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Abstract

It is well known that a random set determines its random coverage measure. The
paper gives a necessary and sufficient condition for the reverse implication. An
equivalent formulation of the condition constitutes a first step in the search for a way
to recognize a random measure as being the random coverage measure of a random
set.

RANDOM MEASURE; RANDOM COVERAGE MEASURE

1. Introduction

The interest in random closed sets (Matheron (1975)) has increased during recent years
along with the increasing development of their applications. These sets are a cornerstone in
the model approach to stereology, as can be seen in Stoyan (1990). Given a random set <1>, its
associated random coverage measure is a partial description of it. Recent results in stereology
are focused on the estimation of random set characteristics related to this associated coverage
measure, in particular its second-moment measure (Cruz-Drive (1989), Jensen et al. (1990)).

Obviously, a random set always determines its coverage measure. But under what
conditions does the coverage measure determine the distribution of a random set? The
answer to this question can be found as a corollary to another more general question: how
can one recognize a random measure Jl as being the random coverage measure of a random
set with distribution determined by Jl?

2. Results

In IRk with Borel a-field 13k, a random (d, k)-set <I> is defined as a measurable mapping from
a probability space into the measurable space of v-rectifiable closed sets in IR k, where v stands
for the corresponding d-dimensional Hausdorff measure in IRk (see Jensen et al. (1990) and
Zahle (1982) for more details). This random set determines a unique random coverage
measure defined as Jl4>(B) = v(<I> n B), B E 13k

• The following theorem establishes which
condition the random closed set must satisfy in order to recover its distribution from the
associated coverage measure.
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Theorem 1. Let <I> be a random (d, k)-set and J-l(f) its associated coverage measure. The
distribution of ~ is recoverable from J-l(f) if and only if

(2.1) P {<I> n K =1= 0, J-l(f)(K EB eB) = 0 for some s} = 0

for all compact sets K, where EB denotes Minkowski addition and B is the open unit ball in
IRk.

Proof The distribution of ~ is determined by the probabilities T(K) = P{~ n K =1= 0} for
every compact K (see Matheron (1975».

Notice that

(2.2) 'tIe>0~~nK=1=0.

(2.3)

On the other hand, {~n K =1= 0} can be written as the disjoint decomposition

{<I> n K=I=0} = {J-l(f)(K EB eB) >0, 'tie >O}

U {<I> n K =1= 0, J-l(f)(K EB eB) = 0 for some s},

and {J-l(f)(K EB eB) > 0, 'tie> O} being an event with its probability determined by the
distribution of J-l(f), the sufficiency of (2.1) is established.

To prove necessity, suppose that for some compact K and e > 0, P(<I> n K =1= 0, J-l(f)(K EB
eB) = 0) > O. Set

~' = {~- (K EB eB), if J-l(f)(K EB eB) = 0
~, otherwise.

It follows immediately that J-l(f) = J-l(f)" but the disjoint decomposition

{<I>' n K =0} = {<I> n K =0} U {<I> n K=1=0, J-l(f)(K EB eB) = O}

implies P{<I> n K =1= 0) > P(<I>' n K =1= 0).

If follows from the theorem that P(~ n K =1= 0) = lim;__oo P{J-l(f)(K EB eiB) > O} for any
sequence of e, decreasing to O. In fact, we can associate with each random measure J-l a
random closed set <l>1.t' satisfying the condition (2.1), as follows.

Definition. Given a random measure J-llet <l>1.t be the random closed support of u, defined
for any sequence of e, decreasing to 0 and for any {Xl' X2, ••• } dense in IRk by

~I.t = n7=1 closure {x j ' J-l(xj EB e;B) > O}.

Note that this definition is independent of the choice of sequences {s.} and {x,; X2' ••• }

and it allows us the following alternative formulation of Theorem 1.

Theorem 2. The distribution of the random closed set <I> is recoverable from J-l(f) if and only
if ~ is distributed as the random closed support of J-l(f).

Theorem 2 gives a natural answer to the second question in the introduction: a random
measure J-l will be the random coverage of a random closed set when its closed support <I>I.t has
J-l as its random coverage measure. But the fundamental question remains: what natural and
verifiable conditions must be imposed on J-l in order for it to have this property?
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