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Abstract

Recently M. Benedicks showed that if a function / e L2(Rd) and its Fourier transform both
have supports of finite measure, then / = 0 almost everywhere. In this paper we give a version
of this result for all noncompact semisimple connected Lie groups with finite centres.
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0. Introduction

Let G be a locally compact group equipped with left Haar measure dm and G its
unitary dual (that is, a maximal set of pairwise inequivalent unitary irreducible
continuous representations of G). For / G LX{G) and TT € G, define the operator
7r(/) = fG /(I)TT(X) dm(x) (which acts on the underlying Hilbert space for ?r).
The assignment TT —* n(f) can be thought of as the (group theoretic) analogue
of the classical Fourier transform / of an integrable function on R. It has long
been recognized that if / is 'concentrated' near a point, then / has to be 'spread
out' and vice versa. A quantitative expressions of this principle leads to the
Heisenberg uncertainty principle—see for example [5].
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Another expression of this principle is the following result of Benedicks [2]: If
/ e L2(Rd) with m(supp/) < oo and m(supp/) < oo, then / = 0 a.e. (If s u p p /
is compact then the above result collapses to an easy exercise in introductory
Fourier analysis. However with only the assumption m(supp / ) < oo, the result
quoted above is more substantial.) In view of this a natural question to ask
is whether the above principle can be formulated for a locally compact group
G. In this paper we show that a principle very close to the one of Benedicks
holds for all noncompact semisimple connected Lie groups with finite centres.
Earlier this kind of principle had been established for a wide variety of groups
including SL(2, R) ([7]). However, for general semisimple Lie groups rather
severe restrictions had to be placed on the kind of L1 functions being dealt with.
For quantitative versions of this principle for certain groups see [4], [8] and [9].

1. Notation and preliminaries

Throughout this paper G will denote a connected noncompact semisimple Lie
group with finite centre. (For unexplained terminology and results, see [11]-)
Fix a maximal compact subgroup K of G. Let G denote the unitary dual of G
and K the unitary dual of K. Fix a Haar measure m on G—as is well known G
is unimodular—and let // be the (corresponding) Plancherel measure on G. In
this section we describe the structure and representation theory of G that will
be needed in the next section.

Let g = t © p be a Cartan decomposition of the Lie algebra g of G with
Cartan involution 6. Here t is the Lie algebra of K. Let o be a maximal abelian
subalgebra of p and let

be a decomposition of g into real root spaces for o, where m is the centralizer of
a in i and R is the set of nonzero real roots. Fix once and for all a set of positive
roots R+, and let 5 be the set of simple positive roots. We write n for X)Q€fl+ &»•
At the group level, we write K, A and N for the connected subgroups of G with
Lie algebras t, a and n respectively, and M for the centralizer of A in K. Then
MAN is a so-called minimal parabolic subgroup, hereafter denoted Po- (It is
unique up to conjugation.)

The other "parabolic subgroups" of G (up to conjugation) all arise in the
following way. Pick a subset 5, of S and let Ri be the set of roots which are
linear combination of roots in Si. There is a unique closed subgroup of G,
denoted by P,- (known as a parabolic subgroup), which contains PQ and whose

https://doi.org/10.1017/S144678870003233X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003233X


[3] A qualitative uncertainty principle for semisimple Lie groups 129

Lie algebra is
+ m + a + n.

This group has a Langlands decomposition Pi = MiAiNi, where Mi is reductive,
Ai is abelian and Ni is nilpotent. The Lie algebra m, of Mi is generated by
m©22Q€R. Qa; Ai and Ni are exp(oj) and exp(rij) respectively (exp denoting the
exponential map), where Oj is the orthogonal complement to n^ no in a, relative
to the inner product on o induced by the Killing form, and x\i = SQ6fl+\fl &*• ^
Mi contains a compact Cartan subgroup, then Pj is said to be cuspidal. We let
{Pj: j € J} be a maximal set of (nonconjugate) cuspidal parabolic subgroups
constructed as above.

Harish-Chandra showed that sufficiently many irreducible unitary representa-
tions of G to decompose L2 (G) may be obtained by taking a cuspidal parabolic
subgroup Pj, a discrete series representation 6 of Mj (that is, 6 € (Mj)d) and a
character xx' exp(H) —• exp(iA(/f)) of A, (where A € a*, the real dual of a,),
forming the unitary representation (denoted abusively) 6 <8> xx ® 1 of Pj (where
6 ® Xx ® l(man) = 6(m)xx{a), m € Mj, a e Aj, n € Nj) and inducing unitarily
to G. We write irf'x = indp 6®XA® 1- The representations n^l and TÎ *), can be
equivalent only if Pj = Pj, and then if and only if (6, A) and (e, fj.) are conjugate
under an appropriate (finite) Weyl group action. In [6] (see in particular Sec-
tions 25 and 36) Harish-Chandra calculated explicitly the Plancherel measure
associated with the various series of representations of G. Except in the case
when Pj = G (that is, when G is a cuspidal parabolic subgroup of itself), Ai
is a nontrivial vector group, and then for fixed 6 in (Mj)d, the Plancherel mea-
sure n(i, 6, A) is a smooth function of A, which actually extends to an analytic
function in a tube containing o* in (o*)c (the complexification of Oj) and is of
polynomial growth in A in almost all directions in o*. An easy consequence of
Harish-Chandra's calculation is n(i,6,a*) = oo.

Now we need to study the representations TT^ in more detail. We fix a proper
parabolic subgroup Pj of G and 6 € (Mj)d- Let He be the Hilbert space of 6.
Define Hf*' as the space of measurable i/^-valued functions v on K which satisfy
the conditions

v{km) = 8{m~1)v{k), k € K, meKDMi,

and
1 dk < oo.

JK

The induced representations TT^ may be considered to act unitarily on Hy by
the formula

[*$(»)«](*) = «(m"1)t;(fc')exp[(tA + p^Hiig^k)}
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where

/9, = - ] P (dimgQ)a and g~lk = k'm exp(/fj(g~1fc))n,
a€R+\Ri

with k' € K, m e Mif] AN, n € Ni and fl^y"1*;) € Oj. (It should be noted
that every element of G can be expressed uniquely in the form kman where
k £ K, m € Mj n AN, a € A, and n € /Vj. Indeed the 'Iwasawa decomposition'
gives a unique decomposition of the form kan with k e K, a € A, n €. N.
Furthermore an then factorizes uniquely as a'n'dirii with a'n' € -A./V f~l M< and
a,n, 6 AiNi.) We note that the action of K on / / j is just left translation and
this is independent of A in a*.

Fix a basis {ej: j € N} of Hg consisting of K-finite vectors. We have the
following result:

PROPOSITION. Fix a proper cuspidal parabolic subgroup Pi and choose 6 in
{Mi)d- Given f € Ll(G) and j , fteN, the function

A - j f{x){^\{x)ej,eh)dx
JG

on a* extends to a holomorphic function in a tube in (o*)c which contains a*.

PROOF. Using the techniques of Cowling [3] and of Anker [1], it is straight-
forward to show that, if the imaginary part of A in (o,*)c is not too big, then the
representation ny'x of the analytic continuation acts isometrically on a mixed
Lp-space which we denote LP{K). The basis vectors ej and e/, being smooth lie
in L*>(K) and its dual Lq{K) for all p. In fact

x)ej\\p\\*h\\q = INIP| |e; | | g < ||e;||oo||efc||ao

= sup ||e,(fc)||ffs sup \\eh(k)\\Hs < oo.
kK k€K

The proposition follows immediately.

2. The main results

We are now in a position to state and prove the following theorem.

THEOREM. Let G, G, K, fi and m be as in the introduction. Let f G L1(G)
and let Af = {x: f(x) ^ 0} and Bf = {TT € G: n{f) ^ 0}. Ifm(KAfK) < oo
and n(Bf) < oo, then / = 0 a.e.
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PROOF. The s tatement tha t /X{TT: ir(f) / 0} < oo implies tha t the Plancherel

measure of each set {r € A,: TT^*J-(/) ^ 0} is finite. Since the Plancherel measure

of {TT< T ) T}T €^ for fixed a and i is infinite, it follows tha t {r 6 i ^ : Ko}T{f) =

0} has positive Plancherel measure and hence has positive Lebesgue measure.

This last s tatement follows from the fact tha t the Plancherel measure on the

series {ICT*T}T6,}., o,i fixed, is absolutely continuous with respect to Lebesgue

measure on Ai. Now one knows tha t (at least in the sense of distributions)

/ = Y.v€k S/ieK d(v)d{v)xn *f*Xv (Here we are identifying the characters Xn
and Xu of the representations fi and v of the compact group K with the (singular)
measures x^ dk and Xv dk on G. Also for each n € K, d(/i) is its dimension.)
Fix <5i,62 € K and consider h = X6i*f*Xs2• Let E«] = {r € A*: T T # ( / ) = 0}.
From what we said above E^ has positive Lebesgue measure. Now notice that
if r 6 Ea , then 7Ta,T{h) is also zero. Thus n^T(h) is zero on a set of positive
Lebesgue measure in Ai. Let ux , . . . ,um be those basis vectors in Ha which
transform according to 6i for 7r£*v \K and wi , . . . , wn be those basis vectors in Ha

which transform according to 62 for •Ka)r\K- (Notice these are independent of r for
a and i fixed.) Since h satisfies h = d(6i)d(62)x«i *̂ *X«2> ^ follows that TTS*T(/I) is
completely determined by the scalars {xa)r{h)ws, ut), 1 < s < n and 1 < t < m.
However (irff,T{h)wi,ut) — fG(Tra/T(x)wi,ut)h(x)dx. By the proposition, as a
function of r the above function is holomorphic in a strip containing Ai. Thus
the fact that this vanishes in a set of positive Lebesgue measure on Ai forces it to
be identically zero on A,. Hence for fixed i and fixed a € (Mi)d, ^a,l{h) = 0 for
all T. Thus for all i and a € (Mt)d, 7r£*£(/i) = 0 for all r € Ai. This means that
7ryj.(ft) = 0 unless Pi = G so that the Fourier transform of h is supported by the
discrete series of G. From D. Vogan's theory of minimal If-types [10], it is clear
that only finitely many discrete series representations of G when restricted to K
can contain the representations 61 and 62. On the other hand, it is routine to
show that if a € Gj, then a(h) = 0 unless O\K contains 61 and <52. Consequently
h is a finite linear combination of matrix elements of the discrete series of G,
and is therefore real analytic on G. Now since h = xsi * f * X«2> if x £ KA/K,
h(x) = 0. But by our assumption m(KAfK) < 00 and so m(KAfK)c > 0.
Thus since G is connected and h is real analytic, this forces h = 0. However
/ ~ J2 5Z d(6)d(v)xs *f*Xf and we have just shown that each term on the right
side is zero. Hence / = 0 as a distribution, that is, / = 0 a.e.

An examination of the proof shows we have actually proved the following
stronger result.

COROLLARY (to proof of Theorem). Let f e LX{G) with m{KAfK)c > 0.
Assume for each fixed i, a that the set {r e Ai, TO*T(/) = 0} has positive Lebesgue
measure. Then f = 0 a.e.
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REMARK. The property discussed in this paper (and in [2] and [7]) fails
completely in many situations. For example, the Fourier transform of the char-
acteristic function of a compact open subgroup of the p-adic numbers is another
such characteristic function. Also the existence of supercuspidal representations
for reductive p-adic groups gives rise to further counterexamples [7].
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