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Abstract

Using the Kobayashi distance, we provide sufficient conditions for the intersection of a family of
holomorphic retracts in a Banach space to also be a holomorphic retract.
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1. Introduction

In 1989, Davis and Enflo [7] rediscovered the following fact, which is originally due
to Bruck [1]. However, their proof is completely different from that of Bruck.

THEOREM 1.1. Let C be a closed and convex subset of a separable, strictly convex
and reflexive Banach space (X, ‖ · ‖), and let {Fn}

∞

n=1 be a sequence of nonexpansive
retracts of C. If the intersection

⋂
∞

n=1 Fn is nonempty, then it is a nonexpansive retract
of C.

In this paper, modifying the Davis–Enflo method, we establish an analogue of this
result for the case of an arbitrary family of holomorphic (kD-nonexpansive) retracts
(Theorem 5.4 below). We also present an extension of this result to the case of an
arbitrary family of nonexpansive retracts (see Theorem 6.3).

2. The Kobayashi distance and its properties

Here we recall a few properties of the Kobayashi distance kD , which are common
to all bounded and convex domains in complex Banach spaces. See [16] for more
properties of kD . Throughout this section, all Banach spaces X are complex and all
domains D ⊂ X are bounded and convex.
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Let 1 be the open unit disc in the complex plane C. Recall that the Poincaré
distance in 1 is given by

k1(z, w) = ρ1(z, w)= artanh

∣∣∣∣ z − w

1− zw

∣∣∣∣= artanh(1− τ(z, w))1/2,

where

τ(z, w)=
(1− |z|2)(1− |w|2)

|1− zw|2
∀z, w ∈1.

Following the usual practice in complex analysis, we call the metric k1 a distance,
although it is a metric in the topological sense.

Now let D be a bounded and convex domain in a complex Banach space (X, ‖ · ‖).
We will use the following definition of the Kobayashi distance kD .

DEFINITION 2.1. We define kD(x, y) to be the infimum of all k1(0, γ ) for which
there exists f ∈ H(1, D) such that f (0)= x and f (γ )= y.

This is, in fact, the definition of the Lempert function δD , which was introduced
in [18]. The equality kD = δD for finite- and infinite-dimensional spaces was proved
in [18] and [8], respectively. One can check (see [11]) that the Kobayashi distance kD
is locally equivalent to the norm ‖ · ‖.

We will also use the following result from [17]. If x, y, w, z ∈ D and s ∈ [0, 1],
then

kD(sx + (1− s)y, sw + (1− s)z)≤max{kD(x, w), kD(y, z)}.

Hence each open (closed) kD-ball in the metric space (D, kD) is convex.
Finally, we recall a characterization of kD-bounded sets from [11]. Let D be a

bounded and convex domain in a complex Banach space (X, ‖ · ‖). A nonempty subset
C of D is said to lie strictly inside D if inf{‖x − y‖ : x ∈ C, y ∈ ∂D}> 0. In [11], it
is shown that a nonempty subset C of D is kD-bounded if and only if C lies strictly
inside D.

3. The Kobayashi distance and holomorphic mappings

We begin with the following well-known definition of mappings that are
nonexpansive with respect to the Kobayashi distance.

Let D1 and D2 be bounded and convex domains in the complex Banach spaces
(X1, ‖ · ‖1) and (X2, ‖ · ‖2), respectively. A mapping f : D1→ D2 is said to be
nonexpansive with respect to the Kobayashi distance if

kD2( f (x), f (y))≤ kD1(x, y)

for all x, y ∈ D. If D1 = D2 = D, then we say that f is kD-nonexpansive.
We observe that each holomorphic mapping f : D1→ D2 is nonexpansive with

respect to the Kobayashi distance (see [11]).
We now recall the following basic property of the Kobayashi distance, namely, its

lower semicontinuity with respect to the weak topology.
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THEOREM 3.1 (See [15]). Let X be a complex reflexive Banach space and D ⊂ X be
a bounded and convex domain. If {xα}α∈J and {yα}α∈J are nets in D that converge
weakly to x and y respectively, and x, y ∈ D, then

kD(x, y)≤ lim inf
α

kD(xα, yα).

As a consequence of the theorem above we obtain the following result.

THEOREM 3.2 (See [3]). Let D1 and D2 be bounded and convex domains in the
complex reflexive Banach spaces (X1, ‖ · ‖1) and (X2, ‖ · ‖2), respectively. If { fα}α∈J
is a net of holomorphic mappings fα : D1→ D2 that converges pointwise in the
weak topology to a function f : D1→ D2 and there exists a point z0 ∈ D1 such that
f (z0) ∈ D2, then f : D1→ D2 and f is holomorphic.

We also note an analogous property of kD-nonexpansive mappings.

THEOREM 3.3 (See [12]). Let D1 and D2 be bounded and convex domains in the
complex reflexive Banach spaces (X1, ‖ · ‖1) and (X2, ‖ · ‖2), respectively. If { fα}α∈J
is a net of nonexpansive (with respect to the Kobayashi distance) mappings fα : D1→

D2 that converges pointwise in the weak topology to a function f : D1→ D2 and
there exists a point z0 ∈ D1 such that f (z0) ∈ D2, then f also maps D1 into D2, and
is nonexpansive with respect to the Kobayashi distance.

4. Strict linear convexity in the case of the Kobayashi distance

If the bounded domain D is strictly convex, that is, D is strictly convex in a complex
reflexive Banach space (X, ‖ · ‖), then we have more information regarding the linear
convexity of balls in (D, kD).

THEOREM 4.1 (See [3, 4, 21, 24, 25]). Let D be a bounded and convex domain in a
complex reflexive Banach space (X, ‖ · ‖). If D is strictly convex, then each kD-ball is
also strictly convex in the linear sense.

Hence we have the following definition.

DEFINITION 4.2 (See [5]). Let D be a bounded and convex domain in a complex
Banach space (X, ‖ · ‖). We say that the metric space (D, kD) is strictly linearly
convex if each kD-ball is strictly convex in the linear sense.

The following example shows that the linear strict convexity of (D, kD) does not
imply the strict convexity of D in a Banach space (X, ‖ · ‖).

EXAMPLE 4.3 (See [5]). Consider the domain

D =1 ∩

{
z ∈ C : Re z <

1
√

2

}
in the complex plane C. Then (D, kD) is strictly convex in the linear sense, but D is
not strictly convex in C.
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Using the Bruck method [1, 2], Budzyńska, Kuczumow and Stachura established
the following result.

THEOREM 4.4 (See [5]). Let D be a bounded and convex domain in a reflexive
Banach space (X, ‖ · ‖). Suppose that the metric space (D, kD) is strictly linearly
convex. Then for every family F of commuting holomorphic (kD-nonexpansive) self-
mappings of D with a nonempty common fixed point set Fix(F), the set Fix(F) is a
holomorphic (kD-nonexpansive) retract of D.

Under the assumptions on (D, kD) of this theorem, the fixed point set of each
holomorphic (kD-nonexpansive) mapping f ∈ F is a holomorphic retract (see [5],
and also [19, 20] for a general result in the case of reflexive spaces). Our main
result (Theorem 5.4) shows that the theorem above remains valid even without the
assumption that the mappings commute.

5. The family of holomorphic retracts and the family of kD-nonexpansive
retracts

Here we use modifications of certain arguments due to Davis and Enflo (see [7], and
also Kirk’s paper [13]). We begin with the following definition of a strict retraction
(see also [22]).

DEFINITION 5.1 (See [7]). Let D be a bounded and convex domain in a complex
Banach space (X, ‖ · ‖). If R : D→ F is a holomorphic (kD-nonexpansive) retraction
of D onto F , where ∅ 6= F ⊂ D, and

kD(R(x), y) < kD(x, y)

whenever y ∈ F and x ∈ D \ F , then R is said to be a strict holomorphic (kD-
nonexpansive) retraction of D onto F .

We need the following technical lemma.

LEMMA 5.2. If D is a bounded and convex domain in a complex Banach space
(X, ‖ · ‖), (D, kD) is strictly convex in the linear sense, ∅ 6= F ⊂ D and R : D→ F
is a holomorphic (kD-nonexpansive) retraction of D onto F, then the mapping
r : D→ F, defined by

r(x)= R

(
x + R(x)

2

)
for all x ∈ D, is a strict holomorphic (kD-nonexpansive) retraction of D onto F.

PROOF. We observe that for all y ∈ F and x ∈ D \ F ,

kD(r(x), y) = kD(R((x + R(x))/2), R(y))≤ kD((x + R(x))/2, y)

< max{kD(x, y), kD(R(x), y)} = kD(x, y),

as required. 2
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Before formulating the second lemma, which is crucial in our subsequent
considerations, we introduce the following notions and notation.

Let D be a bounded and convex domain in a complex reflexive Banach space
(X, ‖ · ‖). Assume that F is a family of holomorphic (kD-nonexpansive) retracts
of D indexed by a closed interval of ordinals, that is, F = {Fα}α≤γ . Assume that
ℵ0 ≤ γ . To each limit ordinal β such that ℵ0 ≤ β ≤ γ , we associate a fixed ultranet
{α̃ξ,β}ξ such that α̃ξ,β < β and limξ α̃ξ,β = β. Let ∅ 6= Fα ⊂ D and let rα : D→ Fα
be a strict holomorphic (kD-nonexpansive) retraction of D onto Fα when 1≤ α ≤ γ .
Observe that for each x ∈ D and y ∈ F , all points rα(x) are in the closed kD-ball
B(y, kD(y, x)), which is linearly convex and lies strictly inside D. This ball is
weakly compact because X is reflexive. Hence we can define a net {pα(x)}1≤α≤γ
of holomorphic (kD-nonexpansive) mappings in the following way. When α = 1, we
set p1 = r1 and then set

pm+1(x) := (rm+1 ◦ pm)(x)

when 1≤ m ∈ N. If α ≤ γ and pα̃(x) is defined when α̃ < α, then we set

pα(x) := pβ(x)=
(
rβ ◦

(
weak lim

ξ
pα̃ξ,β

))
(x)

in the case where α = β is a limit ordinal, and

pα(x) := (rα ◦ pα−1)(x)= (rβ+m ◦ pβ+m−1)(x)

when α = β + m, where β is a limit ordinal and 1≤ m ∈ N.

LEMMA 5.3. If F =
⋂
{Fα : 1≤ α ≤ γ } 6= ∅, then for each y ∈ F and x ∈ D \ F,

kD(pγ (x), y) < kD(x, y).

PROOF. Each pα is a holomorphic (kD-nonexpansive) mapping,

kD(pα(x), y)≤ kD(x, y),

and
kD(pα′(x), y)≤ kD(pα(x), y)

whenever 1≤ α < α′ ≤ γ , x ∈ D and y ∈ F . Let α0 be the first ordinal such that
x /∈

⋂α0
α=1 Fα . If α0 = 1, then x /∈ F1 and

kD(pγ (x), y)≤ kD(p1(x), y)= kD(r1(x), y) < kD(x, y).

If α0 > 1, then x ∈ Fα when 1≤ α < α0 and x /∈ Fα0 , and therefore pα0(x)= rα0(x),
kD(rα0(x), y) < kD(x, y) and, finally,

kD(pγ (x), y)≤ kD(pα0(x), y)= kD(rα0(x), y) < kD(x, y). 2

We are now able to formulate and prove the main result of our paper.
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THEOREM 5.4. Let D be a bounded and convex domain in a complex reflexive Banach
space (X, ‖ · ‖). If (D, kD) is strictly convex in the linear sense, F is a family of
holomorphic (kD-nonexpansive) retracts of D and F =

⋂
F̃∈F F̃ 6= ∅, then F is a

holomorphic (kD-nonexpansive) retract of D.

PROOF. We can assume that F is a family of holomorphic (kD-nonexpansive) retracts
of D indexed by a closed interval of ordinals, that is, F = {Fα}α≤γ , where γ is a limit
ordinal. This is possible after eventually repeating F1 at the end a suitable number
of times. Let � denote the first uncountable ordinal. To each limit ordinal β such
that ℵ0 ≤ β ≤max{γ, �}, we associate a fixed ultranet {α̃ξ,β}ξ such that α̃ξ,β < β and
limξ α̃ξ,β = β.

Let rα be a holomorphic (kD-nonexpansive) retraction of D onto Fα whenever
1≤ α ≤ γ . By Lemma 5.2, we may assume that all rα are strict retractions. Define a
net {pα(x)}α≤γ of holomorphic (kD-nonexpansive) mappings as in Lemma 5.3.

For simplicity of notation, we denote the last mapping pγ by Φ and then introduce
the net {Φα(x)}α≤� of iterations of the mapping Φ by setting, for each x ∈ D,

Φ1(x) :=Φ(x) and Φm+1(x) :=Φ ◦Φm(x)

when 1≤ m ∈ N,
Φα(x) :=Φβ(x)= weak lim

ξ
Φα̃ξ,β (x),

provided that α = β is a limit ordinal and Φα̃(x) has been defined whenever α̃ < β,
and finally,

Φα(x) := (Φ ◦Φα−1)(x)= (Φ ◦Φβ+m−1)(x)

when α = β + m, where β is a limit ordinal and 1≤ m ∈ N.
Each Φα is a holomorphic (kD-nonexpansive) mapping,

kD(Φα(x), y)≤ kD(x, y),

and
kD(Φα′(x), y)≤ kD(Φα(x), y)

whenever 1≤ α < α′ ≤ γ , x ∈ D and y ∈ F =
⋂

F̃∈F F̃ . Taking into account the fact
that the set of all countable limit ordinals is uncountable, for a fixed y ∈ F we obtain
a limit ordinal β such that 1< β <� and

kD(Φβ+m(x), y)= kD(Φβ(x), y)

whenever 1≤ m ∈ N. But this implies that Φβ(x) ∈ F . This means, in turn, that the
net {Φα(x)}1≤α<� is eventually constant. Setting

R(x) :=Φ�(x)= lim
α
Φα(x)=Φβ(x),

we obtain a holomorphic (kD-nonexpansive) retraction R : D→ F and this completes
the proof. 2

In order to formulate a more general result, we need the concept of a norming set.
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DEFINITION 5.5 (See [9]). Let (X, ‖ · ‖) be a complex Banach space and N be a
nonempty subset of its dual X∗. If there exist positive constants c and C such that

sup{|l(x)| : l ∈N , ‖l‖ ≤ C} ≥ c‖x‖

for each x ∈ X , then we say that N is a norming set for X .

It is obvious that a norming set generates a Hausdorff linear topology σ(X, N )

on X , which is weaker than the weak topology σ(X, X∗).

THEOREM 5.6 (See [12]). Let (X, ‖ · ‖) be a complex Banach space, N be a norming
set for X, and D ⊂ X be a bounded and convex domain whose norm closure D is
compact in σ(X, N ). If {xα}α∈J and {yα}α∈J are nets in D that converge in σ(X, N )

to x and y respectively, and x, y ∈ D, then

kD(x, y)≤ lim inf
α

kD(xα, yα).

As a simple consequence of this property of the Kobayashi distance and the
characterization of kD-boundedness we get the following compactness result.

THEOREM 5.7 (See [12]). Let (X, ‖ · ‖) be a complex Banach space, N be a norming
set for X, and D ⊂ X be a bounded and convex domain whose norm closure D is
compact in σ(X, N ). Then each closed kD-ball BkD is compact in σ(X, N ).

Next we consider nets of mappings.

THEOREM 5.8 (See [12]). Let D1 and D2 be bounded and convex domains in the
complex Banach spaces (X1, ‖ · ‖1) and (X2, ‖ · ‖2) respectively, and let N be a
norming set for (X2, ‖ · ‖2). If D2 is compact in σ(X2, N ), and { fα}α∈J is a net
of holomorphic mappings fα : D1→ D2 that converges pointwise in the topology
σ(X2, N ) to a function f : D1→ D2 such that f (z0) ∈ D2 for some z0 ∈ D1, then
f : D1→ D2 and f is holomorphic.

We also mention a similar property of kD-nonexpansive mappings.

THEOREM 5.9 (See [12]). Let D1 and D2 be bounded and convex domains in the
complex Banach spaces (X1, ‖ · ‖1) and (X2, ‖ · ‖2) respectively, and let N be a
norming set for (X2, ‖ · ‖2). If D2 is compact in σ(X2, N ), and { fα}α∈J is a net of
nonexpansive (with respect to the Kobayashi distance) mappings fα : D1→ D2 that
converges pointwise in the topology σ(X2, N ) to a function f : D1→ D2 and there
exists a point z0 ∈ D1 such that f (z0) ∈ D2, then f also maps D1 into D2 and is
nonexpansive with respect to the Kobayashi distance.

We now formulate an extension of Theorem 5.4.

THEOREM 5.10. Let (X, ‖ · ‖) be a complex Banach space, N be a norming set for X,
and D ⊂ X be a bounded and convex domain whose norm closure D is compact in
σ(X, N ). If (D, kD) is strictly convex in the linear sense, F is a family of holomorphic
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(kD-nonexpansive) retracts of D and F =
⋂

F̃∈F F̃ 6= ∅, then F is a holomorphic
(kD-nonexpansive) retract of D.

Before presenting a simple example of a nonreflexive Banach space for which the
theorem above is valid, we recall the notion of the analytic Radon–Nikodym property
(ARNP).

We denote by H∞(1, X) the space of all holomorphic mappings with bounded
range from the open unit disc 1 into a complex Banach space (X, ‖ · ‖), and furnish
it with the supremum norm.

DEFINITION 5.11 (See [6]). Let (X, ‖ · ‖) be a complex Banach space. If every f
in H∞(1, X) has radial limits almost everywhere, that is, limr→1− f (reiθ ) exists for
almost all θ ∈ ([0, 2π ], µ1), where µ1 denotes the Lebesgue measure, then we say
that X has the ARNP.

Next we recall the following two theorems.

THEOREM 5.12 (See [6, 10, 23]). All complex reflexive Banach spaces (X, ‖ · ‖) and
all separable dual complex Banach spaces (X, ‖ · ‖) have the ARNP.

THEOREM 5.13 (See [4]). Let (X, ‖ · ‖) be a complex Banach space, N be a norming
set for X, and D ⊂ X be a bounded and strictly convex domain whose norm closure
D is compact in σ(X, N ). If X has the ARNP, then any kD-ball is strictly convex in
the linear sense.

We are now ready to present the simple example of a nonreflexive Banach space for
which Theorem 5.10 is valid.

EXAMPLE 5.14 (See [4]). Let (`1, ‖ · ‖1) be the complex Banach space dual to the
complex Banach space (c0, ‖ · ‖∞), where ‖ · ‖1 and ‖ · ‖∞ are the standard norms
in `1 and c0, respectively. We introduce in `1 a new norm,

‖x‖ :=

(
‖x‖21 +

∞∑
i=1

|xi |
2

2i

)1/2

,

where x = {xi } ∈ `1. Then the complex Banach space (`1, ‖ · ‖) is separable and dual
to some complex Banach space (Y, ‖ · ‖Y ). Therefore (`1, ‖ · ‖) has the ARNP. In
addition, it is strictly convex. This implies that, when we take D to be the unit ball of
(`1, ‖ · ‖) and N to be Y , the assumptions of Theorem 5.10 are satisfied.

The following example shows that the assumption of strict convexity in the linear
sense of (D, kD) in Theorems 5.4 and 5.10 is essential.

EXAMPLE 5.15. Let D =1×1, where 1 is the unit open disc. Taking

F1 = {(z1, z2) ∈1×1 : z2 =
1
2 z1} and r1(z1, z2)= (z1,

1
2 z1),

F2 = {(z1, z2) ∈1×1 : z2 = z2
1} and r2(z1, z2)= (z1, z2

1),
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for all (z1, z2) ∈1×1, we see that

F1 ∩ F2 = {(0, 0), ( 1
2 ,

1
4 )}.

This means that F1 ∩ F2 is not a holomorphic retract of 1×1.

To complete our considerations in this section we recall two basic facts regarding
holomorphic (kD-nonexpansive) self-mappings of a bounded and convex domain D
for which (D, kD) is strictly convex in the linear sense.

LEMMA 5.16 (See [4]). Let (X, ‖ · ‖) be a complex Banach space, N be a norming
set for X, and D ⊂ X be a bounded and convex domain whose norm closure D is
compact in σ(X, N ). Let (D, kD) be strictly convex in the linear sense. If f : D→ D
is kD-nonexpansive and has a fixed point, then f has a fixed point in each nonempty,
f -invariant, kD-closed and convex subset C of D.

Using the Bruck method [1], we get the following retraction result.

THEOREM 5.17 (See [4]). Let (X, ‖ · ‖) be a complex Banach space, N be a norming
set for X, and D ⊂ X be a bounded and convex domain whose norm closure D is
compact in σ(X, N ). Let (D, kD) be strictly convex in the linear sense. If f : D→ D
is kD-nonexpansive (holomorphic), then Fix( f ) is either empty or a holomorphic (kD-
nonexpansive) retract of D.

6. The family of nonexpansive retracts in Banach spaces

In 1970, Bruck [1] announced the following general theorem.

THEOREM 6.1. If C is a closed and convex subset of a strictly convex and reflexive
Banach space (X, ‖ · ‖), then a nonempty intersection of any family of nonexpansive
retracts of C is also a nonexpansive retract of C.

In his proof, Bruck used the strict convexity of the reflexive Banach space (X, ‖ · ‖)
in a way which cannot be directly applied to the case of the Kobayashi distance. In
1973, he published another proof of this theorem [2]. In his second proof, he used
the fact that each nonempty, bounded and nonexpansive retract in a strictly convex
reflexive Banach space is convex, and then applied another of his results, which we
now recall [2, Lemma 4(a)].

LEMMA 6.2. Let (X, ‖ · ‖) be a Banach space. Suppose that C is a locally weakly
compact subset of X and {Fα} is a family of weakly closed nonexpansive retracts of C,
which is directed by set inclusion. If F =

⋂
α Fα 6= ∅, then F is a nonexpansive retract

of C.

In 2005, Kirk [13] presented a slight modification of the proof of Lemma 6.2.
Unfortunately, we are not able to apply either the Bruck method or the Kirk method
to the Kobayashi distance case. The reason for this is topological in nature:
kD-nonexpansive retracts of the strictly linearly convex metric space (D, kD), where D
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is contained in a reflexive Banach space, need not be convex and therefore we do not
know if they are locally weakly closed. But a simple analysis of our proofs leads
immediately to the following result. It means, for example, that the concept of a
nonexpansive hull of a nonempty subset of a Banach space [14] may be extended
beyond reflexive spaces.

THEOREM 6.3. Let (X, ‖ · ‖) be a strictly convex Banach space and T be a linear
topology in X. Let the norm ‖ · ‖ be lower semicontinuous with respect to T . If C is
a convex subset of X that is locally compact in the topology T (that is, each nonempty
intersection of C with a closed ball is compact), then a nonempty intersection of any
family of nonexpansive retracts of C is a nonexpansive retract of C.
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