the structure of the coflat S-system $A^{[2]}$ to prove Proposition 4.1.

https://doi.org/10.1017/S0017089500006686 Published online by Cambridge University Press

COPERFECT MONOIDS

Before stating the result we give some definitions. For any element a of an S-system A,

$$\operatorname{ann}_{\mathbf{r}}(a) = \{(u, v) \in S \times S : au = av\}.$$

Clearly $\operatorname{ann}_{r}(a)$ is a right congrunce on S, the right annihilator congruence of a.

Conversely, given any right congruence ρ on S one defines

$$\operatorname{Ann}_{I}(\rho) = \{ s \in S : (u, v) \in \rho \text{ implies } su = sv \}.$$

Then $Ann_{l}(\rho)$ is empty or is a left ideal of S, the *left annihilator ideal of* ρ . However, this concept is too strong for our purposes and weaken it to fit our requirements, as follows.

Let ρ, v be right congruences on S and let t be an element of S. Then Ann (ρ, t, v) is defined by

Ann
$$(\rho, t, v) = Ann_{l}(\rho) \cup \{s \in S : \text{if } (u, v) \in \rho \text{ and } su \neq sv,$$

then there exist $h, k \in S$ with
 $su = th, hvk, tk = sv\}.$

Let s, t be elements of S. Then an *n*-link from s to t in S consists of *n*-tuples $\vec{p} = (p_1, \ldots, p_n), \vec{q} = (q_1, \ldots, q_n), \vec{r} = (r_1, \ldots, r_n)$ with $r_n = t$ and

$$p_1 s = q_1 r_1, \ p_{i+1} r_i = q_{i+1} r_{i+1}$$
 $(1 \le i \le n-1).$

We remind the reader that S is *coperfect* if all its coflat S-systems are injective.

PROPOSITION 4.1. The monoid S is coperfect if and only if S is a principal right ideal monoid with a left zero and S satisfies condition (CI):

(CI) For any element s of S and any right congruence ρ on S, there are elements t, u in S and right congruences $v_0 = \rho$, v_1, \ldots, v_n on S such that there is an n-link from s to t satisfying $\operatorname{ann}_r(q_i) \subseteq v_i$, $p_i \in \operatorname{Ann}(v_{i-1}, q_i, v_i)$ $(1 \leq i \leq n)$, sutps and $v_n = \{(h, k): \operatorname{suhpsuk}\}$.

Proof. Assume first that S is coperfect. Since all coflat S-systems are weakly injective Corollary 3.4 gives that S is a principal right ideal monoid.

To show that S has a left zero, regard S as an S-system and consider the diagram,

$$S^{[2]}$$

$$\int_{\tau}^{\tau} S$$

where S^0 is S with a zero adjoined and τ, ι are inclusion mappings. By assumption, $S^{[2]}$ is injective and so there is an S-homomorphism $\psi: S^0 \to S^{[2]}$ which makes the diagram

commute. For any $s \in S$,

$$\psi(0) = \psi(0s) = \psi(0)s$$

and so if $\psi(0) \in S$ it is immediate that S has a left zero. Otherwise, $\psi(0) \in S_n \setminus S_{n-1}$ for some $n \in \mathbb{N}$ and so $\psi(0)$ has the form $\psi(0) = [y_{\sigma}t]_{n-1}$, where $\{y_{\delta} : \delta \in \Sigma_{n-1}\}$ is the basis of F_{n-1} , $\sigma \in \Sigma_{n-1}$ and $t \in S$. Now $\sigma = (u, a)$ for some $u \in S$ and $a \in S_{n-1}$. If $t \in uS$, say t = uv, then

$$\psi(0) = [y_{\sigma}uv]_{n-1} = [av]_{n-1}$$

and so $\psi(0) \in S_{n-1}$, a contradiction. Thus $t \notin uS$.

For any $s \in S$, $\psi(0) = \psi(0)s$ gives $[y_{\sigma}ts]_{n-1} = [y_{\sigma}t]_{n-1}$ and as $t \notin uS$ one sees that $y_{\sigma}ts$, $y_{\sigma}t$ cannot be related by a $\rho(H_{n-1})$ -sequence. Hence $y_{\sigma}ts = y_{\sigma}t$ so that t = ts and t is a left zero of S.

Let I = sS be a principal right ideal of S and let ρ be a right congruence on S. The S-system $I\rho = \{a\rho : a \in I\}$ is an S-subsystem of S/ρ and as $I\rho^{[2]}$ is injective there is an S-homomorphism $\psi : S/\rho \to I\rho^{[2]}$ which makes the diagram

commute.

For any $(h, k) \in \rho$ we have

$$\psi(1\rho)h = \psi((1\rho)h) = \psi(h\rho) = \psi(k\rho) = \psi((1\rho)k) = \psi(1\rho)k$$

Further,

$$s\rho = \tau(s\rho) = \psi\iota(s\rho) = \psi(s\rho) = \psi((1\rho)s) = \psi(1\rho)s.$$

If $\psi(1\rho) \in I\rho$, it follows that there exists an element u of S such that susps and for any $(h, k) \in \rho$, suhpsuk. It is then easy to see that (CI) is satisfied, with n = 1, $p_1 = q_1 = 1$ and $r_1 = s$.

We now suppose that $\psi(1\rho) \in (I\rho)_n$, where n > 0. From the construction of $(I\rho)_n$ we have $\psi(1\rho) = [y_o p_1]_{n-1}$ or $\psi(1\rho) = [m]_n$, where $\{y_\delta : \delta \in \Sigma_{n-1}\}$ is the basis of F_{n-1} , $\sigma \in \Sigma_{n-1}$, $p_1 \in S$ and $m \in (I\rho)_{n-1}$. In the latter case, $(1, m) \in \Sigma_{n-1}$ and so

$$\psi(1\rho) = [m]_n = [y_{(1,m)}]_n.$$

Thus we may assume that $\psi(1\rho)$ has the former expression.

If $h,k \in S$ and $h\rho k$ then $\psi(1\rho)h = \psi(1\rho)k$ and so $[y_{\sigma}p_1h]_{n-1} = [y_{\sigma}p_1k]_{n-1}$. Thus $p_1h = p_1k$ or $y_{\sigma}p_1h$, $y_{\sigma}p_1k$ are connected by a $\rho(H_{n-1})$ -sequence

$$y_{\sigma}p_{1}h = c_{1}t_{1}, \ d_{1}t_{1} = c_{2}t_{2}, \ldots, \ d_{l}t_{l} = y_{\sigma}p_{1}k.$$

Now $\sigma \in \Sigma_{n-1}$ and so $\sigma = (q_1, m_1)$ for some $q_1 \in S$ and $m_1 \in (I\rho)_{n-1}$. It follows that $p_1 h = p_1 k$ or

$$p_1h = q_1t_1, m_1t_1\rho(H_{n-1})m_1t_l, q_1t_l = p_1k.$$

But since m_1t_1 , m_1t_l are $\rho(H_{n-1})$ -related elements of $(I\rho)_{n-1}$, $m_1t_1 = m_1t_l$. Define the right congruence v_1 on S by

$$v_1 = \operatorname{ann}_r(m_1).$$

Hence $p_1 h = p_1 k$ or

$$p_1h = q_1t_1, t_1v_1t_l, q_1t_l = p_1k$$

and so $p_1 \in \operatorname{Ann}(v_0, q_1, v_1)$, where $v_0 = \rho$. Further, if $(h, k) \in \operatorname{ann}_r(q_1)$, then $q_1 h = q_1 k$ so that $m_1 h = m_1 k$ (for $\sigma \in \Sigma_{n-1}$) and $(h, k) \in v_1$, thus $\operatorname{ann}_r(q_1) \subseteq v_1$.

Now $s\rho = [s\rho]_{n-1} = [y_{\sigma}p_{1}s]_{n-1}$ and as $s\rho \neq y_{\sigma}p_{1}s$ in $F_{n-1} \cup (I\rho)_{n-1}$ we have that $s\rho$, $y_{\sigma}p_{1}s$ are connected by a $\rho(H_{n-1})$ -sequence. This gives that $p_{1}s = q_{1}r_{1}$, $m_{1}r_{1} = s\rho$ for some $r_{1} \in S$.

One may express m_1 as $m_1 = [z_{\mu}p_2]_{n-2}$, where $\{z_{\delta} : \delta \in \Sigma_{n-2}\}$ is the basis of F_{n-2} , $p_2 \in S$ and $\mu = (q_2, m_2) \in \Sigma_{n-2}$. Again we define a right congruence v_2 on S by

$$v_2 = \operatorname{ann}_r(m_2).$$

Suppose that hv_1k , that is, $m_1h = m_1k$. Hence $p_2h = p_2k$ or $z_\mu p_2h$, $z_\mu p_2k$ are related by a $\rho(H_{n-2})$ -sequence. It follows that $p_2h = p_2k$ or there exist $t, t' \in S$ with $p_2h = q_2t$, tv_2t' , $q_2t' = p_2k$, that is, $p_2 \in Ann(v_1, q_2, v_2)$. Since $(q_2, m_2) \in \Sigma_{n-2}$, it is clear that $ann_r(q_2) \subseteq v_2$. Further, $[s\rho]_{n-2} = [z_\mu p_2 r_1]_{n-2}$ gives that $p_2r_1 = q_2r_2$, $m_2r_2 = s\rho$ for some $r_2 \in S$.

Clearly we may continue in this manner to obtain elements p_i , q_i , r_i of S and elements m_i of $(I\rho)_{i-1}$ $(1 \le i \le n)$, such that

$$p_1 s = q_1 r_1, p_{i+1} r_1 = q_{i+1} r_{i+1}$$
 $(1 \le i \le n-1).$

Further, defining $v_0 = \rho$ and $v_i = \operatorname{ann}_r(m_i)$, we have $\operatorname{ann}_r(q_i) \subseteq v_i$ and $p_i \in \operatorname{Ann}(v_{i-1}, q_i, v_i)$ $(1 \leq i \leq n)$. Also, $m_n r_n = s\rho$, where $m_n \in I\rho$. Thus there exists an element u of S with $m_n = su\rho$. This gives $s\rho = su\rho r_n = sur_n\rho$, that is, $s\rho sur_n$. Finally, for $h, k \in S$, $(h, k) \in v_n$ if and only if $m_n h = m_n k$, that is, $su\rho h = su\rho k$. Hence $(h, k) \in v_n$ if and only if $suh\rho suk$. Thus S satisfies condition (CI).

Conversely, assume that S is a principal right ideal monoid with a left zero satisfying condition (CI). Let A be a coflat S-system. We show first that given any diagram of the form,

$$\begin{array}{c} A \\ \uparrow \theta \\ S/\rho \xleftarrow{\iota} I\rho \end{array}$$

where I = sS is a principal right ideal of S and $\theta: I\rho \to A$ is an S-homomorphism, there exists an S-homomorphism $\psi: S/\rho \to A$ such that $\psi i = \theta$.

Suppose that I, ρ and θ are given as above. By assumption there exist $n \in \mathbb{N}$, elements p_i, q_i, r_i of S and right congruences v_i on S $(1 \le i \le n)$, satisfying the conditions of (CI).

Let $\phi_n: q_n S \to A$ be defined by

 $\phi_n(q_n t) = \theta(sut\rho).$

Then ϕ_n is well-defined, for if $q_n t = q_n t'$, then $(t, t') \in \operatorname{ann}_r(q_n)$ so that $(t, t') \in v_n$. Then the definition of v_n gives *sutpsut'*. Clearly ϕ_n is an S-homomorphism and since A is coflat we may extend ϕ_n to an S-homomorphism $\overline{\phi}_n : S \to A$. Now define $\xi_n : S/v_{n-1} \to A$ by

$$\xi_n(tv_{n-1}) = \bar{\phi}_n(p_n t).$$

If $tv_{n-1}t'$, then as $p_n \in Ann(v_{n-1}, q_n, v_n)$, either (a) $p_n t = p_n t'$, or (b) $p_n t = q_n v$, $vv_n v'$, $q_n v' = p_n t'$ for some $v, v' \in S$.

If (a) holds, then clearly $\xi_n(tv_{n-1}) = \xi_n(t'v_{n-1})$. If (b) holds, by the definition of v_n , suvpsuv' and so

$$\begin{split} \xi_n(t\nu_{n-1}) &= \bar{\phi}_n(p_n t) = \bar{\phi}_n(q_n v) = \phi_n(q_n v) = \theta(suv\rho) \\ &= \theta(suv'\rho) = \phi_n(q_n v') = \bar{\phi}_nq_nv') = \bar{\phi}_n(p_n t') = \xi_n(t'\nu_{n-1}). \end{split}$$

Thus ξ_n is well-defined and obviously is an S-homomorphism.

We now define $\phi_{n-1}: q_{n-1}S \rightarrow A$ by

$$\phi_{n-1}(q_{n-1}t) = \xi_n(tv_{n-1});$$

then, as $\operatorname{ann}_{r}(q_{n-1}) \subseteq v_{n-1}$, ϕ_{n-1} is a well-defined S-homomorphism. Again using the coflatness of A, we may extend ϕ_{n-1} to an S-homomorphism $\overline{\phi}_{n-1}: S \to A$. We now use $\overline{\phi}_{n-1}$ to define an S-homomorphism $\xi_{n-1}: S/v_{n-2} \to A$ by putting

$$\xi_{n-1}(tv_{n-2}) = \phi_{n-1}(p_{n-1}t).$$

To see that ξ_{n-1} is well-defined, suppose that $tv_{n-2}t'$. As above we have that either (a) $p_{n-1}t = p_{n-1}t'$ or (b) $p_{n-1}t' = q_{n-1}v$, $vv_{n-1}v'$, $q_{n-1}v' = p_{n-1}t'$ for some $v, v' \in S$. If (a) holds, it is immediate that $\xi_{n-1}(tv_{n-2}) = \xi_{n-1}(t'v_{n-2})$. If (b) holds, then

$$\begin{aligned} \xi_{n-1}(tv_{n-2}) &= \bar{\phi}_{n-1}(p_{n-1}t) = \bar{\phi}_{n-1}(q_{n-1}v) = \phi_{n-1}(q_{n-1}v) \\ &= \xi_n(vv_{n-1}) = \xi_n(v'v_{n-1}) = \phi_{n-1}(q_{n-1}v') = \bar{\phi}_{n-1}(q_{n-1}v') \\ &= \bar{\phi}_{n-1}(p_{n-1}t') = \xi_{n-1}(t'v_{n-2}). \end{aligned}$$

Clearly we may continue in this way to obtain S-homomorphisms $\phi_i:q_iS \to A$, $\bar{\phi}_i:S \to A$, $\xi_i:S/v_{i-1} \to A$ $(1 \le i \le n)$, such that

$$\phi_n(q_n t) = \theta(sut\rho),$$

$$\phi_i(q_i t) = \xi_{i+1}(tv_i) \qquad (1 \le i \le n-1)$$

and for $i \in \{1, ..., n\}$, $\overline{\phi}_i$ is an S-homomorphism extending ϕ_i and

$$\xi_i(tv_{i-1}) = \bar{\phi}_i(p_i t).$$

Thus we obtain an S-homomorphism $\psi = \xi_1 : S/\nu_0 = S/\rho \rightarrow A$. It remains to show that ψ extends θ .

We have $\psi\iota(s\rho) = \psi(s\rho) = \xi_1(s\rho) = \xi_1(sv_0) = \bar{\phi}_1(p_1s) = \bar{\phi}_1(q_1r_1) = \phi_1(q_1r_1)$ = $\xi_2(r_1v_1) = \bar{\phi}_2(p_2r_1) = \bar{\phi}_2(q_2r_2) = \phi_2(q_2r_2) = \xi_3(r_2v_2) = \dots = \xi_n(r_{n-1}v_{n-1}) = \bar{\phi}_n(p_nr_{n-1}) = \phi_n(q_nr_n) = \theta(sur_n\rho) = \theta(s\rho)$. Hence for any $st \in I$, $\psi\iota(st\rho) = \theta(st\rho)$, that is, $\psi\iota = \theta$.

Now suppose that N is an S-subsystem of an S-system M and $\phi: N \to A$ is an S-homomorphism. Consider the partially ordered set whose members are pairs (N', ϕ') , where N' is an S-subsystem of M containing N and $\phi': N' \to A$ is an S-homomorphism extending ϕ and \leq is defined by

 $(N', \phi') \leq (N'', \phi'')$ if and only if $N' \subseteq N''$ and ϕ'' extends ϕ' .

By Zorn's lemma, this set has a maximal member, say (P, θ) . If $P \neq M$, choose $m \in M \setminus P$ and put $I = \{s \in S : ms \in P\}$.

If $I = \emptyset$, then $mS \cap P = \emptyset$ and we may define a function $\xi : mS \cup P \to A$ by

$$\xi(ms) = as_0,$$

$$\xi(p) = \theta(p) \qquad (p \in P).$$

where s_0 is a left zero of S and a is a fixed element of A. We have

$$\xi(mst) = as_0 = as_0t = \xi(ms)t$$

and it follows that ξ is an S-homomorphism strictly extending θ , that is, $(P, \theta) < (mS \cup P, \xi)$, contradicting the maximality of (P, θ) . Thus $I \neq \emptyset$ and it follows that I is a principal right ideal of S, say I = sS.

Define a right congruence ρ on S by

 $h\rho k$ if and only if mh = mk,

that is, $\rho = \operatorname{ann}_{r}(m)$. Let $\lambda: I\rho \to A$ be defined by $\lambda(st\rho) = \theta(mst)$. Since $\rho = \operatorname{ann}_{r}(m)$, it is clear that λ is a well-defined S-homomorphism. Hence there is an S-homomorphism $\mu: S/\rho \to A$ which extends λ . Now define $\psi: mS \cup P \to A$ by

$$\psi(mt) = \mu(t\rho),$$

 $\psi(p) = \theta(p) \qquad (p \in P).$

If mt = mt', then $t\rho t'$ so that $\psi(mt) = \psi(mt')$. If mt = p for some $p \in P$, then $t \in I$ and so t = st' for some $t' \in S$. Thus

$$\psi(mt) = \mu(t\rho) = \mu(st'\rho) = \lambda(st'\rho) = \theta(mst') = \theta(mt) = \theta(p) = \psi(p)$$

and so ψ is a well-defined S-homomorphism. But $(P, \theta) < (mS \cup P, \psi)$, a contradiction. Hence P = M and A is injective. Since A is an arbitrary coflat S-system, the monoid S is coperfect.

To establish our next corollary we need a technical lemma.

LEMMA 4.2. Let I = sS be a principal right ideal of the monoid S and ρ a right congruence on S. Suppose that $n \in \mathbb{N}$ and there exists elements p_i , q_i , r_i of S and right

congruences v_i on S $(1 \le i \le n)$ satisfying the conditions of (CI). Suppose further that q_i is regular for $i \in \{1, ..., n\}$. Then there exists an element x of S such that if $h, k \in S$ and $h\rho k$, then suxhosuxk and further, stosuxst, for any $st \in I$.

Proof. Let $i \in \{1, \ldots, n\}$. We show that for any $h, k \in S$,

$$hv_{i-1}k \Rightarrow q'_i p_i hv_i q'_i p_i k,$$

where $q_i q'_i q_i = q_i$.

Given $q_i q'_i q_i = q_i$, $(q_i q'_i, 1) \in \operatorname{ann}_r(q_i)$ and so $q'_i q_i v_i 1$. Now since $p_i \in \operatorname{Ann}(v_{i-1}, q_i, v_i)$, either (a) $p_i h = p_i k$ or (b) $p_i h = q_i h'$, $h' v_i k'$, $q_i k' = p_i k$ for some h', $k' \in S$.

If (a) holds, then $q'_i p_i h = q'_i p_i k$ and so certainly $q'_i p_i h v_i q'_i p_i k$. If (b) holds, then

 $q'_i p_i h = q'_i q_i h' v_i h' v_i k' v_i q'_i q_i k' = q'_i p_i k$

and so our claim is correct. It follows that if $h\rho k$ then xhv_nxk , where $x = q'_n p_n q'_{n-1} p_{n-1} \dots q'_1 p_1$. Hence if $h\rho k$, then suxhpsuxk.

Now $s\rho s$, that is, sv_0s , so $q'_1p_1sv_1q'_1p_1s$, which gives $q'_1q_1r_1v_1q'_1p_1s$. But $1v_1q'_1q_1$, so that $r_1v_1q'_1q_1r_1$, hence $r_1v_1q'_1p_1s$. Thus $q'_2p_2r_1v_2q'_2p_2q'_1p_1s$ and so $q'_2q_2r_2v_2q'_2p_2q'_1p_1s$, giving $r_2v_2q'_2p_2q'_1p_1s$. Clearly we may continue in this manner to obtain r_nv_nxs . Thus $sur_n\rho suxs$, hence $s\rho suxs$ and so for any $st \in I$, $st\rho suxst$.

If all S-systems are injective, then S is a completely right injective monoid. We may now deduce the following result which appears in [4], [8] and [11].

COROLLARY 4.3. The monoid S is completely right injective if and only if

(a) S has a left zero, and

(b) for any right ideal I of S and right congruence ρ on S, there is an element y of I such that for any $t \in I$, ytpt and for any $h, k \in S$ with $h\rho k$, $yh\rho yk$.

Proof. If S is completely right injective, then clearly all coflat S-systems are injective. Thus S has a left zero, all right ideals of S are principal and S satisfies condition (CI). Further, all S-systems are coflat and so by Proposition 4.1 of [6], S is regular.

Let I be a right ideal of S and ρ a right congruence on S. Then I = sS for some $s \in S$ and since S is regular and satisfies (CI), it follows from Lemma 4.2 that there is an element x of S such that $h\rho k$ implies suxh $\rho suxk$ and $t\rho suxt$ for any $t \in I$. Putting y = sux, we see that (b) holds.

Conversely, suppose that S satisfies (a) and (b). Let I be a right ideal of S and ρ the equality relation on S. Then there is an element y of I with $y_s = s$ for any $s \in I$. Hence

$$I = yI \subseteq yS \subseteq I,$$

so that I = yS and I is principal.

As in the proof of Proposition 4.1, S satisfies condition (CI). Thus all coflat S-systems are injective.

Let $s \in S$. Then as above there is an element y of sS with ys = s; hence s is a regular element and so S is a regular monoid. Thus all S-systems are coflat and hence injective, that is, S is a completely right injective monoid.

We end this section by using Proposition 4.1 to give an example of a coperfect monoid that is not completely right injective.

COROLLARY 4.4. Let S be the infinite cyclic monoid generated by the element a. Then S^0 is a coperfect monoid which is not completely right injective.

Proof. Since the only regular elements of S^0 are 0 and 1 (= a^0), S^0 is not a regular monoid and so, by Proposition 4.1 of [6], not all S-systems are coflat. Hence S^0 is certainly not completely right injective.

The monoid S^0 is commutative and is a principal ideal monoid. Further, S^0 is 0-cancellative and has no zero-divisors.

Let $s \in S^0$ and let ρ be a congruence on S^0 . If s = 0, take n = 1 and put $p_1 = q_1 = u = 1$ and $r_1 = 0$. Then $p_1 s = q_1 r_1$ and $sur_1 = 0$ so that $sur_1\rho s$. Further, $(h, k) \in ann_r(q_1)$ if and only if h = k and so $ann_r(q_1)$ is contained in every congruence on S. Let $v_1 = \{(h, k): suh\rho suk\}$; as s = 0 we have that v_1 is the trivial congruence $S^0 \times S^0$. If $h, k \in S^0$ and $h\rho k$, then 1h = 1h, $hv_1 k$, 1k = 1k and so $1 \in Ann(\rho, 1, v_1)$.

We now suppose that $s \neq 0$. If $\rho = I_{S^0}$, the identity relation on S^0 , then we again take n = 1 and put $p_1 = r_1 = u = 1$ and $q_1 = s$. Letting $v_1 = \{(h, k): sh\rho sk\}$, we have $v_1 = \{(h, k): sh = sk\} = I_{S^0}$. Now $p_1 s = q_1 r_1$ and $sur_1 \rho s$. Also, $ann_r(q_1) = ann_r(s) = I_{S^0}$ and so $ann_r(q_1) \subseteq v_1$. Since $\rho = I_{S^0}$, it is clear that $1 \in Ann(\rho, s, v_1)$.

If $\rho \neq I_{S^0}$, we may choose an element t of S^0 such that there is an element z of S^0 with $t\rho z$, $t \neq z$ and tS^0 is the maximal ideal with this property. Clearly $t \neq 0$. If z = 0, then $t\rho 0$ so that $t^2\rho 0\rho t$ and $t\rho t^2$. Now $t = t^2$ if and only if t = 1. If t = 1, then $1\rho 0$ and so $b\rho 0$ for all elements b of S^0 . This gives that ρ is trivial. However, if ρ is trivial, then putting n = 1, $p_1 = q_1 = r_1 = u = 0$ and $v_1 = S^0 \times S^0$, it is easy for us to see that the conditions of (CI) are satisfied.

Thus we may assume that $\rho \neq I_{S^0}$, $\rho \neq S^0 \times S^0$ and there exist non-zero elements t, z of S^0 such that $t\rho z$, $t \neq z$ and tS^0 is maximal with respect to this property.

Since S^0 is a principal ideal monoid, either $tS^0 \subseteq sS^0$, or $sS^0 \subseteq tS^0$. Suppose firstly that $tS^0 \subseteq sS^0$. Take n = 1 and put $p_1 = r_1 = u = 1$ and $q_1 = s$. Then $p_1s = q_1r_1$ and $sur_1\rho s$. Let $v_1 = \{(h, k): sh\rho sk\}$. Then $ann_r(q_1) = ann_r(s) = I_{S^0}$ and so $ann_r(q_1) \subseteq v_1$. It remains to prove that $1 \in Ann(\rho, s, v_1)$. Let $v, v' \in S^0$ and suppose that $v\rho v'$. If v = v', then clearly 1v = 1v'. If $v \neq v'$, then $v, v' \in tS^0$ and so v = sh, v' = sk for some $h, k \in S^0$. Then from $sh\rho sk$ we have that hv_1k and so $1 \in Ann(\rho, s, v_1)$, as required.

Assume now that $sS^0 \subseteq tS^0$. We know that there are natural numbers c, d, e with $t = a^c$, $z = a^d$, d = c + e and e > 0. Then $t\rho a^{c+me}$ for all $m \in \mathbb{N}$ and so we may choose an element w of S such that $wS^0 \subseteq sS^0 \subseteq tS^0$ and $t\rho w$.

Let y, k be the elements of S with s = ty, w = sk. Then $s\rho wy$ and wy = sky. Take n = 2 and put u = 1,

$$p_{1} = 1, q_{1} = t, r_{1} = y,$$

$$p_{2} = w, q_{2} = s, r_{2} = ky,$$

$$v_{1} = \{(h, h'): th\rho th'\},$$

$$v_{2} = \{(h, h'): sh\rho sh'\}.$$

Then $p_1s = s = ty = q_1r_1$, $p_2r_1 = wy = sky = q_2r_2$ and $sur_2 = sky = wy\rho s$. Since q_1 , q_2 are non-zero, $\operatorname{ann}_r(q_1) \subseteq v_1$ and $\operatorname{ann}_r(q_2) \subseteq v_2$.

If $v, v' \in S^0$, $v\rho v'$ and $v \neq v'$, then v = th, v' = th' for some $h, h' \in S^0$. Thus $th\rho th'$ and so hv_1h' , which gives that $1 \in Ann(\rho, t, v_1)$, that is, $p_1 \in Ann(v_0, q_0, v_1)$.

Finally, if v, v' are elements of S^0 such that vv_1v' , then $tv\rho tv'$ and so $wv\rho wv'$ as $wS^0 \subseteq tS^0$. Now wv = skv and wv' = skv', giving $skv\rho skv'$ and kvv_2kv' . Thus $w \in Ann(v_1, s, v_2)$, that is, $p_2 \in Ann(v_1, q_2, v_2)$. This completes the proof that S^0 satisfies condition (CI).

REFERENCES

1. P. Berthiaume, The injective envelope of S-sets, Canad. Math. Bull. 10 (1967), 261-273.

2. R. F. Damiano, Coflat rings and modules, Pacific J. Math. 81 (1969), 349-369.

3. P. Eklof and G. Sabbagh, Model-completions and modules, Annals Math. Logic 2 (1970-71), 251-295.

4. J. B. Fountain, Completely right injective semigroups, Proc. London Math. Soc. 28 (1974), 28-44.

5. J. B. Fountain, Perfect semigroups, Proc. Edinburgh Math. Soc. (2) 20 (1976-77), 87-93.

6. V. A. R. Gould, The characterisation of monoids by properties of their S-systems, Semigroup Forum 32 (1985), 251-265.

7. V. A. R. Gould, Divisible S-systems and R-modules, Proc. Edinburgh Math. Soc. to appear.

8. J. R. Isbell, Beatific semigroups, J. Algebra 23 (1972), 228-238.

9. J. R. Isbell, Perfect monoids, Semigroup Forum 2 (1971), 95-118.

10. P. Normak, Purity in the category of M-sets, Semigroup Forum 20 (1980), 157-170.

11. K. Shoji, Completely right injective semigroups, Math. Japon. 24 (1979-80), 609-615.

UNIVERSITY OF YORK

Present address:

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MANCHESTER MANCHESTER M13 9PL