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Abstract. Let f be a non-zero cusp form with real Fourier coefficients a(n) (n ≥ 1)
of positive real weight k and a unitary multiplier system v on a subgroup � ⊂ SL2(�)
that is finitely generated and of Fuchsian type of the first kind. Then, it is known
that the sequence (a(n))(n ≥ 1) has infinitely many sign changes. In this short note,
we generalise the above result to the case of entire modular integrals of non-positive
integral weight k on the group �∗

0 (N) (N ∈ �) generated by the Hecke congruence

subgroup �0(N) and the Fricke involution WN := ( 0 −1/
√

N√
N 0

)
provided that the

associated period functions are polynomials.
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1. Introduction. Let f be a non-zero cusp form with real Fourier coefficients
a(n) (n ≥ 1) of positive real weight k and a unitary multiplier system v on a subgroup
� ⊂ SL2(R) that is finitely generated and of Fuchsian type of the first kind. Then it was
shown in [3] that the sequence (a(n))n≥1 has infinitely many sign changes. The proof
uses analytical properties of the Hecke L-function attached to f .

In this short note we shall generalise the above result to the case of entire modular
integrals of non-positive integral weight k on the group �∗

0 (N) (N ∈ N) generated by

the Hecke congruence subgroup �0(N) and the Fricke involution WN := ( 0 −1/
√

N√
N 0

)
[2], provided that the associated period functions are polynomials. The proof again uses
the analytical properties of the Hecke L-function attached to F [2]. In addition, we
will make use of an elementary trick first applied in [4] and exploit in a stronger way
non-negativity of Fourier coefficients.

2. Statement of result and proof. Let H be a complex upper half-plane. If k ∈ Z,
γ = ( a b

c d

) ∈ SL2(R) and if f : H → C is a function, we define the Petersson slash
operator as usual by

(f |kγ )(z) := (cz + d)−kf
(

az + b
cz + d

)
(z ∈ H).
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Note that

(f |kWN)(z) = N−k/2z−kf
(

− 1
Nz

)
.

We shall prove.

THEOREM. Let k be a non-positive integer. Let F : H → C be a non-zero holomorphic
function periodic with period 1, with Fourier expansion

F(z) =
∑
n≥0

a(n)e2π inz

such that

a(n) 	 nc

for some c > 0. We assume further that

(F |kWN)(z) = CF(z) + qWN (z) (z ∈ H),

where C ∈ C, |C| = 1 and qWN (z) is a polynomial of degree ≤ −k. Then if the a(n) is
real for all n ≥ 1, the sequence (a(n))n≥1 has infinitely many sign changes.

Proof. Put

L(F, s) :=
∑
n≥1

a(n)n−s (σ := �(s) > c + 1).

Then according to Lemma 2 in [2] the completed function

L∗(F, s) := (2π )−s�(s)L(F, s)

has meromorphic continuation to C with at most finitely many poles at certain integer
points s. Observe that the poles arising from the constant terms of F and F |kWN

occur at s = 0 and s = k, respectively, and that k ≤ 0. Since by hypothesis qWN (z) is
a polynomial of degree ≤ −k, inspecting the proof of Lemma 2 in [2] in detail we
find that L∗(F, s) has no poles in σ > 0. Since �(s) has its poles exactly at the points
s = 0,−1,−2, . . ., we conclude therefore that L(F, s) is holomorphic everywhere and
that there exists a non-negative integer M such that L(F, ν) = 0 for ν = −M,−M −
1,−M − 2, . . . .

Now assume that a(n) ≥ 0 for all but a finite number of n. Then according to
Landau’s classical theorem on Dirichlet series with non-negative coefficients, L(F, s)
either must have a singularity at the real point of its abscissa of convergence or must
converge everywhere. From what we saw above, we thus conclude that L(F, s) converges
for all s ∈ C and that∑

n≥1

a(n)nν = 0 (ν = M, M + 1, M + 2, . . . ). (1)

We now argue in a similar way as in [4]. Recall that by hypothesis a(m) ≥ 0 for all
but a finite number of m. Let

a(m1), a(m2), . . . , a(mt) (m1 < m2 < · · · < mt; t ≥ 0)
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be those coefficients that are strictly negative. Then (1) can be written as

∑
m≥1, m�=m1,...,mt

a(m)
(

m
mt

)ν

= −a(m1)
(

m1

mt

)ν

− · · · − a(mt).

Here the right-hand side has the limit −a(mt) ≥ 0 for ν → ∞. On the other hand, if
on the left-hand side there exists m > mt with a(m) > 0, then the left-hand side will be
arbitrarily large for arbitrarily large ν, a contradiction.

Hence, we find that a(m) = 0 for m > mt. Then (1) means that

mt∑
m=1

a(m)mν = 0 (∀ν ≥ M). (2)

Suppose that not all of the a(m) (1 ≤ m ≤ mt) are zero and denote by a(m∗) (m∗ ≥
1) the largest non-zero coefficient. Then from (2) we see that

m∗−1∑
m=1

a(m)
(

m
m∗

)ν

+ a(m∗) = 0,

hence for ν → ∞ we conclude that a(m∗) = 0, a contradiction.
This concludes the proof of the Theorem. �

REMARK. We note that our Theorem applies in the case where F is an entire modular
integral on �∗

0 (N) of weight k ∈ Z, k ≤ 0 and with unitary multiplier system v, provided
that the period functions are polynomials [2]. Recall that by definition such an F is a
holomorphic complex-valued function on H, such that

(1) F |kγ = εγ F + qγ (∀γ ∈ �0(N)),
where qγ is a polynomial and εγ ∈ C, |εγ | = 1,

(2) F |kWN = CF + qWN ,
where C ∈ C, |C| = 1 and qWN is a polynomial,

(3) F is holomorphic at the cusps.
For any smooth function g, the following holds (this is called ‘Bol’s identity’ [1]): For
a non-positive integer k and any γ ∈ SL2(R),

d−k+1(g|kγ )
dz−k+1

= d−k+1g
dz−k+1

∣∣∣∣∣
−k+2

γ.

If we take g = F as an entire modular integral of weight k with F(z) = ∑
n≥1 a(n)qn,

then
d−k+1F
dz−k+1 becomes a modular form of weight −k + 2 with Fourier expansion of the

form

(2π i)−k+1
∑
n>0

n−k+1a(n)e2π inz.

The theorem implies that the sequence (a(n))n≥1 has infinitely many sign changes. In
fact, since F is an entire modular integral, d−k+1F

dz−k+1 is a cusp form. Thus, Theorem 1 of [3]
follows from the elementary argument given in the proof of the theorem here together
with Landau’s classical result given in [5]. Conversely, since F can be regarded as an
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Eichler integral of modular form, the theorem can be derived using Theorem 1 of [3]
as well.

Finally, we remark that Theorem 2 of [3] can be combined with Bol’s identity to
derive a generalisation of our theorem in the above context to the case in which the
condition that the coefficients are real is relaxed.
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