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Abstract
We study the problem of finding pairwise vertex-disjoint triangles in the randomly perturbed graphmodel,
which is the union of any n-vertex graph G satisfying a given minimum degree condition and the bino-
mial random graph G(n, p). We prove that asymptotically almost surely G∪G(n, p) contains at least
min{δ(G), �n/3�} pairwise vertex-disjoint triangles, provided p≥ C log n/n, where C is a large enough
constant. This is a perturbed version of an old result of Dirac.

Our result is asymptotically optimal and answers a question of Han, Morris, and Treglown [RSA, 2021,
no. 3, 480–516] in a strong form. We also prove a stability version of our result, which in the case of
pairwise vertex-disjoint triangles extends a result of Han, Morris, and Treglown [RSA, 2021, no. 3, 480–
516]. Together with a result of Balogh, Treglown, and Wagner [CPC, 2019, no. 2, 159–176], this fully
resolves the existence of triangle factors in randomly perturbed graphs.

We believe that the methods introduced in this paper are useful for a variety of related problems: we
discuss possible generalisations to clique factors, cycle factors, and 2-universality.
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1. Introduction andmain result
The problem of subgraph containment is one of the most studied questions in extremal and
probabilistic combinatorics. In this paper, we are interested in conditions that guarantee the con-
tainment of pairwise vertex-disjoint triangles in different graph models. In particular, when a
graph G on v(G) vertices contains �v(G)/3� pairwise vertex-disjoint copies of triangles, we say
that G contains a triangle factor. We will consider minimum degree conditions in dense graphs,
lower bounds on the edge-probability in random graphs, and a combination of both.

From Mantel’s theorem on the maximum number of edges in a triangle-free graph, it follows
that any n-vertex graph with minimum degree larger than n/2 contains a triangle. The first result
on the containment of a triangle factor is due to Corrádi and Hajnal [11], who proved that any
n-vertex graph G with minimum degree δ(G)≥ 2n/3 contains a triangle factor. From this, it is
not hard to derive a more general result for graphs with smaller minimum degree, which was first
proved by Dirac [12].
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Theorem 1.1 (Dirac [12]).Any n-vertex graph G with n/2≤ δ(G)≤ 2n/3 contains at least 2δ(G)−
n pairwise vertex-disjoint triangles.

Given an integerm with n/2≤m≤ 2n/3, the tripartite complete graph with parts of size 2m−
n, n−m, and n−m shows the result is best possible. Moreover, a stability version of Theorem 1.1
was proved by Hladký, Hu, and Piguet [18].

Sparser graphs do not necessarily contain triangles, but most of them do if there are enough
edges. To determine a cut-off point for the containment of a subgraph in the binomial random
graph G(n, p), we define a threshold function. Before stating its definition, we remark that we
say that a property A holds asymptotically almost surely (a.a.s.) in the random graph G(n, p) if
limn→∞ P[G(n, p) ∈A]= 1. Given a graph H, the function p̂ :N→ [0, 1] is called the threshold
for the containment of H in G(n, p) if a.a.s. H ⊆G(n, p) for p= ω(p̂) and a.a.s. H ⊆G(n, p) for
p= o(p̂). Already in one of the early papers on random graphs by Erdős and Rényi [14] from 1960,
the threshold for a single triangle was determined as 1/n. However, the problem for a triangle
factor is much harder and was eventually solved by Johannson, Kahn, and Vu [20], in 2008, as
part of a more general result, and the threshold was located at n−2/3 log1/3 n, with an even sharper
transition than in our definition of threshold. When one requires εn to (1− ε)n pairwise vertex-
disjoint triangles, the problem is easier and the threshold is n−2/3 as proved by Ruciński [29] in
1992. Note that the the spanning version requires an extra log1/3 n, and this logarithmic term is
essential to ensure that a.a.s. every vertex is contained in a triangle.

Bohman, Frieze, and Martin [7] combined the random graph model and the deterministic
minimum-degree model by asking how many random edges one needs to add to a dense graph
with small linear minimum degree, such that it contains a Hamilton cycle. More precisely, they
introduced the model of randomly perturbed graphs as the union of an n-vertex graph Gα with
minimum degree at least αn and the random graph G(n, p). Given H and fixed α, we are then
interested in lower bounds on the edge-probability p such that a.a.s. Gα ∪G(n, p) contains H for
anyGα . A lower bound p̂ is optimal when in addition there exists aGα for which a.a.s.Gα ∪G(n, p)
does not contain H if p= o(p̂), in which case we call p̂ the threshold for the containment of H in
the randomly perturbed model. Note that this threshold p̂ only depends on α and H. In recent
years, there has been a lot of work on embeddings of spanning graphs in randomly perturbed
graphs. Most results in this model focus on the extreme cases with small α > 0 [4, 6, 8, 21, 23–26]
or small p [2, 5, 13, 27]. More recently, Han, Morris, and Treglown [17] started a more thorough
investigation of the intermediate regime. The goal is to determine the perturbed threshold for
every α from α = 0, where we can rely only on G(n, p), to the α where the structure already exists
in Gα alone and p= 0 is sufficient.

It is easy to see that with 0< α ≤ 1/2, Gα ∪G(n, p) a.a.s. contains a triangle when p≥ C/n2
and C is a sufficiently large constant depending on α. This is asymptotically optimal, as G(n, p)
with p= o(n2) a.a.s. is empty. Together with the cases for α = 0 and α > 1/2 discussed above,
this completes all the range of α for the containment of a single triangle. For a triangle factor,
we already know the threshold when α = 0 from the random graph model, and when α ≥ 2/3 we
do not need random edges at all. For any α > 0, Balogh, Treglown, and Wagner [4] showed that
p≥ Cn−2/3 is always sufficient (with C depending on α). This is asymptotically optimal in the
case 0< α < 1/3, as with Gα the complete bipartite graph with classes of size αn and (1− αn),
we need a linear number of triangles with all edges from the random graph, for which n−2/3 is
the threshold as discussed above. For 1/3< α < 2/3, Han, Morris, and Treglown [17] proved that
then already p≥ C/n is enough for a triangle factor. Again this is asymptotically optimal as, when
Gα is the complete tripartite graph with classes of size αn/2, αn/2 and (1− α)n, we need a linear
number of edges from G(n, p). Together, these results can be summarised as follows.

Theorem 1.2 (Balogh, Treglown, and Wagner [4] and Han, Morris, and Treglown [17]). Given
any α ∈ (0, 1/3)∪ (1/3, 2/3) there exists C > 0 such that the following holds. For any n-vertex graph
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Table 1.Triangle factor containment in Gα ∪ G(n, p), where δ(Gα )≥ αn

α α = 0 0< α < 1/3 α = 1/3 1/3< α < 2/3 2/3≤ α

p n−2/3 log1/3 n n−2/3 n−1 log n n−1 0

G with minimum degree δ(G)≥ αn, a.a.s. there is a triangle factor in G∪G(n, p) provided that
p≥ Cn−2/3 if α ∈ (0, 1/3) and p≥ Cn−1 if α ∈ (1/3, 2/3).

In this paper, we close the remaining open case for the triangle factor, that is α = 1/3, for which
we show that p≥ C log n/n is sufficient.

Theorem 1.3. There exists C > 0 such that for any n-vertex graph G with minimum degree δ(G)≥
n/3, we can a.a.s. find a triangle factor in G∪G(n, p), provided that p≥ C log n/n.

To see that the bound on p in Theorem 1.3 is asymptotically optimal consider the complete
bipartite graph G=Kn/3,2n/3 and denote the partition classes by A and B with |A| < |B|. By
Markov’s inequality and with p≤ 1

2 log n/n a.a.s. there are O( log4 n) triangles within B and a.a.s.
there is a polynomial number of vertices in the class B without any neighbours in B [19, Theorem
6.36]. However, for a triangle factor to exist, for each triangle with at most one vertex in B, there
must be at least one triangle fully contained in B. In conclusion, a.a.s.G∪G(n, p) does not contain
a triangle factor, and the log n-term is needed for local reasons similarly as discussed above for the
triangle factor in G(n, p).

This result closes the problem of determining, given α ∈ [0, 1], the threshold for a triangle
factor in Gα ∪G(n, p) and we refer to Table 1 for a summary. Note that the threshold is within a
constant factor in the intervals (0, 1/3) and (1/3, 2/3), while it jumps at α = 0, 1/3, and 2/3.

Theorem 1.3 is a special case of the following theorem, which is our main result. It answers
the question which minimum degree condition is needed in the randomly perturbed graph model
with p= C log n/n to enforce k vertex-disjoint triangles for any 1≤ k≤ �n/3�.
Theorem 1.4 (Main result). There exists C > 0 such that for any n-vertex graph G we can a.a.s.
find at least min{δ(G), �n/3�} pairwise vertex-disjoint triangles in G∪G(n, p), provided that p≥
C log n/n.

This is a perturbed version of the result by Dirac on vertex-disjoint triangles in dense graphs
(Theorem 1.1). We are not aware of other results in the randomly perturbed graph model that
consider large but not spanning structures.

Theorem 1.4 is basically optimal in terms of the number of triangles, because given 1≤m<

n/3, thenG=Km,n−m hasminimumdegree δ(G)=m, and there can be at mostm pairwise vertex-
disjoint triangles using each at least one edge of G, and at most O( log4 n) additional triangles
solely coming from G(n, p). The bound on p is asymptotically optimal as it is in Theorem 1.3, but
we remark that when m is ‘significantly smaller’ than n/3, then already p≥ C/n is sufficient to
a.a.s. find m pairwise vertex-disjoint triangles in Km,n−m ∪G(n, p). We call Km,n−m the extremal
graph. See the concluding remarks (Section 9) for more details.

In addition, we prove a stability version (Theorem 2.2) of our main result, which allows us to
work with edge probability only p= C/n for graphs G that are not ‘close’1 to the extremal graph.

We believe that the methods we introduce for proving our results are valuable for other ques-
tions concerning randomly perturbed graphs; we discuss some possible directions and open
problems in Section 9. One important novel ingredient in our proofs is that we can find a tri-
angle factor in a graph on three vertex sets U,V ,W of the same size, where (V ,U) and (V ,W) are

1Basically this is in edit distance, but in addition we require that no vertex can have a degree in G that is much smaller than
the corresponding degree in the extremal graph. A precise condition is given in Definition 2.1.
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super-regular pairs and between U and W we have random edges with probability p≥ C log n/n
(see Lemma 4.1).

Organisation
The rest of this paper is organised as follows. In Section 2, we state our Stability Theorem
(Theorem 2.2), one result (Theorem 2.3) that deals with the ‘extremal’ case of Theorem 1.4, and
one result (Theorem 2.4) that deals with the case of small minimum degrees; we shall show that
these three theorems together imply our main result (Theorem 1.4).

In Section 3, we then introduce some tools that we will use later. In Section 4, we outline the
proofs of Theorems 2.2, 2.3, and 2.4 and we state the auxiliary lemmas we use in their proofs. In
Section 5 we prove Theorem 2.3, in Section 6 we prove Theorem 2.2, and in Section 7 we prove
Theorem 2.4. The auxiliary lemmas are proved in Section 8.

Finally, we give concluding remarks and pose some open questions in Section 9. A few
supplementary proofs are moved to Appendix A.

Notation
For numbers a, b, c, we write a= b± c for b− c≤ a≤ b+ c. Moreover, for non-negative a,b, we
write 0< a� b, when we require a≤ f (b) for some function f : R>0 �→R>0. We will only use
this to improve readability and in addition to the precise dependencies of the constants.

We use standard graph theory notation. For a graph G on vertex set V and two disjoint sets
A, B⊆V , let G[A] be the subgraph of G induced by A, G[A, B] be the bipartite subgraph of G
induced by sets A and B, e(A) be the number of edges with both endpoints in A and e(A, B) be
the number of edges with one endpoint in A and the other one in B. We will also use standard
Landau notation for f , g :N→R>0 : f = o(g) if and only if limn→∞ f (n)/g(n)= 0 and f = ω(g) if
and only if g = o(f ).

2. Stability version and proof of the main result
We already discussed how the probability p≥ C log n/n cannot be significantly lowered in
Theorem 1.4. However, we are able to show that when theminimum degree ofG is linear in n, then
with m=min{δ(G), n/3}, the complete bipartite graph Km,n−m is the unique extremal graph for
Theorem 1.4, in the sense that if the graph G is not ‘close’ to Km,n−m then a.a.s. G∪G(n, p) con-
tains m pairwise vertex-disjoint triangles already at probability p≥ C/n and we can even assume
a slightly smaller minimum degree on G. To formalise this, we introduce the following notion of
stability for an n-vertex graph G.

Definition 2.1 ((α, β)-stable). For 0< β < α < 1/2, we say that an n-vertex graph G is (α, β)-
stable if there exists a partition of V(G) into two sets A and B of size |A| = (α ± β)n and |B| =
(1− α ± β)n such that the minimum degree of the bipartite subgraph G[A, B] of G induced by A
and B is at least αn/4, all but at most βn vertices from A have degree at least |B| − βn into B, all
but at most βn vertices from B have degree at least |A| − βn into A, and G[B] contains at most
βn2 edges.

The stability condition with α = 1/3 says that the size of B is roughly double the size of A,
there is a minimum degree condition between A and B, in each part all but at most a few vertices
see most of the other part, and the set B is almost independent. Note that for 0< α ≤ 1/3 and
m= αn an integer, the complete bipartite graph Km,n−m is (α, β)-stable with β = 0. We prove the
following stability result in Section 6.

Theorem 2.2 (Stability Theorem). For 0< β < 1/12 there exist γ > 0 and C > 0 such that for any
α with 4β ≤ α ≤ 1/3 the following holds. Let G be an n-vertex graph with minimum degree δ(G)≥
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(α − γ ) n that is not (α, β)-stable. With p≥ C/n a.a.s. the perturbed graph G∪G(n, p) contains at
leastmin{αn, �n/3�} pairwise vertex-disjoint triangles.

The result is best possible as G can be bipartite and have no triangles, in which case we need
at least a linear number of edges from the random graph to find a linear number of pairwise
vertex-disjoint triangles in G∪G(n, p). On the other hand, the logarithmic factor is needed for
the extremal graph. When the graph G is (α, β)-stable for a small enough β > 0, then we prove
the following in Section 5.

Theorem 2.3 (Extremal Theorem). For 0< α0 ≤ 1/3 there exist β , γ > 0 and C > 0 such that for
any α with α0 ≤ α ≤ 1/3 the following holds. Let G be an n-vertex graph with minimum degree
δ(G)≥ (α − γ ) n that is (α, β)-stable. With p≥ C log n/n a.a.s. the perturbed graph G∪G(n, p)
contains at leastmin{δ(G), �αn�} pairwise vertex-disjoint triangles.

Indeed our argument will give slightly more. If G is (α, β)-stable and |A| ≥ αn, then we can
a.a.s. find �αn� if α < 1/3 and �n/3� if α = 1/3 pairwise vertex-disjoint triangles in G∪G(n, p)
(even when the minimum degree in G is smaller than αn). Also, although as discussed above the
log n-factor cannot be avoided in general, when |A| − αn is linear in n our proof does not need
such a log n-factor.

The proofs of Theorem 2.2 and 2.3 use regularity. When the minimum degree gets smaller,
we can avoid the transition to sparse regularity and prove the following in Section 7 with a more
elementary argument.

Theorem 2.4 (Sublinear Theorem). There exists C > 0 such that the following holds for any 1≤
m≤ n/256 and any n-vertex graph G of minimum degree δ(G)≥m. With p≥ C log n/n a.a.s. the
perturbed graph G∪G(n, p) contains at least m pairwise vertex-disjoint triangles.

Theorem 1.4 easily follows from Theorems 2.2, 2.3, and 2.4.

Proof of Theorem 1.4. Let β2.3, γ2.3 > 0 and C2.3 be given by Theorem 2.3 on input α0 = 1/256.
Then let γ2.2 > 0 and C2.2 be given by Theorem 2.2 on input β =min{α0/4, β2.3}. Moreover, let
C2.4 be given by Theorem 2.4. Define C =max{C2.3, C2.4} and γ =min{γ2.3, γ2.2}.

Let G be any n-vertex graph and p≥ C log n/n, and define m=min{δ(G), �n/3�}. If m≤
n/256, then we get from Theorem 2.4 that a.a.s. G∪G(n, p) contains at least m pairwise vertex-
disjoint triangles, as C ≥ C2.4. Otherwise, m> n/256 and we can choose α ∈ (α0, 1/3] such that
(α − γ )n≤m≤ αn. If G is (α, β)-stable, then G is also (α, β2.3)-stable and, by Theorem 2.3, there
are a.a.s. at least min{δ(G), �αn�} ≥m pairwise vertex-disjoint triangles in G∪G(n, p), as α0 <

α ≤ 1/3 and C ≥ C2.3. Otherwise, G is not (α, β)-stable and, by Theorem 2.2, a.a.s. G∪G(n, p)
contains at least min{αn, �n/3�} ≥m pairwise vertex-disjoint triangles, as p= ω(1/n). �

3. Tools
We will repeatedly use the following concentration inequality due to Chernoff (see e.g. [19,
Corollaries 2.3 and 2.4]).

Lemma 3.1 (Chernoff’s inequality). Let X be the sum of independent binomial random variables,
then for any δ ∈ (0, 1) we have

P [|X −E[X]| ≥ δ E[X]]≤ 2 exp
(

−δ2

3
E[X]

)
.

Moreover, for any k≥ 7E[X], we have P[X > k]≤ exp (− k).
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The following lemma allows us to find specific triangles in a dense graph with additional ran-
dom edges. The proof is a standard application of Janson’s inequality (see e.g. [19, Theorem 2.18]),
and it is included in Appendix A.

Lemma 3.2. For any d > 0 there exists C > 0 such that the following holds. Let U,V ,W be three sets
of vertices of size n, G be a bipartite graph on (U,W)with e(G)≥ dn2, p> C/n and G(U ∪W,V , p)
be the random bipartite graph. Then with probability at least 1− 2−4n/d there is a triangle in G∪
G(U ∪W,V , p) with one vertex in each of U,V ,W.

We will use Szemerédi’s Regularity Lemma [30] and some of its consequences. Before stating
it, we introduce the relevant terminology. The density of a pair (A, B) of disjoint sets of vertices is
defined by

d(A, B)= e(A, B)
|A| · |B|

and the pair (A, B) is called ε-regular, if for all setsX ⊆A and Y ⊆ Bwith |X| ≥ ε|A| and |Y| ≥ ε|B|
we have |d(A, B)− d(X, Y)| ≤ ε. Without further mentioning it, we will repeatedly use that when
ε < 1/2 any A′ ⊆A with |A′| ≥ |A|/2 and B′ ⊆ B with |B′| ≥ |B|/2 give a 2ε-regular pair (A′, B′)
with density at least d(A, B)− ε.

We will also use the following well-known result that follows from the definition.

Lemma 3.3 (MinimumDegree Lemma). Let (A, B) be an ε-regular pair with d(A, B)= d. Then for
every Y ⊆ B with |Y| ≥ ε|B|, the number of vertices from A with degree into Y less than (d − ε)|Y|
is at most ε|A|.

With d ∈ [0, 1) a pair (A, B) is called (ε, d)-super-regular, if for all sets X ⊆A and Y ⊆ B with
|X| ≥ ε|A| and |Y| ≥ ε|B| we have d(X, Y)≥ d and deg (a)≥ d|B| for all a ∈A and deg (b)≥ d|A|
for all b ∈ B. It is easy to prove with Hall’s Theorem that a super-regular pair with parts of the
same size contains a perfect matching.

Lemma 3.4. For any d > 0 there exists ε > 0 such that any (ε, d)-super-regular pair (U,V) with
|U| = |V| contains a perfect matching.

We will use the following well-known degree form of the regularity lemma that can be derived
from the original version [30].

Lemma 3.5 ([22]). For every ε > 0 and integer t0 there exists an integer T > t0 such that for any
graph G on at least T vertices and d ∈ [0, 1] there is a partition of V(G) into t0 < t + 1≤ T sets
V0, . . . ,Vt and a subgraph G′ of G such that

(P1) |Vi| = |Vj| for all 1≤ i, j≤ t and |V0| ≤ ε|V(G)|,
(P2) degG′ (v)≥ degG (v)− (d + ε)|V(G)| for all v ∈V(G),
(P3) the set Vi is independent in G′ for all 1≤ i≤ t,
(P4) for all 1≤ i< j≤ t, the pair (Vi,Vj) is ε-regular in G′ and has density either 0 or at least d.

The sets V1, . . . ,Vt are also called clusters, and we refer to V0 as the set of exceptional vertices.
We call a partition V0, . . . ,Vt , which satisfies (P1)–(P4), a (ε, d)-regular partition of G. Given this
partition, we define the (ε, d)-reduced graph R for G, that is the graph on the vertex set [t], where
ij is an edge if and only if (Vi,Vj) is an ε-regular pair in G′ and has density at least d.

We will also use the following result on perfect matchings in random subgraphs of bipartite
graphs with large minimum degree. For any given graph G, we denote by Gp the random graph
model, where we keep each edge of G with probability p, independently from all other choices.
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Lemma 3.6. For any ε > 0 there exists C > 0 such that the following holds for any bipartite graph G
with partition classes |U| = |W| = n and minimum degree δ(G)≥ (1/2+ ε)n. With p≥ C log n/n
there is a.a.s. a perfect matching in Gp.

The proof is standard and closely follows the proof for the perfect matching threshold in the
random bipartite graph G(n, n, p) (see [19, Theorem 4.1]). For completeness, we include it in
Appendix A.

4. Proof overview andmain Lemmas
In this section, we sketch the ideas behind our proof of Theorem 2.2, 2.3, and 2.4, and we give the
statements of the lemmas we use. For simplicity, when outlining the proof of Theorem 2.2 and
2.3, we assume α = 1/3, n is a multiple of 3, and G is an n-vertex graph with minimum degree
δ(G)≥ n/3, in which case both theorems give a triangle factor in G∪G(n, p).

4.1 Extremal case
Assume that G is (1/3, β)-stable and let p≥ C log n/n. The definition of stability (Definition 2.1)
gives a partition of V(G) into A∪ B where the size of B is roughly the double of the size of A, there
is a minimum degree condition between A and B, and in each part all but at most a few vertices
see all but at most few a vertices of the other part. Our proof will follow three steps. Firstly, we find
a collection of triangles T1, such that after removing the triangles of T1, we are left with two sets
A1 =A \V(T1) and B1 = B \V(T1) with |B1| = 2|A1|. The way we find these triangles depend on
the sizes of A and B, and we will use two different approaches when |B| > 2n/3 and |B| ≤ 2n/3.
In particular, when |B| > 2n/3, we need to find some triangles entirely within B, just using the
minimum degree n/3− |A| and random edges. For that we will use Theorem 2.4.

Our second step is to cover the vertices in A1 and B1 that do not have a high degree to the
other part; this will give two collections of triangles T2 and T3. Each such triangle has one vertex
in A1 and two vertices in B1 so that we still have |B2| = 2|A2|, where A2 =A1 \V(T2 ∪ T3) and
B2 = B1 \V(T2 ∪ T3). Moreover, at this point, each vertex sees all but at most a few vertices of
the other part. We are now ready for the last step. We split B2 arbitrarily into two subsets B′

1 and
B′′
2 of equal size and we obtain that (B′

1, A2, B′′
2) is a super-regular cherry, i.e. both (B′

1,A2) and
(B′′

2,A2) are super-regular pairs. We want to find a triangle factor covering the cherry, with the
help of random edges between B′

1 and B′′
2. The next lemma, which encapsulates the main idea of

our paper, takes care of this and will be proved in Section 8.

Lemma 4.1. For any 0< d < 1 there exist ε > 0 and C > 0 such that the following holds. Let
U,V ,W be sets of size n, let (V ,U) and (V ,W) be (ε, d)-super-regular pairs and let G(U,W, p)
be a random bipartite graph with p≥ C log n/n. Then a.a.s. there exists a triangle factor.

Thus, we are able to cover the cherry with a triangle factor T4, and we conclude observing that
the collection of triangles T1 ∪ T2 ∪ T3 ∪ T4 gives a triangle factor in G∪G(n, p).

4.2 Non-extremal case
Before giving an overview of Theorem 2.2, it is worth to make some comments about Lemma
4.1. We point out that the probability p cannot be significantly lowered. Indeed, a triangle factor
in the setting of Lemma 4.1 gives a perfect matching in the random bipartite graph on vertex set
U ∪W and this is a.a.s. not possible with p≤ 1

2 log n/n [19, Theorem 4.1]. However, we would
like to be able to find a triangle factor in a super-regular cherry with the help of the random edges
also in the proof of Theorem 2.2, where we claimed that when the graph G is not (1/3, β)-stable,
already p≥ C/n is sufficient. For that we will use the following variation of Lemma 4.1, where
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the improvement on the probability comes from the assumption that the super-regular cherry
U,V ,W is a bit unbalanced as the sizes of U and W are smaller than the size of V , and thus the
random bipartite graph on vertex set U ∪W will be used to build a large matching covering all
but a small linear fraction of vertices, which is possible already with p≥ C/n. Note that here we
need to use random edges within V .

Lemma 4.2. For any 0< δ′ ≤ d < 1 there exist δ0, δ, ε with δ′ ≥ δ0 > δ > ε > 0 and C > 0 such that
the following holds. Let U,V ,W be sets of size |V| = n and (1− δ0)n≤ |U| = |W| ≤ (1− δ)n where
|V| + |U| + |W| ≡ 0 (mod 3). Further, let (V ,U) and (V ,W) be (ε, d)-super-regular pairs and let
G(V , p), G(U,W, p) be random graphs with p≥ C/n. Then a.a.s. there exists a triangle factor.

From Lemma 4.2, we also derive the following result about the existence of a triangle factor in
a super-regular pair edge, again with the help of the random edges. Lemmas 4.2, and 4.3 will be
proved in Section 8.

Lemma 4.3. For any 0< d < 1 there exist ε > 0 and C > 0 such the following holds for sets U,V of
size |V| = n and 3n/4≤ |U| ≤ n where |V| + |U| ≡ 0 (mod 3). If (U,V) is an (ε, d)-super-regular
pair and G(U, p) and G(V , p) are random graphs with p≥ C/n, then a.a.s. there exists a triangle
factor.

Now we turn to the overview of the proof for Theorem 2.2. Assume that G is not (1/3, β)-
stable and let p≥ C/n. We apply the regularity lemma to G and obtain the reduced graph R.
By adjusting an argument of the fourth author with Balogh and Mousset [3], we can prove the
following stability result.

Lemma 4.4. For any 0< β < 1/12 there exists d > 0 such that the following holds for any 0< ε <

d/4, 4β ≤ α ≤ 1/3, and t ≥ 10/d. Let G be an n-vertex graph with minimum degree δ(G)≥ (α −
d/2)n that is not (α, β)-stable and let R be the (ε, d)-reduced graph for some (ε, d)-regular partition
V0, . . . ,Vt of G. Then R contains a matching M of size (α + 2d)t.

For completeness, we give the proof in Appendix A. It follows that we can cover the vertices of
R with cherries K1,2 and matching edges K1,1, such that there are not too many cherries.2 Before
we can apply Lemma 4.2 to each cherry and Lemma 4.3 to each matching edge, some preliminary
steps are needed. We remove some vertices from each cherry to make it unbalanced and ensure
that both edges are super-regular. Then we cover all vertices that are not contained in any of
the cherries or edges by finding a collection of triangles T1. We construct another collection of
triangles T2 to ensure that in each cherry the relations between the three sets are as required by
Lemma 4.2. For constructing T1 and T2, we will mainly rely on the minimum degree condition
of G and the fact that in the probability p≥ C/n, the constant C can be chosen large enough so
that a.a.s. the following holds: each linear-sized set contains a random edge and for any not too
small part of a regular pair and a linear-sized set there is a triangle containing an edge form the
pair and the third vertex from the set. Finally, we can use Lemma 4.2 and Lemma 4.3 to cover the
remaining vertices with a collection of triangles T3. Together T1 ∪ T2 ∪ T3 gives a triangle factor
in G∪G(n, p).

We mention already now that when α is sufficiently smaller than 1/3 and the condition on
the minimum degree of G reads as δ(G)≥ (α − γ )n, many of the steps outlined above are not
necessary. In this case indeed we do not have to cover all graph with triangles and we only want to
find αn pairwise vertex-disjoint triangles inG∪G(n, p).Wewill see that an application of Lemmas
4.2 and 4.3 to the cherries and the matching edges found at the beginning (after havingmade them
super-regular and suitable for Lemma 4.2) is already enough to find these αn triangles.

2We remark that covers of the reduced graph by stars were used in [4, 24], and this inspired our approach. For our purposes,
it is necessary that we cover the reduced graph by cherries and matching edges. Furthermore, in contrast to [4] we cannot
rely on any triangles in the random graph but need to use the edges of G to build them.
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4.3 Sublinear case
Assume G is an n-vertex graph with minimum degree δ(G)≥m and let p≥ C log n/n. We want
to show that a.a.s. there exist m pairwise vertex-disjoint triangles in G∪G(n, p). Any vertex of
large degree in G can easily be covered by a triangle later, so we assume an upper bound on the
maximum degree �(G) of the graph G. With this condition, we split the proof in three ranges for
the value of m: 1≤m≤ ( log n)3, ( log n)3 ≤m≤ √

n, and
√
n≤m≤ n/256. If 1≤m≤ ( log n)3

a.a.s. m pairwise vertex-disjoint triangles already exist in G(n, p). If ( log n)3 ≤m≤ √
n we will

find many large enough vertex-disjoint stars in G (see Lemma 7.3) and a.a.s. at least m of them
will be completed to triangles using edges of G(n, p) (see Proposition 7.1). However if m>

√
n

we cannot hope to find m large enough vertex-disjoint stars and instead we will apply a greedy
strategy using that a.a.s. every vertex has an edge in its neighbourhood (see Proposition 7.2).

5. Proof of the extremal theorem

Proof of Theorem 2.3. Let 0< α0 ≤ 1/3 and choose d = 1/2. Let ε > 0 and C4.1 > 0 be given by
Lemma 4.1 on input d. We can assume ε < 1/5 and then choose 0< β < α0 ε/36 and 0< γ <

β/11. With C2.4 given by Theorem 2.4, let C ≥ 2C2.4 + 1+ 2C4.1/α0. Finally, let α0 ≤ α ≤ 1/3.
Given n, let p≥ C log n/n. With our choice of C, we can reveal G(n, p) in three rounds G1 ∼

G(n, 2C2.4 log n/n), G2 ∼G(n, log n/n), and G3 ∼G(n, 2C4.1
α0

log n/n). We will only know later in
which subset we will use G1 and G3, but we have that a.a.s. there is an edge of G2 between any two
not necessarily disjoint sets of size βn. Indeed, fixed two such sets, the probability that there is no
edge of G2 is at most (1− log n/n)(βn)2 ≤ exp (− β2n log n), and we conclude by an union bound
over the at most 22n choices for the two sets. Now let G be an n-vertex graph with minimum
degree δ(G)≥ (α − γ ) n that is (α, β)-stable and definem0 =max{n/3− δ(G), n/3− �αn�}. Our
goal is to a.a.s. find pairwise vertex-disjoint triangles in G∪G(n, p) such that at most 3m0 vertices
are left uncovered.

To aid with calculations we let κ = n/3− �αn� and observe that κ ∈ {0,−1/3,−2/3} if α = 1/3
and that κ > 0 if α < 1/3 and n large enough. Also note that m0 − κ is an integer and that 3κ =
�(1− α)n� − 2�αn�. With this we set w=max{3κ , 0}. As G is (α, β)-stable we get a partition of
V(G) into sets A and B satisfying the conditions of Definition 2.1.

Claim 5.1. There a.a.s. are a collection of triangles T1 in G∪G1 ∪G2 with |T1| ≤ βn and a set W ⊆
V(G) \V(T1) with |W| ≤ 3m0 −w such that the following holds. For A1 =A \ (V(T1)∪W) and
B1 = B \ (V(T1)∪W), we have that |A1| ≤ �αn�, |B1| = 2|A1| +w, the minimum degree between
A1 and B1 is at least αn/5, all but at most βn vertices of A1 have degree at least |B1| − βn into B1,
and all but at most βn vertices of B1 have degree at least |A1| − βn into A1.

The sets A1 and B1 partition V(G) \ (V(T1)∪W) and, after proving Claim 5.1, we will cover all
but w vertices from A1 ∪ B1 with additional triangles. Hence, if we manage to find these triangles,
we have covered all but |W| +w≤ 3m0 vertices, as desired. We remark for later that |W| ≤ 3m0 −
w≤ 4γ n.

Proof of Claim 5.1. We have either |B| > �(1− α)n� or |A| ≥ �αn�. First suppose that we are in
the first case, where |B| = �(1− α)n� +m for some 1≤m≤ βn (and |A| = �αn� −m), and note
that

|B| − 2|A| = n− 3�αn� + 3m= 3m+ 3κ > 0.

If 1≤m≤m0 − κ , then 0< 3m≤ 3m0 − 3κ andwe letW be any set withmin{3m, 3m+ 3κ} ≤
3m0 −w vertices from B. Then with the choice of T1 = ∅, we have that the sets A1 =A and
B1 = B \W partition V(G) \W, and |A1| = �αn� −m and |B1| = |B| −min{3m, 3m+ 3κ} =
2|A1| +w.
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If on the other hand,m0 <m+ κ , then

δ(G[B])≥ δ(G)− |A| ≥ (n/3−m0)− (�αn� −m)=m−m0 + κ > 0

and we observe that m−m0 + κ is an integer. Moreover, m−m0 + κ ≤m≤ |B|/256, where we
use m0 − κ ≥ 0, m≤ βn≤ α0εn/36≤ n/(3 · 5 · 36) and |B| = �(1− α)n� +m≥ n/2+m. Thus,
by Theorem 2.4 and as 2C2.4 log n/n≥ C2.4 log |B|/|B|, we a.a.s. findm−m0 + κ pairwise vertex-
disjoint triangles in (G∪G1)[B]. Denote by T1 the collection of these m−m0 + κ triangles. Let
W be any set of 3m0 −w vertices from B not covered by any triangle in T1. Then the sets A1 =A
and B1 = B \ (V(T1)∪W) partition V(G) \ (V(T1)∪W), and we have |A1| = �αn� −m and

|B1| = |B| − 3(m−m0 + κ)− (3m0 −w)= 2|A1| +w.

It remains to consider the second case, where |A| = �αn� +m for some 0≤m≤ βn. First, we
greedily pick m pairwise vertex-disjoint triangles in G∪G2 each with two vertices in A and one
vertex in B. Indeed during the process, there is always a vertex v in B, not yet contained in a tri-
angle, with at least deg (v,A)− 2m≥ (α/4− 2β)n≥ βn uncovered neighbours in A in the graph
G. By the property assumed in G2, we can then find an edge within these neighbours of v to get a
triangle. Denote by T1 the collection of thesem triangles.

If κ ≥ 0, then, with the choice of W = ∅, we have that A1 =A \V(T1) and B1 = B \V(T1)
partition V(G) \V(T1) and

|B1| = |B| − |T1| = �(1− α)n� − 2m= 2(�αn� −m)+ 3κ = 2|A1| +w.

If κ < 0, we additionally pick a set W of vertices not covered by triangles from T1, such
that |W| = 1, |W ∩A| = 1, |W ∩ B| = 0 if κ = −2/3, and |W| = 2, |W ∩A| = |W ∩ B| = 1 if κ =
−1/3. Then, the sets A1 =A \ (V(T1)∪W) and B1 = B \ (V(T1)∪W) partition V(G) \ (V(T1)∪
W), and |B1| = 2|A1| +w. Indeed, if κ = −2/3, we have |A1| = |A| − 2|T1| − 1= �αn� −m− 1
and

|B1| = |B| − |T1| = �(1− α)n� − 2m= 2(�αn� −m)+ 3κ = 2|A1|
and if κ = −1/3 we have |A1| = |A| − 2|T1| − 1= �αn� −m− 1 and

|B1| = |B| − |T1| − 1= �(1− α)n� − 2m− 1= 2(�αn� −m)+ 3κ − 1= 2|A1| .
Observe, that in both the first and the second case |B1| = 2|A1| +w and |W| ≤ 3m0 −w.

Moreover, as we remove at most 3m0 −w≤ 4γ n≤ αn/20 vertices from each A and B, the min-
imum degree between A1 and B1 is at least αn/4− αn/20= αn/5. The other conditions on the
degrees betweenA1 and B1 are clearly satisfied, because for all but atmost βn vertices from each set
there are still at most βn non-neighbours in the other set. The bounds |T | ≤ βn and |A1| ≤ �αn�
also hold in all cases. �

We want to cover all but w vertices in A1 ∪ B1 and we start from those vertices in A1 and B1
that do not have a high degree to the other part. We will always cover them with triangles with
one vertex in A1 and two vertices in B1 to ensure that the relation between the number of vertices
remaining in A1 and B1 does not change. Let

Ã1 = {v ∈A1 : deg (v, B1)≤ |B1| − 9βn} and B̃1 = {v ∈ B1 : deg (v,A1)≤ |A1| − 9βn},
and observe that |Ã1|, |B̃1| ≤ βn.

We claim that a.a.s. we can greedily pick pairwise vertex-disjoint triangles in (G∪G2)[A1 ∪ B1]
that cover all vertices of Ã1, with each triangle having one vertex in Ã1 and two vertices in B1 \ B̃1.
Indeed, at each step during the process, an uncovered vertex v in Ã1 has at least deg (v, B1)−
|B̃1| − 2|Ã1| ≥ (α/5− 3β)n≥ βn uncovered neighbours in B1 \ B̃1 in the graph G. We then find
an edge of G2 within these neighbours of v and build a triangle. Denote by T2 the collection of
these triangles and note that |T2| ≤ βn.
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Observe that at this point 2|T2| ≤ 2βn vertices of B1 \ B̃1 have already been covered. We claim
that a.a.s. we can greedly pick pairwise vertex-disjoint triangles in (G∪G2)[(A1 ∪ B1) \V(T2)]
that cover all vertices of B̃1, where each triangle has one vertex in A1 \ Ã1, one vertex in B̃1 , and
one vertex in B1 \ B̃1. Indeed, at each step during the process, an uncovered vertex v in B̃1 has at
least deg (v,A1)− |Ã1| − |B̃1| ≥ (α/5− 2β)n≥ βn uncovered neighbours in A1 \ Ã1 in the graph
G and at least

δ(G)− 3|T1| − |W| − deg (v,A1)− 2|T2| − 2|B̃1|
≥ (α − γ )n− 3βn− 4γ n− (�αn� − 9βn)− 4βn≥ βn

uncovered neighbours in B1 \ B̃1 in the graph G. We then find an edge of G2 between these two
neighbourhood sets to get a triangle. Denote by T3 the collection of these triangles and note that
|T3| ≤ βn.

The sets A2 =A1 \V(T2 ∪ T3) and B2 = B1 \V(T2 ∪ T3) give a partition of the remaining
vertices in V(G) \ (V(T1)∪V(T2)∪V(T3)∪W). We have

|A2| ≥ |A| − 2|T1| − |T2| − |T3| − |W| ≥ αn− 5βn− 4γ n≥ αn/2
and |B2| = 2|A2| +w. Moreover, the degree from A2 to B2 is at least |B1| − 9βn− 2|T2 ∪ T3| =
|B2| − 9βn and the degree from B2 to A2 is at least |A1| − 9βn− |T2 ∪ T3| = |A2| − 9βn. We
partition B2 arbitrarily into three subsets B′

1, B′′
2, and W′ of size |B′

1| = |B′′
2| = |A2| and |W′| =

|B2| − 2|A2| =w. Then the degree from A2 to B′1 and the degree from A2 to B′′2 are at least
|B′

1| − 9βn.
We claim that the pair (A2, B′

1) is (ε, 1/2)-super-regular, with ε being chosen as stated at the
beginning of the proof. Indeed for all X ⊆A2 and Y ⊆ B′

1 with |X| ≥ ε|A2| and |Y| ≥ ε|B′
1|, we

have

e(X, Y)≥ |X|(|Y| − 9βn)≥ 1
2
|X||Y|

and deg (a, B′
1)≥ |B′

1| − 9βn≥ |B′
1|/2 for all a ∈A2, and deg (b,A2)≥ |A2| − 9βn≥ |A2|/2 for all

b ∈ B′1, where for all inequalities we use β ≤ α/36. For the same reason, the pair (A2, B′′2) is (ε, 1/2)-
super-regular as well.

Now, as 2C4.1
α0

log n/n≥ C4.1 log |A2|/|A2|, we can apply Lemma 4.1 to A2, B′1 and B′′2, with d =
1/2 and ε, and a.a.s. get a triangle factor T4 in (G∪G3)[V ′], where V ′ =V(G) \ (V(T1)∪V(T2)∪
V(T3)∪W ∪W′). Then T1 ∪ T2 ∪ T3 ∪ T4 contains at least

(n− |W| − |W′|)/3≥ n/3−m0 ≥min{δ(G), �αn�}
pairwise vertex-disjoint triangles covering V(G) \ (W ∪W′). �

We point out that under certain conditions our proof of Theorem 2.3 gives more triangles.
When α < 1/3 and |A| ≥ αn, as |W| ≤ 3m0 −w, we get �αn� pairwise vertex-disjoint triangles
in G∪G(n, p), even when δ(G)< αn. Similarly, when α = 1/3 and |A| ≥ n/3, as |W| ≤ 2, we get
�n/3� pairwise vertex-disjoint triangles in G∪G(n, p), even when δ(G)< n/3. Moreover, for any
value of α, when |A| − n/3> 0 is linear in n, we could use Lemma 4.2 instead of Lemma 4.1 to
avoid the log n-factor in the probability.

6. Proof of the stability theorem

Proof of Theorem 2.2. We start by defining necessary constants. Given 0< β < 1/12, let d > 0
be obtained from Lemma 4.4, and set γ = d/2 and t0 = 11/d. Next, we take any 0< δ′ < 160−2d2
and use Lemma 4.2 on input d/2 and δ′ to obtain δ0, δ, ε′ with δ′ ≥ δ0 > δ > ε′ > 0 and C1.
Additionally, we assume thatC1 is large enough and ε′ is small enough for Lemma 4.3 to hold with
input d/2. Finally, let C2 be given by Lemma 3.2 on input d/2. We let 0< ε ≤ ε′/2. In summary,
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the dependencies between our constants are as follows:

ε � ε′ < δ < δ0 ≤ δ′ � d � β <
1
12

and
1
t0
, γ � d.

We apply Lemma 3.5 with ε and t0 to obtain T. We take C large enough such that, for p≥
C/n, the random graphG(n, p) contains the unionG1 ∪G2 ∪G3, whereG1 ∼G(n, 2C1T/n),G2 ∼
G(n, 4C2T/(dn)), and G3 ∼G(n, 96T2/(d2n)).

Now, for any α with 4β ≤ α ≤ 1/3, let G be an n-vertex graph on the vertex set V with min-
imum degree δ(G)≥ (α − γ )n that is not (α, β)-stable. With the regularity lemma (Lemma 3.5)
applied to G, we get G′, t0 < t + 1≤ T and a partition V0, . . . ,Vt of V(G) such that (P1)–(P4)
hold. Define n0 = |V1| = |V2| = · · · = |Vt| and observe that (1− ε)n/t ≤ n0 ≤ n/t. We denote by
R the (ε, d)-reduced graph for G, that is, the graph on the vertex set [t] with edges ij correspond-
ing to ε-regular pairs (Vi,Vj) of density at least d in G′. We observe that the minimum degree
of R satisfies δ(R)≥ (α − 2d)t because, otherwise, thre would be vertices with degree at most
(α − 2d)t(n/t)+ εn< (α − γ )n− (d + ε)n in G′, contradicting (P2).

The purpose of G1 will become clear later, but we describe some useful properties of G2 and G3
now. Let U andW be any two clusters that give an edge in R, V any cluster, and U ′ ⊆U,W′ ⊆W,
V ′ ⊆V three pairwise disjoint subsets each of size dn0/2. Then, with G2 and as 4C2T/(dn)≥
2C2/(dn0), by Lemma 3.2 we have that with probability at least 1− 2−4(dn0/2)/(d/2) = 1− 2−4n0

there is a triangle in G∪G2 with one vertex in each set U ′,W′, V ′. (1)
With a union bound over the at most t323n0 choices for U,W, V and U ′,W′, V ′, we conclude

that a.a.s. (1) holds for all choices as above.
With G3 we a.a.s. have that

any set A of size at least dn0/2 contains an edge of G3. (2)
In fact, given any set A of size at least dn0/2, the expected number of edges of G3 in A is(|A|

2

)
· 96T

2

d2n
≥ 1

3
· d

2n20
4

· 96T
2

d2n
= 8T2 n

2
0
n

≥ 2n ,

where we used that n/n0 ≤ t/(1− ε)≤ 2T. Therefore, the probability that the set A does not con-
tain an edge of G3 is at most (1− 96T2

d2n )(
|A|
2 ) ≤ exp

(
−(|A|

2
) · 96T2

d2n

)
≤ exp (− 2n) and (2) follows

from a union bound over the at most 2n choices for A.
Now letM1 be a largest matching in R. Since G is not (α, β)-stable, using Lemma 4.4, we con-

clude that |M1| ≥ (α + 2d)t. At this point, for the sake of clarity, we split our proof into two cases –
0< α < 1/3− d/3 and 1/3− d/3≤ α ≤ 1/3 – although some steps will be the same. The first case
is indeed much easier, as we do not need to cover all the graph with triangles, while in the second
case we are looking for a spanning structure and we want to find �n/3� pairwise vertex-disjoint
triangles.

Case 0< α < 1/3− d/3
As M1 is a largest matching in R, the set V(R) \V(M1) is independent and only one endpoint

of each edge ofM1 can be adjacent to more than one vertex fromV(R) \V(M1). Therefore, we can
greedily pick a second matchingM2 such that each edge ofM2 contains a vertex of V(R) \V(M1)
and a vertex ofV(M1), andM2 covers at least min{|V(R) \V(M1)|, δ(R)} vertices ofV(R) \V(M1).
The two matchingsM1 andM2 together cover a subset V(M1 ∪M2)⊆V(R) of

2|M1| +min{|V(R) \V(M1)|, δ(R)} ≥min{t, (3α + 2d)t} ≥ (3α + d)t
vertices, and we can extract a collection of |M2| vertex-disjoint cherries and a disjoint matching
that cover such vertices. This gives a subgraph R′ ⊆ R consisting of cherries and a matching such
that for all edges ij ∈ E(R′) the pair (Vi,Vj) is ε-regular of density at least d in G′, and therefore
in G as well. We denote by J ⊆ [t] the indices of the clusters Vi of the cherries and the matching
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edges in R′ and we observe from above that |J | ≥ (3α + d)t. We add to V0 all the vertices of G
that are in the clusters Vj for j /∈J .

Then we make all pairs associated with the edges of R′ super-regular. Given a pair (A, B), by
Lemma 3.3, all but at most εn0 vertices of A (resp. B) have degree at least (d − ε)n0 to B (resp.
A). For every such pair we remove these vertices from A and B, and remove additional ver-
tices to ensure all clusters have the same size. As R′ only contains vertex-disjoint cherries and
a disjoint matching, we can achieve that by removing a total of at most 2εn0 vertices from each
cluster. We add all the removed vertices to V0. Observe that afterwards all the pairs (A, B) associ-
ated with the edges of R′ are (2ε, d − 3ε)-super-regular, because every vertex a ∈A has degree at
least (d − ε)n0 − 2εn0 ≥ (d − 3ε)|B| into B, and every vertex b ∈ B has degree at least (d − 3ε)|A|
into A.

Recall that for a later application of Lemma 4.2, we need that for each cherry the sizes of the
leaf-clusters are smaller than the size of the centre-cluster. Thus, for each cherry ijk of R′, with j
being the centre, we additionally remove δ|Vj| ≤ δn0 vertices from the leaves Vi and Vk, and add
them to V0. We have |Vi| = |Vk| = (1− δ)|Vj| that implies |Vi| = |Vk| ≥ (1− δ0)|Vj|, as δ0 > δ.
We have that all edges of R′ still give (2ε, d − 3ε − δ)-super-regular pairs. Moreover,∣∣∣∣∣∣

⋃
j∈J

Vj

∣∣∣∣∣∣≥ (1− 2ε − δ)n0|J | ≥ (1− ε)(1− 2ε − δ)(3α + d)n≥ 3αn .

We can assume (by moving only a few additional vertices to V0 that do not harm the bounds
above) that for all cherries andmatching edges in R′ the number of vertices in the clusters together
is divisible by three.

For each such super-regular cherry ijk of R′, after revealingG1[Vi ∪Vj ∪Vk] we find by Lemma
4.2 a.a.s. a triangle factor covering all the vertices in Vi ∪Vj ∪Vk. Similarly for any matching
edge ij of R′, after revealing G1[Vi ∪Vj] we find by Lemma 4.3 a.a.s. a triangle factor covering all
the vertices in Vi ∪Vj. Note that we apply Lemmas 4.2 and 4.3 only constantly many times and
thus a.a.s. we get a triangle factor in all such applications. Let T be the union of all such triangle
factors. Then T covers

∣∣∣⋃j∈J Vj

∣∣∣≥ 3αn vertices and gives at least αn=min{αn, �n/3�} pairwise
vertex-disjoint triangles in G∪G(n, p).

Case 1/3− d/3≤ α ≤ 1/3
As discussed in the overview, here we cannot directly apply Lemmas 4.2 and 4.3 as in the case

0< α < 1/3− d/3, but we need additional steps. However, even with a lower minimum degree,
we will cover all vertices of G and find �n/3� pairwise vertex-disjoint triangles. Recall thatM1 is a
largest matching and that |M1| ≥ (α + 2d)t. Then the set V(R) \V(M1) is independent, has size

|V(R) \V(M1)| = t − 2|M1| ≤ (1− 2α − 4d)t ≤ (α − 3d)t

and only one endpoint of each edge of M1 can be adjacent to more than one vertex from V(R) \
V(M1). Given that δ(R)≥ (α − 2d)t, we can greedily pick a second matching M2 such that each
edge ofM2 contains a vertex ofV(R) \V(M1) and a vertex ofV(M1), andM2 covers the remaining
vertices V(R) \V(M1) completely. Therefore, the two matchings M1 and M2 together cover the
vertex set V(R) and we can extract a collection of 
 = |M2| ≤ (α − 3d)t vertex-disjoint cherries
and a disjoint matching that cover V(R).

This gives a spanning subgraph R′ ⊆ R on vertex set [t] containing 
 ≤ (α − 3d)t cherries and
a matching of size (t − 3
)/2≥ (1− 3α + 9d)t/2≥ 9dt/2 such that for all edges ij ∈ E(R′) the pair
(Vi,Vj) is ε-regular of density at least d in G′, and therefore in G as well. We denote by I ⊆ [t]
the indices of the clusters Vi that are not the centre of a cherry in R′. As above, with Lemma 3.3,
we can make the pairs associated with the edges of R′ (2ε, d − 3ε)-super-regular, while keeping
the clusters all of the same size. For this we have to remove at most t2εn0 ≤ t2εn/t = 2εn vertices,
which we add to V0. Next, as for a later application of Lemma 4.2 we need that for each cherry

https://doi.org/10.1017/S0963548322000153 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548322000153


104 J. Böttcher et al.

the sizes of the leaf-clusters are smaller than the size of the centre-cluster, we remove for each
i ∈ I additionally δ|Vi| ≤ δn0 ≤ δn/t vertices from Vi and add them to V0. Note that we remove
vertices from the clusters of matching edges as well, although this is not necessary. We then get
|V0| ≤ εn+ 2εn+ tδn/t ≤ 2δn. We can assume (by moving only a few additional vertices to V0
that do not harm the bounds above) that for all cherries and matching edges in R′ the number
of vertices in the clusters together is divisible by three. By removing n (mod 3) ∈ {0, 1, 2} vertices
from V0, we also have |V0| ≡ 0 (mod 3); note that this only happens when n is not divisible by 3
and we can discard these vertices.

Covering V0 with triangles.We now want to cover the exceptional vertices in V0 by triangles.
It would be easy to do this greedily by just using (2), but it might happen that afterwards in many
of the cherries the number of vertices is not divisible by three or that the centre cluster gets too
small. To avoid both these issues, we will cover V0 while using the same number of vertices from
clusters that are together in a cherry or matching edge. For this we will always cover three vertices
at a time and combine (1) with (2) to find additional triangles. Observe that |V0 ∪⋃i∈I Vi| ≤
2δn+ 
n/t ≤ (α − γ )n− 2dn and, therefore, any v ∈V0 has at least 2dn neighbours in

⋃
i∈I Vi.

Assume we have already covered V ′ ⊆V0 vertices of V0 using at most 5|V ′| triangles in
total. Let W′ be the set of vertices from

⋃
i∈I Vi used for the triangles covering V ′ and note

that |W′| ≤ 30δn. Then let I ′ ⊆ I be the set of indices of clusters Vi with i ∈ I which intersect
W′ in at least

√
δn0 vertices and note that |I ′| ≤ |W′|/(√δn0)≤ 30

√
δt/(1− ε)≤ 40

√
δt ≤ dt/4.

Moreover, notice that as for each v ∈V0 we have degG (v,
⋃

i∈I Vi)≥ 2dn, there are at least dt
indices i ∈ I such that v has at least dn0 neighbours inVi. In particular, as |I ′| ≤ dt/4 and t ≥ 10/d,
there are at least dt − |I ′| ≥ 3dt/4≥ 7 indices i ∈ I \ I ′ such that v has at least dn0 neighbours in
Vi. Therefore, we can pick three vertices v1, v2, v3 ∈V0 \V ′ and three indices i1, i2, i3 in I \ I ′ such
that vj has dn0 neighbours in Vij for j= 1, 2, 3 and the clusters Vi1 ,Vi2 ,Vi3 belong to pairwise dif-
ferent cherries or matching edges. For j= 1, 2, 3 with (2), we find an edge ej in G3[N(vj,Vij) \W′]
and we cover the three vertices with triangles. It is easy to show that we can find at most 10
additional triangles with the help of (1) and (2), in such a way that, overall, for each cherry and
matching edge, we use the same number of vertices from each of their clusters; in particular, the
number of vertices used from each cherry and matching edge is divisible by three. The clusters
Vi1 ,Vi2 ,Vi3 can belong to three cherries, two cherries and one matching edge, one cherry and two
matching edges, or three matching edges. We give details in the case where they are all leaves of
(different) cherries, and we refer to Figure 1 for the other three cases. With (1) we find four trian-
gles: two with a vertex in each of the other cluster of the cherry containingVi1 and the third vertex
in one of the other clusters of the cherry containing Vi2 , and other two triangles with one vertex in
each of the other cluster of the cherry containing Vi3 and the third vertex in the remaining cluster
of the cherry containing Vi2 . When a Vij belongs to a matching edge of R′, we first find with (2)
two triangles inside this matching edge each with one vertex in the cluster Vij and the other two
vertices in the other cluster of the matching edge, then we proceed as before (see Figure 1). Note
that we cover three vertices of V0 using at most 13 triangles, and thus to cover V ′ ⊆V0 we use at
most 13|V ′|/3≤ 5|V ′|, as claimed above. Therefore we can repeat this procedure until V ′ =V0.

Let T1 be the set of triangles we found above to cover V0 and keep the divisibility condition.
We now update the regularity partition by deleting V(T1) from each Vi for i ∈ [t] and note that
for all cherries and matchings from R′ the number of vertices in the clusters together is divisible
by three. We recall that so far we removed at most (2ε + δ + 2

√
δ)n0 vertices from each cluster,

where the first (resp. second, third) term bounds the number of vertices removed for making each
pair super-regular (resp. for a later application of Lemma 4.2, for covering V0).

Balancing the partition. Now the matching edges in R′ are already ready for an application
of Lemma 4.3, and we will not modify the corresponding clusters anymore. However, before an
application of Lemma 4.2 to the cherries in R′, we need to ensure that the ratio between their
size and the size of the centre-cluster satisfies the hypotheses of the lemma. This is what we are
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Figure 1. Embeddings of triangles for absorbing V0 while using the samenumber of vertices fromeach clusterwithin a cherry
or a matching edge. Each red triangle covers a vertex of V0. Each blue triangle stands for two triangles with end-points in the
same clusters; we only draw one for simplicity.

going to do now. For i ∈ I we denote by Wi and Ui the leaf clusters of the cherry centred at Vi.
Before covering the vertices of V0, we had |Wi| = |Ui| ≤ (1− δ)|Vi| for i ∈ I , which still holds as
we removed the same number of vertices from each cluster of a cherry.

However we still need to guarantee the other inequality |Wi|, |Ui| ≥ (1− δ0)|Vi|. For that, we
find 2m triangles with two vertices in Vi, of which one half has the third vertex inUi and the other
half inWi, wherem is the smallest integer such that

Ui| −m≥ (1− δ0)(|Vi| − 4m). (3)

Then after removing these 2m triangles, we will have precisely (1− δ0)|Vi| ≤ |Ui| = |Wi|.
Observe that the inequality (3) implies that m≥ (1−δ0)|Vi|−|Ui|

4(1−δ0)−1 and, as we chose the smallest such
m, we get m≤ � (1−δ0)|Vi|−|Ui|

4(1−δ0)−1 �. Moreover, as δ < δ0, |Vi| ≤ n0 and |Ui| ≥ (1− 2ε − δ − 2
√

δ)n0,

we have (1−δ0)|Vi|−|Ui|
4(1−δ0)−1 < (1−δ0)−(1−2ε−δ−2

√
δ)

2 n0 < 2
√

δn0. Therefore, for n (and thus n0) large
enough, m≤ 2

√
δn0. We can find these at most 4

√
δn0 triangles, by iteratively picking them

with (2) and removing the corresponding vertices from Ui, Wi, and Vi. Indeed, for any v ∈
Wi ∪Ui we have degree into Vi at least (d − 3ε − δ − 10

√
δ)n0 ≥ dn0/2, as we started from

(2ε, d − 3ε)-super-regular pairs and δ < δ′ < 160−2d2.
Note that afterwards we still have |Ui| ≤ (1− δ)|Vi| as for large enough n and with δ < δ0 we

have m≤ � (1−δ0)|Vi|−|Ui|
4(1−δ0)−1 � ≤ (1−δ)|Vi|−|Ui|

4(1−δ)−1 . Therefore, we have (1− δ0)|Vi| ≤ |Ui| = |Wi| ≤ (1−
δ)|Vi|. Moreover with d − 3ε − δ − 10

√
δ ≥ d/2 and 2ε ≤ ε′, we get that the pairs (Ui,Vi) and

(Wi,Vi) are (ε′, d/2)-super-regular. Let T2 be the set of triangles we removed during this phase.
Completing the triangles. Now for any i ∈ I , after revealing G1[Vi ∪Wi ∪Ui], we a.a.s. find a

triangle factor covering the vertices of Ui, Wi, and Vi by Lemma 4.2. Similarly for any matching
edge ij of R′ observe that (Vi,Vj) is a (ε′, d/2)-super-regular pair. Then after revealingG1[Vi ∪Vj],
we a.a.s. find a triangle factor covering the vertices of Vi and Vj by Lemma 4.3. Note that we apply
Lemma 4.2 and Lemma 4.3 only constantly many times and thus a.a.s. we get a triangle factor
in all such applications. Let T3 be the union of the triangle factors we obtain for each i ∈ I and
each matching edge ij from R′. Then T1 ∪ T2 ∪ T3 gives �n/3� pairwise vertex-disjoint triangles in
G∪G(n, p). �
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7. Proof of the sublinear theorem
As outlined in the overview, we use the following two Propositions to prove Theorem 2.4.

Proposition 7.1. For any 0< γ < 1/2 there exists C > 0 such that for any ( log n)3 ≤m≤ √
n

and any n-vertex graph G with maximum degree �(G)≤ γ n and minimum degree δ(G)≥m
the following holds. With p≥ C/n there are a.a.s. at least m pairwise vertex-disjoint triangles in
G∪G(n, p).

Proposition 7.2. There exists C > 0 such that for any
√
n≤m≤ n/32 and any n-vertex graph G

with maximum degree �(G)≤ n/32 and minimum degree δ(G)≥m the following holds. With p≥
C log n/n there are a.a.s. at least m pairwise vertex-disjoint triangles in G∪G(n, p).

With this at hand we can prove Theorem 2.4.

Proof of Theorem 2.4. Let 1≤m≤ n/256 and let G be an n-vertex graph on vertex set V with
minimum degree δ(G)≥m. We let C be large enough such that with p≥ C log n/n we can expose
G(n, p) in four rounds as

⋃4
i=1 Gi with Gi ∼G(n, Ci log n/n) for i= 1, . . . , 4 such that the follow-

ing hold. We let C1 = 1 and observe that, by a union bound, a.a.s. for any set of vertices U of size
at least n/256 there is at least one edge inG1[U]. Next, we let C2 be large enough such that for a set
of vertices U of size at least n/2 there are a.a.s. at least log3 n pairwise vertex-disjoint triangles in
G2[U] [19, Theorem 3.29]. Finally, let C3 = 1 (this is sufficient for our application of Proposition
7.1 because we do not need the log n term) and C4 be such that we can apply Proposition 7.2 with
C4/2. We expose G1 already now and assume that the described property holds, while we leave
G2, G3, and G4 until we need them.

To apply one of the two propositions to a large subgraph G′ of G, we need �(G′)≤ v(G′)/32.
For this let V ′ be the set of vertices from G of degree at least n/64. If |V ′| ≥m, then we let V ′′
be any subset of V ′ of size m and we greedily find m pairwise vertex-disjoint triangles in G∪G1,
each containing exactly one vertex fromV ′′. Indeed, as long as we have less thanm triangles, there
is a vertex v ∈V ′′ not yet contained in a triangle. Then there is a set U ⊆NG(v) \V ′′ of at least
n/64− 3m≥ n/256 vertices not covered by triangles, and we can find an edge within G1[U] that
gives us a triangle containing v and two vertices from U.

Otherwise, |V ′| <m and we remove V ′ from G to obtain G′ =G[V \V ′]. Note that we have
v(G′)= n− |V ′| ≥ n/2, minimum degree δ(G′)≥m′ =m− |V ′|, and maximum degree �(G′)<
n/64≤ v(G′)/32. If m′ < ( log n)3, then we a.a.s. find m′ pairwise vertex-disjoint triangles within
G2[V(G′)]. If ( log v(G′))3 ≤ ( log n)3 ≤m′ ≤√v(G′), then by Proposition 7.1 and as log n/n=
ω(1/v(G′)) there are a.a.s. at leastm′ pairwise vertex-disjoint triangles inG′ ∪G3[V(G′)]. Finally, if√
v(G′)≤m′ ≤ n/256≤ v(G′)/32, then by Proposition 7.2 and as C4 log n/n≥ C4

2 log v(G′)/v(G′),
there are a.a.s. at leastm′ pairwise vertex-disjoint triangles in G′ ∪G4[V(G′)].

Now, that we found m′ pairwise vertex-disjoint triangles, we can greedily add triangles by
using the m−m′ vertices from V ′ and an edge in their neighbourhood until we have m trian-
gles. Analogous to above, as long as we have less thanm triangles, for each available vertex v ∈V ′,
there is a set U ⊆NG(v) \V ′ of at least n/256 vertices not covered by triangles, and we find an
edge within G1[U]. �

It remains to prove Propositions 7.1 and 7.2. For Proposition 7.1, which deals with the cases
( log n)3 ≤m≤ √

n, we first need to find many large enough vertex-disjoint stars in G. These can
be found deterministically with Lemma 7.3 below and afterwards we will show that a.a.s. at least
m of them can be completed to triangles with the help of G(n, p).

For any integer g ≥ 2, we define the star on g + 1 vertices as the graph with one vertex of
degree g (this vertex is called the centre) and the other vertices of degree one (these vertices are
called leaves). Given a star K, we denote the number of its leaves by gK . Moreover, given a family
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of vertex-disjoint starsK, we denote the set of all their centre vertices byKC and the set of all their
leaf vertices by KL.

Lemma 7.3. For every 0< γ < 1/2 and integer s there exists an ε > 0 such that for n large enough
and any m with 2/ε ≤m≤ √

n the following holds. In every n-vertex graph G with minimum degree
δ(G)≥mandmaximum degree�(G)≤ γ n, there exists a familyK of vertex-disjoint stars in G such
that every K ∈K has gK leaves with εm≤ gK ≤ ε

√
n and∑

K∈K
g2K ≥ sε2nm.

Proof of Lemma 7.3. Given 0< γ < 1/2 and an integer s we let ε > 0 such that ε ≤ 1/(6s) and
ε < 1/2− sγ . Moreover, we let n be large enough for our calculations and, for simplicity, assume
that ε

√
n is an integer. Then let 2/ε ≤m≤ √

n and G be an n-vertex graph on vertex set V with
δ(G)≥m and �(G)≤ γ n.

LetK be a family of vertex-disjoint stars inGwith εm≤ gK ≤ ε
√
n for allK ∈K, thatmaximizes

the sum ∑
K∈K

g2K (4)

among all such families. Note that each star in K has at least 2 leaves because gK ≥ εm and m≥
2/ε.

If the sum in (4) is bigger than sε2nm we are done. So we assume the family K satisfies∑
K∈K

g2K < sε2nm. (5)

We are going to prove that then there exists a vertex of degree larger than γ n, contradicting
our assumption on the maximum degree.

For this we split K into two subfamilies

M= {
K ∈K:εm≤ gK < ε

√
n
}

and H= {
K ∈K:gK = ε

√
n
}

and we let R be the set of vertices not covered by the stars in K, that is R=V(G) \ (HC ∪HL ∪
MC ∪ML), whereHC,HL,MC, andML are obtained fromM andH as defined above.

For all stars K ∈H we have g2K = ε2n. From (5), we get that the subfamily H contains at most
sm stars and hence

|HC| ≤ sm≤ s
√
n and |HL| = |HC|ε√n≤ smε

√
n≤ sεn, (6)

becausem≤ √
n.

As each star in M has at least εm leaves, we have
∑

K∈M gK ≥ |M|εm. Using the Cauchy-
Schwarz inequality, we then get(∑

K∈M
gK

)2

≤
(∑
K∈M

g2K

)
|M| (5)≤ sε2nm|M| ≤

(∑
K∈M

gK

)
sεn,

which implies

|ML| =
∑
K∈M

gK ≤ sεn. (7)

Therefore, |MC| ≤ |ML|/2≤ sεn/2 since each star has at least 2 leaves.
These bounds on ML and MC together with (6) immediately imply that |R| ≥ (1− 3sε)n≥

n/2. We are going to show that there are many edges between R andHC and from that we derive
the existence of a high degree vertex, giving the desired contradiction.
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A vertex in R cannot have at least εm neighbours inside R, because otherwise we could create a
new star and increase the sum in (4). Therefore, e(R)< |R|εm/2.We also have e(R,MC)= 0 since
otherwise we could add an edge to one of the existing stars in K increasing the sum in (4) (recall
that stars inM have less than ε

√
n leaves).

Given a leaf v ∈ML that belongs to a star K with gK leaves, we must have deg (v, R)<
gK + 1. Otherwise, we could take V ′ ⊆NR(v) of size |V ′| = gk + 1≤ ε

√
n and create a new fam-

ily of vertex-disjoint stars, given by K \ {K} and the star on v∪V ′, to increase the sum in (4).
Therefore,

e(R,ML)≤
∑
K∈M

gK(gK + 1)≤
∑
K∈K

g2K +
∑
K∈M

gK
(5),(7)≤ sε2nm+ sεn.

Similarly, given v ∈HL, we must have deg (v, R)< ε
√
n. Otherwise, we could take V ′ ⊆NR(v)

of size |V ′| = ε
√
n and create a new family of vertex-disjoint stars, given by K \ {K}, the star K \

{v}, and the star on v∪V ′, to increase the sum in (4). Therefore, e(R,HL)≤ |HL|ε√n≤ sε2nm
by (6).

On the other hand, δ(G)≥m implies e(R,V)≥m|R|, where the edges inside of R are counted
twice. Then we can lower bound the number of edges between R andHC by

e(R,HC)≥m|R| − 2e(R)− e(R,MC)− e(R,ML)− e(R,HL)
≥m|R| − εm|R| − 0− 2sε2nm− sεn
≥m|R| − εm|R| − 4sε2m|R| − sε2m|R|
≥ (1− ε − 5sε2)|R|m≥ |R|(1− 2ε)m.

where we used the bounds on e(R), e(R,MC), e(R,ML), and e(R,HL) we found above, together
with |R| ≥ n/2, εm≥ 2 and the choice of ε < 1/(6s). In particular, as |HC| ≤ sm and using ε <

1/2− sγ , and |R| > n/2, there exists a vertex v ∈HC of degree

deg (v)≥ deg (v, R)≥ |R|(1− 2ε)m
sm

≥ |R|2γ > γ n.

This contradicts the maximum degree of G. �
Proof of Proposition 7.1. Let n be sufficiently large for the following arguments. With 0< γ <

1/2 letG be an n-vertex graph with maximum degree�(G)≤ γ n and minimum degree δ(G)≥m.
With ( log n)3 ≤m≤ √

n, we first find many vertex-disjoint stars in G and then complete at least
m of them to triangles with the help of G(n, p). We apply Lemma 7.3 with γ and s= 8 to get
0< ε < 1/2 and, as n is large enough and m≥ 2/ε, we get a family K of vertex-disjoint stars on
V(G) such that εm≤ gK ≤ ε

√
n for K ∈K and

∑
K∈K g2K ≥ 8ε2nm.

As we have stars of different sizes, we split K into t = �log (√n/m)/ log 2� + 1 subfamilies

Ki = {K ∈K : 2i−1εm≤ gK < 2iεm}, 1≤ i≤ t,
and set ki = |Ki|.

By deleting leaves, we may assume that all stars inKi have exactly �2i−1εm� leaves. Denote by I
the set of indices i ∈ [t] such that ki

(
2i−1εm

)2 ≥ ε2nm/t. Next we prove that
∑

i∈I ki
(
2i−1εm

)2 ≥
ε2nm.

Observe first that
∑

i∈I ki
(
2i−1εm

)2 ≤ t(ε2nm/t)= ε2nm. It follows that

∑
i∈I

ki
(
2i−1εm

)2 = 1
4
∑
i∈I

ki
(
2iεm

)2 = 1
4

t∑
i=1

|Ki|
(
2iεm

)2 −
∑
i∈I

ki
(
2i−1εm

)2

≥ 1
4

t∑
i=1

∑
K∈Ki

g2K − ε2nm≥ 2ε2nm− ε2nm≥ ε2nm.
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Now we reveal random edges on V(G) with probability p≥ C/n where C is large enough for
the Chernoff bounds and inequalities below. We shall show that this allows us to find at least m
triangles a.a.s.. Indeed, for each i ∈ I , we find many pairwise vertex-disjoint triangles in Ki using
random edges.

Claim 7.4. For any i ∈ I , after revealing edges of G(n, p) with p≥ C/n, we have with probability
at least 1− 1/n at least ki(2i−1m)2/n pairwise vertex-disjoint triangles within (G∪G(n, p))[∪K∈Ki
V(K)].

Having this claim and since |I| ≤ t = o(n), with a union bound over i ∈ I , there are a.a.s. at
least ∑

i∈I
ki(2i−1m)2/n= 1

ε2n
∑
i∈I

ki
(
2i−1εm

)2 ≥ ε2nm
ε2n

≥m

pairwise vertex-disjoint triangles in G∪G(n, p). It remains to prove Claim 7.4.

Proof of Claim 7.4. Fix i ∈ I and let k= ki and g = �2i−1εm�. We reveal random edges with
probability p within each set of leaves of the k stars in Ki. We recall that these k sets are pairwise
disjoint and each has size g. Let Xj be the indicator variable of the event that the jth of these sets
contains at least one edge for 1≤ j≤ k, and set X =∑k

j=1 Xi. Then P[Xj = 1]= 1− (1− p)(
g
2) and

E[X]= k
(
1− (1− p)(

g
2)
)
. We have that E[X]≥ 2kg2/(ε2n). Indeed,

k
(
1− (1− p)(

g
2)
)

≥ 2kg2/(ε2n) ⇔ 1− 2g2/(ε2n)≥
(
1− C

n

)(g2)
,

and the later holds for large enough C and n using the inequality 1− x≤ e−x ≤ 1− x
2 valid for

x< 3/2.
From Chernoff’s inequality (Lemma 3.1) and from the fact that kg2/(ε2n)≥m/t by the

definition of I , it follows that with probability at most

2 exp
(

−1
6
kg2

ε2n

)
≤ 2 exp

(
−1
6
m
t

)
≤ 1

n

there are less than kg2/(ε2n) triangles, where the last inequality holds as t ≤ log n, m≥ ( log n)3,
and n is large enough. �

Proof of Proposition 7.2. Let G be an n-vertex graph with maximum degree �(G)≤ n/32 and
minimum degree δ(G)≥m. With

√
n≤m≤ n/32, we cannot hope to find sufficiently many

large enough vertex-disjoint stars (as we did in the proof of Proposition 7.1). Instead we apply
a greedy strategy, using that a.a.s. every vertex of G has random edges in its neighbourhood.
We can greedily obtain a spanning bipartite subgraph G′ ⊆G of minimum degree δ(G′)≥m/2
by taking a partition of V(G) into sets A and B such that eG(A, B) is maximised and letting
G′ =G[A, B]. Indeed, a vertex of degree less thanm/2 can be moved to the other class to increase
eG(A, B). W.l.o.g. we assume |B| ≥ n/2≥ |A|. Moreover, we have |A| ≥ 8m, as otherwise with
e(A, B)≥ nm/4 there is a vertex of degree larger than n/32, a contradiction.

Claim 7.5. For every A′ ⊆A, B′ ⊆ B with |A′| < 2m, |B′| ≥ n/4 we have e(A \A′, B′)≥ nm/16.

Proof. If e(A \A′, B′)< nm/16, it follows from e(A, B′)≥ |B′|m/2≥ nm/8 that we have
e(A′, B′)≥ nm/16. Since |A′| < 2m, there must be a vertex of degree at least n/32 in A′, a
contradiction. �

From this claim, it follows that there are many vertices of high degree in A \A′.
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Claim 7.6. Suppose that A′ ⊆A, B′ ⊆ B with |A′| < 2m, |B′| ≥ n/4. Let A∗ = {v ∈A \
A′ : deg (v, B′)≥m/16}. Then |A∗| ≥m.

Proof. We have |A∗|n/32+ |A|m/16≥ e(A∗, B′)+ e(A \ (A′ ∪A∗), B′)= e(A \A′, B′)≥ nm/16,
where the last inequality uses Claim 7.5. Since |A| ≤ n/2, we get

|A∗| ≥ nm/16− nm/32
n/32

=m.
�

Let s= � 2n
m � and t = �m2

2n �. We will now iteratively construct our m triangles in t rounds of s
triangles each. In each round, we will reveal G(n, q) with q= C log n

m2 , where C is large enough for
the Chernoff bound below. For the start, we set A′ = B0 = ∅.

Let i= 1, . . . , t, suppose that before the ith round we have

|A′| = (i− 1)s≤
(⌈m2

2n

⌉
− 1

) ⌈2n
m

⌉
≤ m2

2n

(
2n
m

+ 1
)

< 2m

and |B0| = (i− 1)(2s)< 3m, and note this is true for i= 1. In the ith round, we pick vertices
v1, . . . , vs ∈A \A′ and pairwise disjoint sets B1, . . . , Bs ⊆ B \ B0, each of size �m/16�, such that
Bj ⊆NG′(vj) for each j= 1, . . . , s. We can do this greedily, where for j= 1, . . . , s we set B′ = B \
(B0 ∪ B1 ∪ · · · ∪ Bj−1) and apply Claim 7.6 to obtain a vertex vj ∈A \A′ together with a set Bj ⊆ B′
of �m/16� neighbours of vj. We can do this as |A′| < 2m and |B′| ≥ n/2− s�m/16� − |B0| ≥ n/4
asm≤ n/32.

Now we reveal additional edges at random with probability q. Then with probability at least
1− 1/n2, we have at least one edge in each set B1, . . . , Bs. Indeed the probability that there is
no edge in a set Bi is at most (1− q)(

|Bi|
2 ) ≤ exp (− C log n

m
(�m/16�

2
)
)≤ n−3 as C is large enough.

Therefore, the probability that there is a set without any edge is at most sn−3 ≤ n−2 by a union
bound. We fix an arbitrary edge from each Bi and together with v1, . . . , vs this gives us s triangles.
We add the vertices v1, . . . , vs to A′ and the vertices of the edges that we chose to B0. Notice that
|A′| = is and |B′| = i(2s), as required at the beginning of next round.

We can repeat the above t times because withm≥ √
nwe get tq≤ C log n

n = p. By a union bound
over the t = �m2

2n � ≤ n rounds, we get that we succeed a.a.s. and find ts≥m triangles. �

8. Proof of the auxiliary lemmas
In this section, we prove Lemmas 4.1, 4.2, and 4.3. For each of them, we first give an overview of
the strategy and then a full proof.

8.1 Proof of Lemmas 4.1 and 4.2
We describe the general setup of both Lemmas 4.1 and 4.2. Let G be a graph on U ∪V ∪W with
(V ,U) and (V ,W) being super-regular with respect to G. We will find all/most triangles, respec-
tively, with one vertex in each of the sets U, V , andW, with the edges between U andW coming
from the random graph. To find these edges, we consider a random matching M in G(U,W, p)
such that each matching edge is contained in many triangles with the third vertex from V . As we
later want to match edges from M to vertices from V , in order to get triangles, we consider the
following bipartite auxiliary graph. Given a matching M between U and W, the vertex set of the
graphHG(M,V) consists ofM and V and there is an edge betweenm ∈M and v ∈V if and only if
the vertices ofm are incident to v inG. The lemma below states that with p≥ C/n, we can a.a.s. find
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a large matchingM such that additionally (M,V) gives a super-regular pair inHG(M,V). Observe
that a matching within HG(M,V) induces pairwise vertex-disjoint triangles in G∪G(U,W, p).

Lemma 8.1. For any 0< d, δ, ε′ < 1 with 2δ ≤ d there exist ε, C > 0 such that the following holds.
Let G be a graph on U ∪V ∪W, with |V| = n and (1− 1/2)n≤ |U| = |W| ≤ (1+ 1/2)n, such that
(V ,U) and (V ,W) are (ε, d)-super-regular pairs with respect to G. Further, let G(U,W, p) be a
random graph with p≥ C/n. Then a.a.s. there exists a matching M ⊆G(U,W, p) of size |M| =
(1− δ)|W| such that the pair (M,V) is (ε′, d3/32)-super-regular with respect to the auxiliary graph
HG(M,V).

We will prove this lemma at the end of this section. For Lemma 4.2, we will use the minimum
degree condition and G(V , p) to find additional triangles covering the remaining vertices from U
andW that are not covered byM. We now proceed to the details of this proof.

Proof of Lemma 4.2. Given 0< δ′ ≤ d < 1, let ε′ > 0 be given by Lemma 3.4 on input d3/64 and
let 0< δ < δ0 ≤min{δ′, d3/22}. Furthermore, let C ≥ 8δ−2, let 0< ε < δ/4 be given by Lemma 8.1
on input d, δ

3(1−δ) (in place of δ), and ε′/2 and let p≥ C/n.
Suppose U, V , W are disjoint sets of size |V| = n and (1− δ0)n≤ |U| = |W| ≤ (1− δ)n with

|V| + |U| + |W| ≡ 0 (mod 3), and G is a graph with vertex set U ∪V ∪W such that the pairs
(V ,U) and (V ,W) are (ε, d)-super-regular with respect to G. Let δ1 be such that |U| = |W| =
(1− δ1)n and observe that δ ≤ δ1 ≤ δ0. We reveal random edges G1 ∼G(U,W, p) and G2 ∼
G(V , p) and we have that a.a.s. any set of size at least δn in V contains an edge of G2. Indeed,
fixed a set of size at least δn, the probability that it does not contain an edge of G2 is at most
(1− p)(

δn
2 ) ≤ exp (− p

(
δn
2
)
)≤ exp (− 2n) since C ≥ 8δ−2, and we conclude by a union bound

over the at most 2n choices of such set. Then we apply Lemma 8.1 with G1 to obtain a match-
ing M ⊆G1 of size |M| =

(
1− δ

3(1−δ)

)
|W| =

(
1− δ

3(1−δ)

)
(1− δ1)n such that the pair (M,V) is

(ε′/2, d3/32)-super-regular with respect toHG(M,V). As for x ∈ (0, 1) the function x→ x/(1− x)
is increasing and δ ≤ δ1, we have

(
δ1
3 − δ

3(1−δ) (1− δ1)
)

≥
(

δ1
3 − δ1

3(1−δ1) (1− δ1)
)

≥ 0. Thus, by

ignoring
(

δ1
3 − δ

3(1−δ) (1− δ1)
)
n≤ d3n/64 edges of M, we get a subset M′ ⊆M with |M′| =

(1− 4δ1/3)n.
Next, letU ′ =U \V(M′) andW′ =W \V(M′) be the sets of vertices inU andW, respectively,

that are not incident to edges of M′. Note that both U ′ and W′ have size δ1n/3. We want to
cover these vertices with triangles having the other two vertices in V . Any vertex v ∈U ′ ∪W′
has degree at least dn into V and as d > 2δ0 ≥ 2δ1, we can pick these triangles greedily for each
v ∈U ′ ∪W′ using G2. Let V ′ ⊆V be the vertices that were used for these triangles and observe
|V \V ′| = |M′| = (1− 4δ1/3)n.

To obtain the triangle factor it remains to find a perfect matching inHG(M′,V \V ′). By Lemma
3.4, it is sufficient to observe that the pair (M′,V \V ′) is (ε′, d3/64)-super-regular with respect
to HG(M′,V \V ′), which holds because (M,V) is (ε′/2, d3/32)-super-regular with respect to
HG(M,V). �

Now we turn to the overview of the proof of Lemma 4.1, for which p≥ C log n/n. We will rely
again on Lemma 8.1, which gives a large matching M ⊆G(U,W, p) such that the pair (M,V) is
super-regular with respect to the auxiliary graph HG(M,V). Starting from this matching M, we
add more matching edges of G(U,W, p) between the vertices not covered byM, and extendM to
a perfect matching in G(U,W, p). This will be possible using Lemma 8.2 from below and Lemma
3.6, where we emphasise that the log n-term is essential for this last lemma. It is then easy to find
a perfect matching in HG(M,V) that gives a triangle factor.

Before we come to the proof of Lemma 4.1, we introduce another auxiliary structure to describe
in general which potential edges between U andW we would like to use for the matchingM. We
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define an auxiliary bipartite graph F = FG,V (U,W) with bipartition U ∪W, where a pair (u,w) ∈
U ×W is an edge of F if u and w have at least d2n/2 common neighbours in G, i.e. |NG(u,V)∩
NG(w,V)| ≥ d2n/2. Similarly, for a set X ⊆V , we call an edge uw ∈ E(F) good for X if there are at
least d2|X|/2 vertices x ∈ X that are incident to u and w in G, i.e. uwx is a triangle in G∪ F. We
denote the spanning subgraph of F with edges that are good for X by FX . We prove the following
lemma, which will be used in the proof of Lemma 8.1 to constructM and in the proof of Lemma
4.1 to extendM.

Lemma 8.2. For any ε, d > 0 with ε ≤ d/2, the following holds. Let G be a graph on U ∪V ∪W,
with |V| = n and (1− 1/2)n≤ |U| = n0 = |W| ≤ (1+ 1/2)n, such that (V ,U) and (V ,W) are
(ε, d)-super-regular pairs with respect to G. Let F = FG,V (U,W) be the bipartite graph described
above. Then F satisfies the following properties.

(i) The minimum degree of F is at least (1− ε)n0.
(ii) If X ⊆V and |X| ≥ 2εn/d, then all but at most εn0 vertices from U have degree at least

(1− 2ε)n0 in FX.

Proof of Lemma 8.2. Take any u ∈U. Since (U,V) is an (ε, d)-super-regular pair, we have
|NG(u,V)| ≥ d|V| ≥ ε|V| and we can apply Lemma 3.3 with A=W, B=V , and Y =NG(u,V)
to conclude that the set

Wu = {
w ∈W : degG (w, Y)≥ (d − ε)|Y|}

has size at least (1− ε)n0. Since (d − ε)|Y| ≥ (d − ε)dn≥ d2n/2, all the vertices inWu are neigh-
bours of u in the auxiliary graph F and, therefore, |NF(u)| ≥ (1− ε)n0. Analogously, we infer that
|NF(w)| ≥ (1− ε)n0 for all w ∈W and hence δ(F)≥ (1− ε)n0.

If |X| ≥ 2εn/d, then by Lemma 3.3 all but at most εn0 vertices u ∈U have at least d|X|/2 neigh-
bours in X. Fixing any u ∈U with this property, and again using Lemma 3.3, all but at most εn0
vertices w ∈W have at least d2|X|/4 common neighbours with u in X. From (i) we know that
δ(F)≥ (1− ε)n0, therefore all but at most εn0 vertices from U have degree at least (1− 2ε)n0 in
FX . �

Now we prove Lemma 4.1 using Lemmas 8.1 and 8.2.

Proof of Lemma 4.1. Given d ∈ (0, 1), let ε′ > 0 be given by Lemma 3.4 on input d3/64 and let
0< δ < d3/64. Furthermore, let 0< ε < δ/4 be given by Lemma 8.1 on input d, δ, and ε′/2, let C′
be given by Lemma 3.6 for input 1/4, set C = 2C′/δ, and let p≥ C log n/n.

Now let G be a graph on U ∪V ∪W, with |U| = |V| = |W| = n, such that (V ,U) and (V ,W)
are (ε, d)-super-regular pairs with respect to G. We reveal the random edges in G(U,W, p) in
two rounds as G1 ∼G(U,W, p/2) and G2 ∼G(U,W, p/2). We apply Lemma 8.1 with G1 to a.a.s.
obtain a matchingM ⊆G1 of size |M| = (1− δ)n such that the pair (M,V) is (ε′/2, d3/32)-super-
regular with respect to HG(M,V). Observe that p≥ C log n/n, while the logarithmic factor is not
required by Lemma 8.1, and thus the constant C does not need to depend on the constant given
by this lemma.

Next, let U ′ =U \V(M) and W′ =W \V(M) be the sets of vertices in U and W respectively
that are not incident to edges ofM. Note that bothU ′ andW′ have size δn. For the auxiliary graph
F = FG,V (U,W) defined above, we consider the subgraph F[U ′,W′] induced by U ′ and W′ and
note that by Lemma 8.2 (i) it has minimum degree at least (δ − ε)n≥ 3

4δn. We use G2 to reveal
the edges of F[U ′,W′] with probability p/2 and a.a.s. by Lemma 3.6 with p/2≥ C′ log (δn)/(δn)
we find a perfect matchingM′ in G2 ∩ F[U ′,W′].

To obtain the triangle factor, it remains to find a perfect matching in HG(M ∪M′,V). For this
we first greedily select a neighbour v from V for eachm ∈M′ and denote the set of vertices v used
in this way by V ′. Since |V ′| = |M′| = δn, it follows from the choice of δ that this is possible and
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that the pair (M,V \V ′) is (ε′, d3/64)-super-regular with respect toHG(M,V \V ′). As |V \V ′| =
|M|, by Lemma 3.4, there is a perfect matching in HG(M,V \V ′) and we are done. �

It remains to prove Lemma 8.1.

Proof of Lemma 8.1. Given 0< d, δ, ε′ < 1 with 2δ ≤ d, suppose that
ε � η � γ � d, δ, ε′

are positive real numbers such that

γ ≤ ε′/2, η log (1/η)≤ γ /4, ε ≤ ηd/4 and ε ≤ γ δ/56 .

Furthermore, let C > 0 such that p≥ C/n is large enough for the applications of Chernoff’s
inequality below.

Let G be a graph on U ∪V ∪W, with |V| = n and |U| = |W| = n0 = (1± 1/2)n, such that
(V ,U) and (V ,W) are (ε, d)-super-regular pairs with respect to G. To find the matching M,
construct a graph F̃ ⊆ F = FG,V (U,W) by including each edge of F randomly with probability
p, independently from all other edges.

Claim 8.3. A.a.s. for every X ⊆V of size ηn and U ′ ⊆U and W′ ⊆W both of size at least δn0, the
following statements hold.

There are (1± ε)eF(U ′,W′)p edges in F̃[U ′,W′] (8)

and
at least (1− 7ε/δ)|U ′||W′|p edges in F̃[U ′,W′] are good for X. (9)

Proof. The expected number of edges between U ′ and W′ in F̃ is by Lemma 8.2 (i) at least
eF(U ′,W′)p≥ |U ′|(|W′| − εn0)p≥ Cδ2n/8. Using Chernoff’s inequality (Lemma 3.1), we obtain
with Cδ2ε2 ≥ 120 that

P
[
eF̃(U

′,W′) = (1± ε)eF(U ′,W′)p
]≤ 2 exp

(
−ε2

3
eF(U ′,W′)p

)
≤ exp (−4n) .

From Lemma 8.2 (ii) we get that the expected number of edges betweenU ′ andW′ in F̃ that are
good for X is at least (|U ′| − εn0)(|W′| − 2εn0)p≥ (1− 3ε/δ)|U ′||W′|p. Moreover, observe that

(
1− 7

ε

δ

)
=
(
1− 4ε/δ

1− 3ε/δ

)
(1− 3ε/δ) ≤

(
1− 4ε/δ√

1− 3ε/δ

)
(1− 3ε/δ) .

Thus, by Chernoff’s inequality applied with 4ε/δ√
1−3ε/δ in place of δ, we get with Cε2 ≥ 3 that

P
[
|E(F̃[U ′,W′])∩ E(FX)| ≤

(
1− 7

ε

δ

)
|U ′||W′|p

]
≤ 2 exp

(
−16ε2

3δ2
|U ′||W′|p

)
≤ 2 exp (−4n) .

Claim 8.3 follows from the union bound over the at most 23n choices for X, U ′, andW′. �
Using a random greedy process, we now choose a matching M of size (1− δ)|W| between U

and W in F̃ as follows. Having chosen edges m1, . . . ,mt ∈ F̃ with t < (1− δ)|W|, we pick mt+1
uniformly at random from all edges of F̃ that do not share an endpoint with any of m1, . . . ,mt .
This is possible since, by (8) and Lemma 8.2 (i), between any two subsets of U andW of size δ|W|
there is at least one edge of F̃. For i= 1, . . . , (1− δ)n we denote by Hi the history m1, . . . ,mi.
It remains to show that (M,V) is (ε′, d3/32)-super-regular with respect to the auxiliary graph
H =HG(M,V).

Observe, that any m ∈M has |NH(m)| ≥ d2n/2 by construction. We now show that for any
v ∈V we have |NH(v)| ≥ d3n0/32. For this, it is sufficient to consider the first dn0/2 edges
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m1, . . . ,mdn0/2 that are chosen for M by the random greedy process. For i= 1, . . . , dn0/2, by
(8), there are at most e(F̃)≤ (1+ ε)n20p available edges to chose mi from. On the other hand, as
long as i≤ dn0/2, the vertex v has at least dn0/2 neighbours in each of the sets U andW in G that
are not covered by the edges in Hi−1. Let U ′ ⊆U and W′ ⊆W be the sets of those vertices and
observe that |U ′|, |W′| ≥ dn0/2≥ δn0. Therefore, by (8) and Lemma 8.2 (i), there are at least

(1− ε)eF(U ′,W′)p≥ (1− ε)(d/2)(d/2− ε)n20p

edges in F̃[(U ∪W) \V(Hi−1)] available to choose mi from, such that both endpoints of mi are
incident to v in G.

Hence, for i= 1, . . . , dn0/2, we get

P[mi ∈NH(v)|Hi−1]≥ (1− ε)(d/2)(d/2− ε)n20p
(1+ ε)n20p

= (1− ε)(d/2)(d/2− ε)
(1+ ε)

≥ d2

8
.

As this holds independently of the history of the process, this process dominates a binomial
distribution with parameters dn0/2 and d2/8. Therefore, even though the events are not mutually
independent, we can use Chernoff’s inequality to infer that |NH(v)| ≥ d3n0/32 with probability
at least 1− 1/n2. Then, by applying the union bound over all v ∈V , we obtain that indeed a.a.s.
|NH(v)| ≥ d3n0/32 for all v ∈V .

Now we show the regularity of H =HG(M,V). Let X ⊆V be given with |X| = ηn. For i= 0,
1, . . . , t − 1, we obtain from (8) that there are at most (1+ ε)(n0 − i)2p edges in F̃[(U ∪W) \
V(Hi)] available for choosing mi+1, of which, by (9), at least (1− 7ε/δ)(n0 − i)2p are good for X.
Then

P
[
mi+1 bad for X

∣∣∣Hi−1
]
≤ 1− (1− 7ε/δ)(n0 − i)2p

(1+ ε)(n0 − i)2p
= 1− 1− 7ε/δ

1+ ε
≤ 8ε/δ .

As the upper bound on the probability holds independently of the history, this process is dom-
inated by a binomial distribution with parameters (1− δ)n0 and 8ε/δ. Observe that the expected
value of this distribution is (1− δ)n0 8ε/δ ≤ 8εn0/δ. Then, with BX ⊆M being the edges in M
that are not good for X and as γ n0 ≥ 7 · 8εn0/δ, we get from Chernoff’s inequality (second part of
Lemma 3.1) that

P [|BX| > γ n0]≤ exp (−γ n0) .
There are at most

( n
ηn
)≤ (e/η)ηn ≤ exp (η log (1/η)n)≤ exp (γ n0/2) choices for X and, thus,

with the union bound over all these choices, we obtain that a.a.s. there are at most γ n0 bad edges
inM for any X ⊆V with |X| = ηn.

Therefore for any set X′ ⊆V andM′ ⊆M with |X′| ≥ ε′n and |M′| ≥ ε′|M| we find

eH(M′, X′)≥ (|M′| − γ n0)
d2ηn
2

|X′|
2ηn

≥ d2

8
|M′||X′|.

Overall, we can conclude the pair (M,V) is (ε′, d3/32)-super-regular with respect to the
auxiliary graph HG(M,V). �

8.2 Proof of Lemma 4.3
Lemma 4.3 easily follows from Lemma 4.2 after splitting the sets U and V appropriately.

Proof of Lemma 4.3. Let 0< d < 1, choose δ′ with 0< δ′ ≤ d/4 and apply Lemma 4.2 with δ′ and
d/4 to obtain δ0, δ, ε′ with δ′ ≥ δ0 > δ > ε′ > 0 and C′ > 0. Then let ε with 0< ε ≤ ε′/8 and C ≥
10C′. Next let U and V be vertex sets of size |V| = n and 3n/4≤ |U| = n0 ≤ n where n+ n0 ≡ 0
(mod 3) and assume that (U,V) is a (ε, d)-super-regular pair.
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The idea is to split the regular pair (U,V) into two regular cherries and then use Lemma 4.2 in
each cherry. More precisely, we partition V into V1, U2,W2 and U into V2, U1,W1 such that for
i= 1, 2 the pairs (Ui,Vi) and (Wi,Vi) are (ε′, d/4)-super-regular pairs and (1− δ0)|Vi| ≤ |Ui| =
|Wi| ≤ (1− δ)|Vi|. To obtain this, we split the sets according to the following random process.
We put any vertex of V into each of U2 and W2 with probability q1 and into V1 with probability
1− 2q1. Similarly, we put any vertex of U into each of U1 andW1 with probability q2 and into V2
with probability 1− 2q2. We choose q1 and q2 such that the expected sizes satisfy for i= 1, 2

E[|Ui|]=E[|Wi|]=
(
1− δ0 + δ

2

)
E[|Vi|].

This is possible since such conditions give a linear system of two equations in two variables q1
and q2. As 3n/4≤ n0 ≤ n, the solution satisfies 1/7< q1, q2 < 3/7. Then by Chernoff’s inequality
(Lemma 3.1) and with n large enough there exists a partition such that for i= 1, 2 we have that
|Wi|, |Ui|, and |Vi| are all within ±n2/3 of their expectation and the minimum degree within both
pairs (Ui,Vi) and (Wi,Vi) is at least a d/2-fraction of the other set. For i= 1, 2 we redistribute
o(n) vertices between Ui andWi and move at most one vertex from or to Vi to obtain

(1− δ0)|Vi| ≤ |Ui| = |Wi| ≤ (1− δ)|Vi|

with minimum degree within both pairs (Ui,Vi) and (Wi,Vi) at least a d/4-fraction of the
other set.

From this we get that for i= 1, 2 the pairs (Ui,Vi) and (Wi,Vi) are (ε′, d/4)-super-regular.
Also note that min{|V1|, |V2|} ≥min{(1− 2.1q1)n, (1− 2.1q2)n0} ≥ n/10 by the bound on q1 and
q2 from above. Then for i= 1, 2 and with C/n≥ C′/min{|V1|, |V2|} we a.a.s. get a triangle factor
on Vi, Ui,Wi from Lemma 4.2. Together these give a triangle factor on U ∪V . �

9. Concluding remarks and open problems
In this paper, we close the last gap for the existence of a triangle factor in randomly perturbed
graphs Gα ∪G(n, p) and now the threshold is determined for any α ∈ [0, 1] (c.f. Table 1). In this
last section, we would like to discuss a possible improvement for Theorem 2.4 and three different
directions for generalisations of our results.

9.1 Optimality of the sublinear theorem
The bound on p in Theorem 1.3 is asymptotically optimal. However, as discussed earlier, when
m is significantly smaller than n/3, then Km,n−m ∪G(n, p) contains m pairwise vertex-disjoint
triangles already at p≥ C/n. When dealing with the sublinear case 1≤m≤ n/256 in Theorem 2.4,
we require p≥ C log n/n; in fact we do not use the log n-term when ( log n)3 ≤m≤ √

n (notice
indeed that Proposition 7.1 is stated with p≥ C/n). It would be interesting to understand if p≥
C/n also suffices for larger values ofm and if Proposition 7.2 can be improved.

Problem 9.1. Show that there exists C > 0 such that for any
√
n≤m≤ n/32 and any n-vertex

graph G with maximum degree �(G)≤ n/32 and minimum degree δ(G)≥m, a.a.s. G∪G(n, p)
contains m pairwise vertex-disjoint triangles, provided p≥ C/n.

Note that this would improve Theorem 2.3 when α < 1/3. Indeed in our proof we only need
the log n-term as we apply Theorem 2.4, while we could use Lemma 4.2 instead of 4.1 and avoid
the log n-term in the rest of the argument.
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9.2 Larger cliques
Similarly to a triangle factor, for any integer r ≥ 2 and any α ∈ [0, 1], one can look at the thresh-
old for the existence of a Kr-factor in Gα ∪G(n, p). The result of Johannson, Kahn, and Vu [20]
determines the threshold in G(n, p) at n−2/r log2/(r

2−r) n and for α ≥ 1− 1/r the existence in Gα

alone is proved by Hajnal-Szemerédi Theorem [16]. For other values of α, the results of Balogh,
Treglown, and Wagner [4] and of Han, Morris and Treglown [17] can be summarised in the
following theorem generalising Theorem 1.2.

Theorem 9.2. For any integers 2≤ k≤ r and any α ∈ (1− k
r , 1− k−1

r ) there exists C > 0 such that
the following holds. For any n-vertex graph G with minimum degree δ(G)≥ αn there a.a.s. is a
Kr-factor in G∪G(n, p) provided that p≥ Cn−2/k.

However, this leaves open the question for the threshold in the boundary cases, i.e. when
α = 1− k/r for 2≤ k≤ r − 1. A natural extremal structure is given by the complete �r/k�-partite
graph with �r/k� classes of size kn/r and possibly one class of size (1− �r/k�k/r)n if k � r. This
implies that to get a Kr-factor in Gα ∪G(n, p), we need to cover all but polylog n vertices of the
sets of size kn/r with vertex-disjoint copies of Kk, i.e. the threshold is at least n−2/k( log n)2/

(
k2−k

)
.

Surprisingly, this is not sufficient in the case when r > 3 and k = 2; in fact, for small ε, even
n−2/k+ε is not sufficient.

We briefly explain the counterexample for r = 4 and k= 3, by constructing an n-vertex graph
Gwith minimum degree δ(G)≥ (1− 3/4)n= n/4 such that even for small ε > 0 and p≥ n−2/3+ε ,
a.a.s. the graphG∪G(n, p) does not contain a K4-factor. Let 0< ε ≤ 1/49, p≥ n−2/3+ε , and n7ε ≤
m≤ n1/7. Then, for two sets A and B with |A| = n/4−m and |B| = 3n/4+m, we let G be the
n-vertex graph on V(G)=A∪ B such that A is an independent set, G[B] is given by |B|/(2m)
disjoint copies of Km,m, and any pair of vertices (a, b) with a ∈A and b ∈ B is an edge. Clearly,
G has minimum degree n/4. If G∪G(n, p) contains a K4-factor, since A only contains n/4−m
vertices, at leastm copies ofK4 must lie within B. However we claim that a.a.s. the perturbed graph
G∪G(n, p)[B] contains less thanm copies of K4 and thus a.a.s. G∪G(n, p) does not contain a K4-
factor. Denote by X the number of K4’s in G∪G(n, p)[B]. It is not hard to see that when m is not
too small the best way to build a K4 in B is to choose a Km,m in B and ask for an edge of G(n, p)
on each side of Km,m. We get E[X]� n

mm
4p2 = o(m) and by Markov’s inequality a.a.s. X <m as

claimed.

Problem 9.3. Determine the behaviour of the threshold and the extremal graphs at and around
minimum degree n/4.

The counterexamples for other values of r > 3 and k = 2 can be constructed in a similar way,
by slightly modifying the corresponding extremal graph defined above. In the case when k= 2,
this construction does not increase the lower bound n−1 log n and, with Theorem 2.4 in mind,
we believe that Theorem 1.4 generalises to Kr . However, we believe that in all cases, using our
methods, Theorem 2.2 can be extended to Kr : i.e. for all 2≤ k≤ r − 1 and with α = 1− k/r, when
Gα is not close (with a similar condition as in Definition 2.1) to the extremal graph defined above,
then p≥ Cn−2/k is sufficient for a Kr-factor in Gα ∪G(n, p).

9.3 Longer cycles
Another possible generalisation is to consider factors of longer cycles C
. With slight adjustments
to our methods (mainly to Theorem 2.4), we are able to show the following theorem.

Theorem 9.4. For any integer 
 ≥ 3 there exists C > 0 such that for any n-vertex graph G we can
a.a.s. find at least min{δ(G), �n/
�} pairwise vertex-disjoint C
’s in G∪G(n, p), provided that p≥
C log n/n.
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We will discuss this in [9, 10], including the corresponding variants for the finer statements,
Theorems 2.2–2.4.

9.4 Universality
Even further, we call a graph 2-universal if it contains any n-vertex graph of maximum degree 2
as a subgraph. It is known that the threshold for 2-universality is asymptotically the same as for
a triangle factor when α < 1/3 or α ≥ 2/3 [1, 15, 28]. In a follow-up paper, we will expand our
approach and prove that this also holds for the remaining cases, i.e. log n/n gives the threshold for
α = 1/3 and 1/n gives the threshold when 1/3< α < 2/3.
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A. Proof of Lemmas 3.2, 3.6, and 4.4

For the proof of Lemma 3.2 we use Janson’s inequality (see e.g. [19, Theorem 2.14]).

Lemma A.1. Janson’s inequality Let p ∈ (0, 1) and consider a family {Hi}i∈I of subgraphs of the
complete graph on the vertex set [n]= {1, . . . , n}. For each i ∈ I , let Xi denote the indicator random
variable for the event that Hi ⊆G(n, p) and, write Hi ∼Hj for each ordered pair (i, j) ∈ I × I with
i = j if E(Hi)∩ E(Hj) = ∅. Then, for X =∑

i∈I Xi, E[X]=∑
i∈I pe(Hi),

δ =
∑
Hi∼Hj

E[XiXj]=
∑
Hi∼Hj

pe(Hi)+e(Hj)−e(Hi∩Hj)

and any 0< γ < 1 we have

P[X ≤ (1− γ )E[X]]≤ exp
(

− γ 2E[X]2

2(E[X]+ δ)

)
.

Proof of Lemma 3.2. Let d > 0 and pick C > 68/d3 and p> C/n. Let I = EG(U,W)×V and for
each i= (uw, v) ∈ I letHi be the path uvw on the three vertices u ∈U, v ∈V and w ∈W. We want
to apply LemmaA.1 to the family {Hi}i∈I . Using the same notation, we haveE[X]= |I|p2 ≥ dn3p2
and δ ≤ n2(2n)np3, as for i= (uw, v) and j= (u′w′, v′) with i, j ∈ I and i = j we have Hi ∼Hj if
and only if v= v′ and precisely one of the equalities u= u′ and w=w′ holds. Then the Janson’s
inequality with γ = 1/2 gives

P

[
X ≤ E[X]

2

]
≤ exp

(
−γ 2

2
dn3p2

1+ 2np/d

)
≤ exp

(
− 1
17

d2n2p
)

≤ 2−4n/d,

as p> C/n and C > 68/d3. Thus with probability at least 1− 2−4n/d we have X >E[X]/2 and
there is at least one path Hi on vertices u, v,w for some i= (uw, v) ∈ I in G(n, p). As uw is an
edge of G by definition of I , we get a triangle in G∪G(U ∪W,V , p) with one vertex in each of
U,V ,W, as required. �

Next, we prove that if a bipartite graph G has large minimum degree, its random subgraph Gp
contains a perfect matching if p≥ C log n/n.

Proof of Lemma 3.6. For ε > 0 let C ≥ 3/ε. Let G be a bipartite graph with partition classes U
and W of size n and minimum degree at least (1/2+ ε)n. Let p≥ C log n/n and suppose that Gp
does not have a perfect matching. Then, by Hall’s Theorem, there exists a set S⊆U or S⊆W with
|S| > |N(S)|. Let S be a minimal such set, then |S| = |N(S)| + 1, |S| ≤ �n/2�, and every vertex in
|N(S)| is adjacent to at least two vertices of S.
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Let 1≤ s≤ �n/2� and let As denote the event that there is a minimal set S of size s violating
Hall’s condition. If s= 1, then S is an isolated vertex. Let Xn be the number of isolated vertices in
Gp, then for n large enough

E[Xn]≤ 2n
(
1− C log n

n

)(1/2+ε)n
≤ 2n exp (− C(1/2+ ε) log n)≤ 2n1−C(1/2+ε)

and limn→∞ E[Xn]= 0. Therefore, a.a.s. Gp does not contain isolated vertices.
If s≥ 2, then

P[As]≤
(
n
s

)(
n

s− 1

)((
s
2

)
p2
)s−1 (

1− p
)s((1/2+ε)n−s+1) ≤

(en
s

)s ( en
s− 1

)s−1
s2(s−1)(1− p)sεn

≤ e2s−1 s2(s−1)

ss(s− 1)s−1 n
2s−1 exp (− sεC log n)≤ e2s−1n−s(εC−2)−1 = 1

en

(
e2

nεC−2

)s
.

We have

P[As]≤ 1
en

(
e2

n

)s
.

The probability that there is a minimal set S violating Hall’s condition is then bounded by
�n/2�∑
s=2

P[As]≤
�n/2�∑
s=2

1
en

(
e2

n

)s
≤ 1

en
∑
s≥0

(
e2

n

)s
= 1

en
1

1− e2/n
.

As limn→∞ 1
en

1
1−e2/n = 0, a.a.s. Gp does not violate Hall’s condition and, therefore, contains a

perfect matching. �
Finally we prove Lemma 4.4 following the argument of [3, Lemma 12 and 13]. For this we

consider a largest matchingM in the reduced graph R and assume that |M| < (α + 2d)t. Then we
will find a set I ⊆V(R) of size roughly (1− α)t which contains very few edges. With the properties
of the reduced graph, we conclude that the original graph G is (α, β)-stable.

Proof of Lemma 4.4. Given 0< β < 1
12 let 0< d < 10−4β6. Then let 0< ε < d/4, 4β ≤ α ≤ 1

3 ,
and t ≥ 10

d . Next let G be an n-vertex graph on vertex set V with minimum degree δ(G)≥ (α −
1
2d)n that is not (α, β)-stable and let R be the (ε, d)-reduced graph for some (ε, d)-regular partition
V0, . . . ,Vt of G. We observe for the minimum degree of R that δ(R)≥ (α − 2d)t because, other-
wise, there would be vertices with degree at most (α − 2d)t(n/t)+ εn< (α − d/2)n− (d + ε)n in
G′ contradicting (P2).

Let M be a matching in R of maximal size. Observe that |M| ≥min{δ(R), �t/2�} ≥ (α − 2d)t.
We assume |M| < (α + 2d)t and show that Gmust then be (α, β)-stable, which is a contradiction.
Let U =V(R) \V(M). We shall first show that there exists a set I ⊆V(R) of size |U| + |M| that
contains only few egdes.

SinceM is a matching of maximal size in R,U is independent. Moreover, given an edge xy ∈M,
either x or y has at most one neighbour in U. Then we can split V(M) into two disjoint subsets X
and Y by placing for each matching edge xy ofM one of its endpoints with at most one neighbour
inU into the subsetX, and the other endpoint into the subset Y . We claim that I =U ∪ X contains
only few edges. We have e(U)= 0, e(X,U)≤ |X|, and we can upper bound e(X) as follows. Let
xy ∈ E(X) and denote by x′ and y′ the vertices matched to x and y inM respectively. Then x′, y′ ∈ Y
and either x′ or y′ has at most one neighbour inU. Otherwise, there would be two distinct vertices
x′′, y′′ ∈U such that x′x′′ and y′y′′ are edges of R, and we could apply the rotationM \ {xx′, yy′} ∪
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{xy, x′x′′, y′y′′} and get a larger matching, contradicting the maximality of M. Therefore, e(X)≤
|X||Z|, where Z = {v ∈ Y| deg (v,U)< 2}. Observe that

e(Y ,U)≤ (|Y| − |Z|)|U| + |Z|
and

e(Y ,U)≥ |U|δ(R)− e(X,U)≥ |U|δ(R)− |X|
where we use that since U is independent, a vertex in U can have neighbours only in X and Y . We
get

|Z| ≤ (|Y| − δ(R))|U| + |X|
|U| − 1

<
4dt|U| + |X|

|U| − 1
≤ 5dt,

where the first inequality comes from the upper and lower bound on e(Y ,U), the second one
from |Y| = |M| < (α + 2d)t and δ(R)≥ (α − 2d)t, and the last one from |U| = t − 2|M| ≥ t/4,
|X| = |M| < t/2 and 10/t ≤ d. Hence, e(X)≤ |X|5dt.

Therefore, the set I =U ∪ X has size

|I| = |V(R)| − |M| = (
1− α ± 2d

)
t

because |Y| = |M| = (α ± 2d)t and contains at most

e(I)≤ e(X)+ e(X,U)+ e(U)≤ |X|5dt + |X| ≤ (5dt + 1)(α + 2d)t ≤ 6αdt2

edges, where we use |X| = |M| = (α ± 2d)t, d ≤ α/20 and 10/t ≤ d in the last inequality.
We now move to the original graph G and prove that the existence of such set I in R implies

that G is (α, β)-stable. Let B′′ =⋃
i∈I Vi be the union of the clusters I. Then |B′′| = (1− α ± 3d)n

and e(B′′)≤ 6αdn2. Let

B′ = {v ∈ B′′| deg (v, B′′)≤ √
dn}.

Then e(B′′)≥ (|B′′| − |B′|)√dn and, therefore, all but at most 6α
√
dn vertices of B′′ belong to

B′ and, thus, |B′| = (1− α ± 4
√
d)n. Let

A′ = {v ∈V| deg (v, B′)≥ (1− β/4)|B′|}
and note that A′ ∩ B′ = ∅. Observe that if v ∈ B′, then

deg (v,V \ B′)≥ δ(G)− deg (v, B′)≥ (α − d/2− √
d)n≥ (α − 2

√
d)n. (10)

With |V \ B′| ≤ (α + 4
√
d)n this implies

e(B′,V \ B′)≥ (α − 2
√
d)n|B′| ≥ (|V \ B′| − 6

√
dn)|B′|

and with the definition of A′ and the fact that |V \ (B′ ∪A′)| = |V \ B′| − |A′|, we get
e(B′,V \ B′)≤ |V \ (B′ ∪A′)|(1− β/4)|B′| + |A′||B′| = (|V \ B′| − |V \ (B′ ∪A′)|β/4

)|B′| .
The last two inequalities imply that all but at most 24

√
dn/β vertices of V \ B′ belong to A′.

Therefore we can bound the size of A′ as follows
|A′| ≥ |V \ B′| − 24

√
dn/β ≥ αn− 4

√
dn− 24

√
dn/β ≥ αn− β2n ,

and

|A′| ≤ |V \ B′| ≤ αn+ 4
√
dn≤ αn+ β2n .

where we used in both inequalities that 4
√
dn+ 24

√
dn/β ≤ β2n, as d ≤ 10−4β6.

It follows that we have built two sets A′ and B′ such that |A′ ∪ B′| ≥ n− β2n, |A′| = αn± β2n
and |B′| = (1− α)n± β2n. Moreover each vertex of A′ has at least (1− β/4)|B′| neighbours in B′
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by the definition of A′, and each vertex of B′ has at least (1− β/2)|A′| neighbours in A′. This can
be justified as follows. Given v ∈ B′,

deg (v,A′)= deg (v,V \ B′)− deg (v,V \ (A′ ∪ B′))
≥ deg (v,V \ B′)− |V \ (A′ ∪ B′)|
≥ (α − 2

√
d)n− 24

√
dn/β ≥ (α − β2)n

≥ α − β2

α + β2 |A′| ≥ (1− β/2)|A′| ,

where we used that A′ and B′ are disjoint, the inequalities (10), |V \ (A′ ∪ B′)| ≤ 24
√
dn/β and

2
√
d + 24

√
d/β ≤ β2, the upper bound on |A′| and the inequality α ≥ 4β .

Now we need to take care of the vertices of G not yet covered by A′ ∪ B′, i.e. the at most β2n
vertices in V \ (A′ ∪ B′). Let v be one such vertex. Then deg (v,A′ ∪ B′)≥ δ(G)− |V \ (A′ ∪ B′)| ≥
(α − d/2)n− β2n≥ αn/2. Therefore, it is possible to add these vertices to A′ and B′ to obtain
A⊇A′ and B⊇A′ such that each vertex of B has at least αn/4 neighbours in A, and each vertex
of A has at least αn/4 neighbours in B. As we add at most β2n vertices, we have |A| = (α ± 2β2)n
and |B| = (1− α ± 2β2)n. Moreover, all but at most β2n≤ βn vertices from A have degree at
least

(1− β/4)|B′| ≥ (1− β/4)(|B| − β2n)≥ (1− β)|B|
into B, where we used that |B| ≤ |B′| + β2n, |B| ≥ (1− α − 2β2)n≥ (2/3− 2β2)n and β < 1/12.
Similarly, all but at most β2n≤ βn vertices from B have degree at least (1− β/2)|A′| ≥ (1− β)|A|
into A. Moreover, as B′ is a subset of B′′ and we add at most β2n vertices to B′ to get B,
we have e(B)≤ e(B′′)+ β2n2 ≤ (6αd + β2)n2 ≤ βn2. Therefore, G is (α, β)-stable according to
Definition 2.1. �
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