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1. Introduction. Throughout this paper 5 will denote a given monoid, that is, a
semigroup with an identity. A set A is a right S-system if there is a map 0 :A x 5-»,4
satisfying

0(a, 1) = a and 0(a, si) = 0 ( 0 0 , s), f)

for any element a of A and any elements s,f of 5. For <p(a,s) we write as and we refer to
right 5-systems simply as 5-systems. One has the obvious definitions of an 5-subsystem
and an 5-homomorphism.

Clearly 5-systems provide the semigroup theory analogue of i?-modules over a ring
R. Further, many of the properties defined for 5-systems are inspired by the correspond-
ing definitions in ring theory. In particular we have projective, flat and injective
5-systems, where flatness for 5-systems weakens the concept of projectivity, as is the case
for modules.

Many papers have been published which characterise monoids by properties of their
5-systems, for example [4], [9], [10]. The properties we consider here are those of
injectivity and a-injectivity, where a is any cardinal strictly greater than 1. The definition
and some of the basic properties of these concepts are given in Section 2. The notion of
cv-injectivity was introduced for i?-modules over a ring R in [3] and for 5-systems in [6].
For both 7?-modules and 5-systems the usual terminology for X0-injective is weakly
f-injective and for 2-injective is weakly p-injective. Further, if T is a semigroup or a ring
and y(T) is a cardinal such that every right ideal of T has a generating set of fewer than
y(T) elements, then one writes weakly injective for y(r)-injective. In the case of
/?-modules, weak injectivity coincides with injectivity, but this is not always true for
5-systems [1].

Monoids over which all S-systems are ar-injective (for any cardinal a- > 1) are
characterised in [6]. In Section 3 we classify monoids over which all ar-injective 5-systems
are /3-injective, for various choices of cardinals a, /3 > 1. Our proofs are based on the
construction of an a-injective 5-system A^ containing any given 5-system A. This
method generalises the construction of the divisible 5-system A detailed in [7], where we
classify monoids for whose 5-systems the notions of divisibility and weak p-injectivity
coincide.

The monoid 5 is said to be perfect if all flat 5-systems are projective. Perfect monoids
have been studied and characterised in [5] and [9]. It is clear that injectivity is a property
dual to that of projectivity. By analogy with the definition of a coflat module given in [2],
we introduce in [6] the concept of coflatness for 5-systems as a notion dual to that of
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74 VICTORIA GOULD

flatness. However, Corollary 3.4 of [6] gives that an 5-system is coflat if and only if it is
weakly p-injective. In Section 4 we characterise the monoids that are dual to the perfect
monoids, that is, those monoids over which all coflat 5-systems are injective. We call such
monoids coperfect.

I would like to record my thanks to Dr J. B. Fountain for his advice and
encouragement whilst this work was in progress.

2. Preliminaries. An 5-system A is injective if given any diagram of 5-systems and
5-homomorphisms,

A

where <p:N—*M is an injection, there exists an 5-homomorphism %I>:M—>A such that

A

is commutative. By imposing conditions on M and N we weaken this definition to obtain
the concept of a"-injectivity, as follows. Let a be any cardinal strictly greater than 1. Then
an 5-system A is a-injective if given any diagram of the form,

where / is a right ideal of 5 with a generating set of fewer than a elements, t: /—» 5 is the
inclusion mapping and 6:I->A is an 5-homomorphism, then there exists an 5-
homomorphism xp:S-*A such that

A

is commutative.
It is clear that an injective 5-system is ar-injective for any a and that an a-injective

5-system is /3-injective for any cardinal j8 such that 1< /? ^ a. Let y = y(S) be a cardinal
such that every right ideal of 5 has a generating set of fewer than y elements. As pointed
out in the introduction, the usual terminology for y-injective is weakly injective. Further,
we write weakly f-injective for K0-injective and weakly p-injective for 2-injective.
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We say that an 5-system A satisfies the a-Baer criterion for a cardinal a > 1 if, given
any right ideal I of S with a generating set of fewer than a elements, then for any
5-homomorphism 6:1—> A there is an element a in A such that 6 is given by 8(r) = ar for
all r in /.

Given a system of equations 2 with constants from the 5-system A, then 2 is
consistent if 2 has a solution in some 5-system containing A. If all equations in 2 are of
the form xs = a, where s e S and a e A, and if the same variable appears in each, then 2 is
an a-system over A, where a is any cardinal larger than that of 2. Thus 2 is an cr-system
over A if and only if 2 has the form

2 = {xsj = a, :j e J, \J\ < a, s, e 5, a; e A).

We will rely on the following two results from [6].

LEMMA 2.1. Let A be an S-system and let

2 = {xs, = a, :jeJ, \J\ < a, st e 5, a,- e ,4}

be an a-system over A. Then the following conditions are equivalent:
(i) 2 is consistent,

(ii) for all elements h, k of S and for all elements i, j of J,

sfi = Sjk =^ ajh = ajk.

PROPOSITION 2.2. Let a > 1 be a cardinal. Then the following conditions are equivalent
for an S-system A:

(i) every consistent a-system over A has a solution in A,
(ii) A satisfies the a-Baer criterion,
(iii) A is a-injective.

For an 5-system A and a subset H of Ax A, then by p(H) we denote the congruence
generated by H, that is, the smallest congruence relation v over A such that H cv.

LEMMA 2.3 [10]. The ordered pair (a, b) is in p(H) if and only if a = b or there exists
a natural number n and a sequence

where tlt . . . , tn are elements of S and for each i e {1, . . . , n} either (c,, d,) or (dh c,) is in
H.

A sequence as in Lemma 3.3 will be referred to as a p(H)-sequence of length n. For
any congruence p on A the set of congruence classes of p can be made into an 5-system,
with the obvious action of 5. We write A/p to denote this 5-system and [a]p, or simply [a]
where p is understood, for the p-class of an element a of A.

3. Characterising monoids by their a-injective S-systeins. Let a be any cardinal
with 1< a < Ko. We begin this section by detailing a construction of an a--injective
5-system A[a] containing an arbitrary given 5-system A.
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Firstly, we define I.0,F0,H0 and Ax as follows: for any natural number n, where
1 < n < a, let

Z.no={((sl,a1),...,(sn,an))e(SxA)":

s, teS, i, j e {1, . . . , n), sts = Sjt implies that ats = ajt}.

Then we put

that is, Fo is the free 5-system on {xa : a e 20}>

Ho = {(xaSj, a , ) : o e I S , n < a, (sh a ,) = a,, ie{l,..., n } } ,

where a, is the ith component of the row vector a. Now let

Ax = (AUF0)/p(H0).

Suppose now that ax,a-i^.A and [aj = [̂ 2] in A^ Thus 0̂  = 02 or aj and a2 are
connected via a p(/J0)-sequence, which it is easy to see must be of even length. If

ax = c1tl, dxtx = c2t2, d2t2 = a2

is a p(//0)-sequence, then c1eA and so (c1; dx) = (a,, xaSj) for some (xash a,) e Wo, where
oeZo say, n<ar . From d1t1 = c2t2 it follows that there exists a ; e { l , . . . , « } with
c2 = xCT5;, d2 =

 fly a n d (s,-, a/) = a,. Then jcas,-fi = xaSjt2 gives 5,^ = s/2 and so from the
definition of 2 0 , «,'i = ajh- Hence

ai = C\h = c^ih — Ojh ~ d2t2 = a2.

We now let m e N, m>\ and make the inductive assumption that if bu b2 are
elements of A connected by a p(//0)-sequence of (necessarily even) length less than 2m,
then b1 = b2-

Suppose that

ax = Cjfj, dxt2 = c2t2,. . . , d2mt2m = a2

is a p(//0)-sequence connecting ax and a2. As above, ax = d2t2 and so

fli = c3t3,..., d2mt2m = a2

is a p(//0)-sequence of length 2(m — 1) connecting ax and a2, thus aj = a2 by the inductive
assumption. Hence A is embedded in /ij and we may identify the element a eA with the
element [a] of Ax.

In a similar manner one constructs a sequence / 4 i C / 4 2 g . . . using
2 1 ; 22> • • • > 1̂> ^2. • • • a n d ^i» H2,..., where 2,, /^ and Ht are defined using At in the
same way that 20 , i^ and /f0

 a r e defined in terms of A. Although 2 0 c S] c . . . , at each
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stage we choose a basis for Ft which is disjoint from the bases used for Fo, Fx, . . . , Fj_v

For ease of notation we make the convention that for n e N the p(//n)-class of an element
a of An U Fn will be denoted by [a]n.

Now put Ala] = U Ah where Ao is identified with A. We claim that A[a] is
ar-injective. ieN

Let / = U skS be a right ideal of 5 where \K\ <a. Suppose that d:I—>AM is an
keK

S-homomorphism. Then for any i, j e K and s, t eS, SjS = skt implies that 8(sj)s = 6(sk)t,
since 6 is well-defined. Since ar<X0) K is a finite set and so we may assume that
K = {1,. . . , m} for some m eN with m<a. Clearly there is an n e Py with 6(sk) e An for
all keK. Thus

o = ((su6(sx)),...,(sm,e(sm))

is an element of 2n and [yCT]n is an element of An+l, where {ya:oe2n} is the basis of Fn.
Since An+1 cAia\ [ya]n is an element of Al<*\ Further, for any keK,

= [0(sk)1 = \yask]n = [ya]nsk

and it follows that d(s) = [ya]ns for all s el. Thus A[a] has the cr-Baer criterion and so by
Proposition 2.2, A1"^ is a-injective.

The results of this paper are all dependent upon the structure of Ala\

PROPOSITION 3.1. Let a>l be a cardinal. Then the following conditions are equivalent
for the monoid S:

(i) all right ideals of S with a generating set of fewer than a elements are principal,
(ii) all weakly p-injective S-systems are a-injective.

Proof. (i)=>(ii). Given (i) it is clear that the notions of weak p-injectivity and
a-injectivity coincide for 5-systems; thus (ii) holds.

(ii)^>(i). To show that this implication holds we need a technical lemma.

LEMMA 3.2. Let A be an S-system and let /4'2' be constructed as above. Suppose that
there exists an element b of An, n>0, such that A c bS. Then there exists an element c in
/ln_i with A ccS.

Proof. We may assume that b eAn\An-u otherwise there is nothing to prove. If
b ey4n\i4n_! then b has the form b = [yau]n^i where ueS, a e 2 n _ ! and { y / d e l , . , } is
the basis of Fn_j. Given any aeA there exists veS with a = bv, that is, [#]„_! =
[_youu]n_1. Since a±yauv in An_x\JFn_x, we have that a and yauv are connected by a
p(//n_!)-sequence

dxtx = c2t2, . . . ,dmtm=a.

Thus c1=yas, dx = c, where ceAn^ and o = (s,c). Then a, ctx are p(//n_!)-related
elements of An-X and from the construction of /4n_1; a=ctx. Hence Ac.cS and the
lemma holds.
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Returning to the proof of Proposition 3.1, let / = U ukS be a right ideal of S where
keK

\K\ < a. We form the weakly p-injective S-system /|2], which by assumption is <*-injective.
Thus there exists an 5-homomorphism i/>:S—»/'2' such that

is commutative, where i, r are the appropriate inclusion mappings. Then for any keK,

uk = T(W*) = ipi{uk) = y(uk) = ip{\)uk.

Hence
/= U ukS= U V(l)ukScy(l)S.

keK keK

Now i/;(l) e /„ for some n eN. If n =£ 0 then we may apply Lemma 3.2 successively n times
and obtain an element c in I such that / c cS. Hence in either case / is contained in a
principal right ideal sS of 5, where s el. It follows that I = sS and so / is principal.

COROLLARY 3.3. Let a be any cardinal such that 2<a / ^X 0 . Then the following
conditions are equivalent for the monoid S:

(i) all weakly p-injective S-systems are weakly f-injective,
(ii) all weakly p-injective S-systems are a-injective,
(iii) all weakly p-injective S-systems are 3-injective,
(iv) all right ideals of S with a generating set of 2 elements are principal,
(v) finitely generated right ideals of S are principal.

Proof. (i)=>(ii), (ii)=>(iii). These implications are immediate.
(iii) => (iv), (v)^>(i). These follow from Proposition 3.1.
(iv) => (v). Let a, b eS. Then aS U 65 is a principal right ideal by (iv) and it follows

that aS c bS or bS c aS. Hence the principal right ideals of S are linearly ordered, giving
that finitely generated right ideals of 5 are principal.

COROLLARY 3.4. The following conditions are equivalent for the monoid S:
(i) 5 is a principal right ideal monoid,
(ii) all weakly p-injective S-systems are weakly injective.

Proof. This is immediate from Proposition 3.1, with a = y(S).

In order to establish our next result we need the following technical lemma.

LEMMA 3.5. Let A be an S-system and let /41*0' be constructed as above. Suppose that
A is contained in a finitely generated S-subsystem of An for some n > 0. Then A is
contained in a finitely generated S-subsystem of An-X.

m

Proof. Let 61} . . . , bm e An, n > 0, be such that A c 1J btS. If each bt is in An_x then
i
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there is nothing to prove. Thus we may assume that there is an r e {1, . . . , m) such that
bl,. . . , breAn\An_x and br+1,. . . , bm e An_x. From the form of An we have

where {yo: a e Zn_i} is the basis of Fn_u o1, . . . , ore 2n_j and ux,. .., ur e S. Suppose
further that for i e {1, . . . , r), a, e Zp

n
{i\ and

°i = \\Sil> CiV> • • • > {,$i,p(i)> ci,p(i))j-

Let a e A. If a e 6,-S for i e {1, . . . , r} then there exists an element v of S with

a = [a]n_i = [y,7ju/v]n_1.

As a ¥=ya.UiV in /!„_! U F,,-!, there is a p(//n_!)-sequence

connecting yaUjV and a. Then there exists an element j e {1, . . ., p(i)} such that
ci =y<JiSij> dx = c^. Thus a, c ^ are p(//n_!)-related elements of An-X, giving that a = ctjtx.
It follows that

sf U cijS)u( U 6*5),

so proving the lemma.

PROPOSITION 3.6. Let a be a cardinal no less than Xo. Then the following conditions
are equivalent for the monoid S:

(i) all right ideals of S with a generating set of fewer than a elements are finitely
generated,

(ii) all weakly f-injective S-systems are a-injective.

Proof. (i)=>(ii). Given (i) we see that the concepts of a injectivity and weak
f-injectivity coincide for S-systems; hence (ii) holds.

(ii) => (i). Let / be a right ideal of S with a generating set of fewer than a elements.
We may form /INo1 which is an a-injective 5-system by assumption. Thus there is an
5-homomorphism i/;:5-»/[Ko1 such that

S*-^-l

is commutative, where i,x are the appropriate inclusion mappings. Let r be any element
of /. Then

r = r(r)

and so / c tp(l)S. If V(l) e / then
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and so / is finitely generated (indeed principal). Otherwise, i//(l) e / n \ / n_! for some
n >0. Then ^(1)5 cln and so t/»(l)5 is a finitely generated 5-subsystem of /„. Applying
Lemma 3.5 n times, one sees that / is contained in a finitely generated 5-subsystem of /.
Clearly then / is finitely generated.

The monoid 5 is noetherian if 5 satisfies the ascending chain condition on right ideals.
It is well known that this is equivalent to all right ideals of 5 being finitely generated.

COROLLARY 3.7. Let P be a cardinal with Y(S) = P = KI. Then the following
conditions are equivalent for the monoid 5:

(i) 5 is noetherian,
(ii) all weakly f-injective S-systems are weakly injective,

(iii) all weakly f-injective S-systems are fi-injective,
(iv) all weakly f-injective S-systems are i<rinjective,
(v) all countably generated right ideals of S are finitely generated.

Proof. (i)=£>(ii). This is immediate from Proposition 3.6, with a = y(S).
(ii)=>(iii), (iii)^(iv). These are clear,
(iv) ̂  (v). This follows from Proposition 3.6, with a - X^
(v) => (i). Let / be a right ideal of 5. If / is not finitely generated then we may form a

strictly increasing sequence of right ideals of 5

axS a aiS U a2S a ajS U a2S U a3S a . . . ,

where a, el, ie N. Let J = U atS. Then/ is a countably generated right ideal of S and so
ieN

by assumption J is finitely generated. Thus there exist m,n e N and elements bu . . . , bm
m

of axS U . . . U anS such that / = U btS. Then
1=1

U U M U A
7 = 1 < = 1 ; = 1

a contradiction. Hence / is finitely generated and as / was chosen arbitrarily, S is
noetherian.

4. Coperfect monoids. The concept of a coflat module over a ring is introduced by
Damiano in [2]. He develops in Proposition 1.3 of that paper an elementary criterion for
a module to be coflat; we take the non-additive analogue of this criterion to define a coflat
5-system. Thus an 5-system is coflat if, given any elements a of A and s of 5 with a $ As,
then there exist elements h, kin S such that sh = sk but ah ^ ak. However, using Lemma
2.1 and Proposition 2.2, it is easy to see that an 5-system A is coflat if and only if it is
weakly p-injective. This fact enables us to use the structure of the coflat 5-system A[2] to
prove Proposition 4.1.
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Before stating the result we give some definitions. For any element a of an 5-system

' annr(a) = {(«, v)eS xS.au = av}.

Clearly annr(a) is a right congrunce on 5, the right annihilator congruence of a.
Conversely, given any right congruence p on S one defines

Ann^p) = {s eS:(u, v) ep implies su = sv}.

Then Ann,(p) is empty or is a left ideal of S, the left annihilator ideal of p. However, this
concept is too strong for our purposes and weaken it to fit our requirements, as follows.

Let p, v be right congruences on 5 and let t be an element of 5. Then Ann(p, t, v) is
denned by

Ann(p, t, v) = Ann,(p) U {s e S: if (u, v) e p and su =£ sv,

then there exist h, keS with

su = th, hvk, tk = sv}.

Let s, t be elements of S. Then an n-link from s to t in S consists of n-tuples
p = (/?!, . . . , pn), q = (<?!, . . . , qn), r = (ru . . . , rn) with rn = t and

PiS = qih, pi+1rt = qi+1ri+1 (l^i^n- 1).

We remind the reader that 5 is coperfect if all its coflat 5-systems are injective.

PROPOSITION 4.1. The monoid S is coperfect if and only if S is a principal right ideal
monoid with a left zero and S satisfies condition (CI):

(CI) For any element sofS and any right congruence p on S, there are elements t, u in
S and right congruences v0 = p, vlt . . . , vn on S such that there is an n-link from s to t
satisfying annr(9,)e v,, pjSAnn^i^, qh v,) ( l ^ i ^ n ) , sutps and vn = {(h, k): suhpsuk}.

Proof. Assume first that 5 is coperfect. Since all coflat 5-systems are weakly injective
Corollary 3.4 gives that 5 is a principal right ideal monoid.

To show that 5 has a left zero, regard 5 as an 5-system and consider the diagram,

S[2]

where 5° is 5 with a zero adjoined and T,I are inclusion mappings. By assumption, 5[2] is
injective and so there is an 5-homomorphism \\>: S0-* S[2] which makes the diagram

5[2]

/ \
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commute. For any s e S,
= ip(Os) =

and so if xp(O) eS it is immediate that 5 has a left zero. Otherwise, i/>(0) e 5 n \ 5 n _ ! for
some n eN and so xp(O) has the form ^(0) = [,ya']n-i> where {y6:6 eZn-i} is the basis of
Fn_i, ae2n_! and t eS. Now a = (u, a) for some ueS and a e5n_a. If t e uS, say t = uv,
then

and so ty{0) e Sn_1; a contradiction. Thus t $ uS.
For any seS, ip(0) = tp(O)s gives [yate]n_i = LVâ ln-i and as t $ uS one sees that yats,

yat cannot be related by a p{Hn_^-sequence. Hence yots = yat so that t = ts and f is a left
zero of 5.

Let / = sS be a principal right ideal of 5 and let p be a right congruence on 5. The
S-system Ip = {ap.ae 1} is an 5-subsystem of Sip and as Ip[2] is injective there is an
S-homomorphism xp: Sip —> /p[2] which makes the diagram

Sip «-L- Ip

commute.
For any (h, k)e p we have

xp(lp)h = xp((lp)h) = y(hp) = xp(kp) = y((lp)k) = xp{\p)k.
Further,

sp = r(sp) = rpi(sp) = xp(sp) = ip((lp)s) = V(lp>-

If i/>(lp) e Ip, it follows that there exists an element u of 5 such that susps and for
any (h, k) e p, suhpsuk. It is then easy to see that (CI) is satisfied, with n = l, pl = ql = l
and rx = s.

We now suppose that ip(lp) e {Ip)n, where n >0. From the construction of (Ip)n we
have V(lp) = baPiln-i or ip(lp) = [m]n> where {>>6: <5 e !„_!> is the basis of Fn_lt

a e 2n_i, /?! e 5 and m e (/p)n_j. In the latter case, (1, m) e 2n_j and so

xp(lp) = [m]n = [y(i,m)]B.

Thus we may assume that V(lp) has the former expression.
If h,keS and hpk then ip(lp)h = ip(lp)k and so [yCTPi^]n-i = [^aPi^L-i- Thus

or yapih, yapxk are connected by a p(//n_i)-sequence

rf^! = c2f2, . . . , dit^

Now a e 2 n _ ! and so a = (^1 ,mi) for some 9 j e 5 and mx e (/p)n_i. It follows that
or

= q1t1, m^piH^m^i, qxt,=pxk.
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But since mxtx, mxtt are p^n-^-related elements of (Ip)n_x, mxtx = mxt,. Define the
right congruence vx on S by

vx = annT(mx).
Hence pxh = pxk or

= q1tl, txvxth qxt,=pxk

and so px e Ann(v0, qx, vx), where v0 = p. Further, if (h, k) e ann,.^), then qxh = qxk so
that mxh = mxk (for a e 2n_i) and (h, k) e vx, thus annr(^j) c vj.

Now sp = [5p]n_j = \yapxs]n_x and as sp ^yCTpi5 in Fn_x U (/p)n_] we have that sp,
y<,P\S are connected by a pt/f^^-sequence. This gives that pls = qlru ntir1=sp for
some rx e S.

One may express mx as mx = [zflp2]n-2> where {z6 :<5 e2n_2} is the basis of Fn_2,
Pi e 5 and JU = (<72> w2) e 2n_2. Again we define a right congruence v2 on 5 by

v2 = annr(m2).

Suppose that hvxk, that is, mxh = /n^ . Hence p2/z =p2k or z^p2/i, 2^p2^
 a r e related

by a p(Afn_2)-sequence. It follows that p2h =Pzk or there exist t,t' eS with p2h = q2t,
tv2t'> qit'-Pik, that is, p 2 e Ann(v!, ^2, v2). Since (g2, m2) e 2n_2, it is clear that
annr(^2) S v2. Further, [sp]n_2 = [^/?2rj]n_2 gives that p2rx = q2r2, m2r2 = sp for some
r 2 e5 .

Clearly we may continue in this manner to obtain elements ph qh r, of 5 and elements
m, of (/p),_! (1 ̂  i ̂  n), such that

/>!* = 9^!, p,-+1r! = qi+xri+x (l^i^n- 1).

Further, defining v0 = p and v, = annr(w,), we have annr(^,) c v, and p, e Ann(v,_i, ^,, v,)
( l ^ i ^ n ) . Also, mnrn=sp, where mnelp. Thus there exists an element u of 5 with
mn = 5wp. This gives sp = suprn = surnp, that is, spsurn. Finally, for h, keS, (h, k) e vn if
and only if mnh = mnk, that is, suph =supk. Hence {h, k) e vn if and only if suhpsuk.

Thus 5 satisfies condition (CI).
Conversely, assume that 5 is a principal right ideal monoid with a left zero satisfying

condition (CI). Let A be a coflat 5-system. We show first that given any diagram of the
form,

A

Sip «-i- Ip

where 1 — sS is a principal right ideal of S and Q.Ip^A is an 5-homomorphism, there
exists an 5-homomorphism rp:S/p^>A such that ipi = 6.

Suppose that /, p and 6 are given as above. By assumption there exist n eN,
elements ph qh r, of 5 and right congruences v, on 5 (1 ^ / ̂  n), satisfying the conditions
of (CI).
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Let 4>n:qnS—*A be denned by

<t>n{qnt) = 6{sutp).

Then 0n is well-defined, for if qnt = qnt', then {t, t') e annr(?n) so that {t,t')evn. Then
the definition of vn gives sutpsut'. Clearly (f>n is an 5-homomorphism and since A is coflat
we may extend <£„ to an 5-homomorphism <j>n:S—*A. Now define £„ :S/vn_1—*A by

If tvn-xt', then as pn e Ann(vn_1( ^n, vn), either (a) pnt=pnt', or (b) pnt = qnv, vvnv',
qnv' =pnt' for some u,u' e5 .

If (a) holds, then clearly §n(fvn_i) = ^(t'v,,^). If (b) holds, by the definition of vn,
suvpsuv' and so

Zn(tVn-i) = <j>n(pnt) = 4>n(qnv) = <f>n(qnv)

= 6(suv'p) = <t>n{qnv') = 4>«qnV) =

Thus §„ is well-defined and obviously is an 5-homomorphism.
We now define <pn_l:qn_lS-*A by

then, as annr(?n_i) e vn_1; 0n_! is a well-defined 5-homomorphism. Again using the
coflatness of A, we may extend 0n_t to an 5-homomorphism 4>n_i:S—*A. We now use
<£n_i to define an 5-homomorphism §n_1:5/vn_2-»y4 by putting

To see that !„_] is well-defined, suppose that fvn_2r'. As above we have that either
(a) pn-lt=pn-lt' or (b) p n _ / = <7n_!t;, uvn_iu', qn_xv' =pn-xt' for some v,u' e 5. If (a)
holds, it is immediate that ?n_i(fvn_2) = ^n_!(f'vn_2). If (b) holds, then

Clearly we may continue in this way to obtain 5-homomorphisms <f>j:qjS—*A,
4>i-S-*A, Zr-S/vt-i^A ( l S i ^ n ) , such that

<t>n{qj) = 0(sutp),

4>i{qit) = ^x{tvi) ( l ^ j ^ n - l )

and for / e { 1 , . . . , « } , 0, is an 5-homomorphism extending 0, and

Thus we obtain an 5-homomorphism ip = %i:S/v0 = S/p^>A. It remains to show
that \p extends 6.
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We have ipi(sp) = tt>(sp) = ^(sp) = ^(sv0) = 4>i(pis) = ^

f
4>n(Pnrn-i) = 4>n(qnrn) = <t>n{qnrn) = 0(surnp) = d(sp). Hence for any stel,
tpi(stp) = 6(stp), that is, xpi = d.

Now suppose that N is an 5-subsystem of an 5-system M and <j>:N—*A is an
5-homomorphism. Consider the partially ordered set whose members are pairs (N1, <£'),
where AT is an 5-subsystem of M containing N and <j>':N'—>A is an 5-homomorphism
extending <p and ^ is defined by

(AT, <£') ̂  (AT, tf>") if and only if AT' c AT and 0" extends 0'.

By Zorn's lemma, this set has a maximal member, say (P, 6). \iPi=M, choose m e M\P
and put I = {s eS:ms e P}.

If 1 = 0, then mS DP = 0 and we may define a function §: mS U P-> .4 by

where s0 is a left zero of 5 and a is a fixed element of A. We have

and it follows that £ is an 5-homomorphism strictly extending 9, that is,
(P, 0 )<(m5UP, §), contradicting the maximality of (P, 6). Thus / # 0 and it follows
that / is a principal right ideal of 5, say / = s5.

Define a right congruence p on 5 by

hpk if and only if mh = mk,

that is, p = annr(m). Let X:lp-+A be defined by k(stp) = 6{mst). Since p = annr(An), it
is clear that A is a well-defined 5-homomorphism. Hence there is an 5-homomorphism

>A which extends A. Now define ip:mSUP->A by

rl>(mt) =

If mt = mf', then fpf' so that il>(mt) = \p{mt'). If mt=p for some p e P , then t e I
and so t - st' for some t' e 5. Thus

) = B(rnst') = 0(w/)

and so t/; is a well-defined 5-homomorphism. But (P, 0) < (mS U P, i/;), a contradiction.
Hence P = M and 4̂ is injective. Since A is an arbitrary coflat 5-system, the monoid 5 is
coperfect.

To establish our next corollary we need a technical lemma.

LEMMA 4.2. Let I = sS be a principal right ideal of the monoid S and p a right
congruence on S. Suppose that neN and there exists elements ph qit rt of S and right
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congruences v, on S (1 ^ i ̂  n) satisfying the conditions of (CI). Suppose further that <y, is
regular for i e {1, . . . , n}. Then there exists an element x of S such that ifh,k e S and hpk,
then suxhpsuxk and further, stpsuxst, for any st e /.

Proof. Let i e {1,. . . , n). We show that for any h,keS,

where q^'^ = qt.
Given q^'^ = qh {qal, 1) e annr(<?,) and so <?,;<7,v,l. Now since pt e Ann(v,-_lJ qh v,),

either (a) pth = ptk or (b) pth = qth', h'vtk', qtk' = ptk for some h', k' eS.
If (a) holds, then qlpfi = qipik and so certainly qlpfiviqlpik. If (b) holds, then

and so our claim is correct. It follows that if hpk then xhvnxk, where x =
q'nPnQ'n-iPn-i • • • liPx- Hence if hpk, then suxhpsuxk.

Now sps, that is, svos, so q'xPiSv^p^s, which gives q'^xr^v^p^s. But \vxq[qx, so
that rxvxq\qxrx, hence / i V ^ i p ^ . Thus q2pzrxv7,q'2p2q[pxs and so <?2<72'2v292P2<?iPiS,

giving r2v2q2P2q'iPiS- Clearly we may continue in this manner to obtain rnvnxs. Thus
surnpsuxs, hence spsuxs and so for any st e I, stpsuxst.

If all 5-systems are injective, then 5 is a completely right injective monoid. We may
now deduce the following result which appears in [4], [8] and [11].

COROLLARY 4.3. The monoid S is completely right injective if and only if
(a) 5 has a left zero, and
(b) for any right ideal I of S and right congruence p on S, there is an element y of I

such that for any t el, ytpt and for any h, k e 5 with hpk, yhpyk.

Proof. If S is completely right injective, then clearly all coflat 5-systems are
injective. Thus 5 has a left zero, all right ideals of 5 are principal and 5 satisfies condition
(CI). Further, all 5-systems are coflat and so by Proposition 4.1 of [6], 5 is regular.

Let / be a right ideal of 5 and p a right congruence on 5. Then I = sS for some s e S
and since 5 is regular and satisfies (CI), it follows from Lemma 4.2 that there is an
element x of 5 such that hpk implies suxhpsuxk and tpsuxt for any t el. Putting y = sux,
we see that (b) holds.

Conversely, suppose that 5 satisfies (a) and (b). Let / be a right ideal of 5 and p the
equality relation on 5. Then there is an element y of / with ys = s for any s el. Hence

i = yi^ySci,
so that I = yS and / is principal.

As in the proof of Proposition 4.1, 5 satisfies condition (CI). Thus all coflat 5-systems
are injective.

Let s e S. Then as above there is an element v of s5 with ys = s; hence s is a regular
element and so 5 is a regular monoid. Thus all 5-systems are coflat and hence injective,
that is, 5 is a completely right injective monoid.

We end this section by using Proposition 4.1 to give an example of a coperfect
monoid that is not completely right injective.
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COROLLARY 4.4. Let S be the infinite cyclic monoid generated by the element a. Then
S° is a coperfect monoid which is not completely right injective.

Proof. Since the only regular elements of 5° are 0 and 1 (=a°), S° is not a regular
monoid and so, by Proposition 4.1 of [6], not all S-systems are coflat. Hence S° is
certainly not completely right injective.

The monoid 5° is commutative and is a principal ideal monoid. Further, 5° is
O-cancellative and has no zero-divisors.

Let s eS° and let p be a congruence on 5°. If s = 0, take n = 1 and put
Pi = <7i = M = 1 and rx = 0. Then pxs = qxrx and surx = 0 so that surxps. Further, (h, k) e
annr(?i) if and only if h = k and so &nnr{qx) is contained in every congruence on 5. Let
Vj = {(h, k):suhpsuk}\ as s = 0 we have that v, is the trivial congruence 5° X 5°. If
h, keS° and hpk, then \h = lh, hvxk, Ik = Ik and so 1 e Ann(p, 1, v^.

We now suppose that s =£0. If p = Iso, the identity relation on 5°, then we again take
n = l and put px = rl = u = l and qx=s. Letting vx = {(h, k):shpsk}, we have v, =
{(h, k):sh = sk} = Iso. Now pxs=qxrx and surxps. Also, annr(gi) = annr(s) = /so and so
ann,.^) c. vx. Since p = /so, it is clear that 1 e Ann(p, s, v,).

If p ¥= Iso, we may choose an element t of 5° such that there is an element z of 5° with
tpz, t + z and tS° is the maximal ideal with this property. Clearly t =£ 0. If z = 0, then tpO
so that t2p0pt and tpt2. Now t = t2 if and only if t = 1. If r = 1, then lpO and so 6p0 for all
elements b of 5°. This gives that p is trivial. However, if p is trivial, then putting n = \,
Pi = qi = r1 = u = 0 and Vj = 5° x 5°, it is easy for us to see that the conditions of (CI) are
satisfied.

Thus we may assume that p =£/5o, p^S°x S° and there exist non-zero elements t,z
of 5° such that tpz, ti^z and tS° is maximal with respect to this property.

Since 5° is a principal ideal monoid, either tS° c sS°, or sS° c tS°. Suppose firstly that
tS° c 55°. Take n = 1 and put p1 = r1 = u = l and qx = s. Then pxs = qxrx and surxps. Let
Vj = {{h, k):shpsk}. Then ann^^j) = annr(*) = Iso and so annr(^i) c v1# It remains to
prove that 1 e Ann(p, s, Vj). Let v, v' e 5° and suppose that vpv'. If u = v', then clearly
lu = lv'. If v ^v', then v,v' e tS° and so w =5/1, v' =sk for some /i,A: eS°. Then from
shpsk we have that /ivjfc and so 1 e Ann(p, s, vx), as required.

Assume now that 55° c (5°. We know that there are natural numbers c, d, e with
t = ac, z = ad, d = c + e and e > 0. Then tpac+me for all m e N and so we may choose an
element w of 5 such that wS° c 55° c fS° and tpw.

Let _y, A: be the elements of 5 with s = ty, w = sk. Then spwy and wy = sky. Take
« = 2 and put u = 1,

P2 = w, 92 = s, r2 = ky,

Vl = {(h,h'):thpth'},

v2={(h,h'):shpsh'}.

Then pxs =s = ty = qxrx, p2rx = wy = sfcy = ^ ^ and swr2 = sky = wyps. Since #,, q2

are non-zero, ann,.^) c vx and annr(^2) e v2.
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If v,v' eS°, vpv' and vi-v', then v = th, v' = th' for some h,h' eS°. Thus thpth'
and so hv^h', which gives that 1 e Ann(p, t, vx), that is, px e Ann(v0, q0, vx).

Finally, if v,v' are elements of 5° such that vvxv', then tvptv' and so wvpwv' as
vvS°cfS°. Now wv=skv and wv'=skv', giving skvpskv' and kvv2kv'. Thus we
Ann(v!,5, v2), that is, p 2 e A n n ( v 1 , q2, v2). This completes the proof that 5° satisfies
condition (CI).
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