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COMPOSITES OF TRANSLATIONS AND ODD

RATIONAL POWERS ACT FREELY

STEPHEN D. COHEN AND A.M.W. GLASS

Dedicated to Gilbert Baumslag belatedly on his 60th birthday
with our appreciation and respect.

It is shown that no non-trivial composition of translations x *-* x + a and odd
rational powers x i—>p'*, where p,q are odd co-prime integers, positive or negative
with p/q / ±1, acts like the identity on afield of characteristic zero. This extends a
theorem of Adeleke, Glass, and Morley in which only odd positive rational powers
were considered. Moreover, the nature of the proof itself (by field theory) is a
simplification and natural refinement of previous proofs. It has applications in
other settings.

1. INTRODUCTION

Let L be a field of characteristic zero (such as R or C). Denote by 2L the Abelian
group (under composition) of translations Tj, = {fo: a € £} , where xta = x + a, and
by P^~ that of odd positive rational power maps

P^ = {eprq: p, q odd co-prime positive integers},

where xev = xp and xrq = x1/* and it is assumed that the action x •-* xp'q is always
effected by eprq in that order.

Let w be a non-empty (reduced) word in the (formal) free product P£ * Tf,; w is
a string of elements (not the identity) alternately from P^~ and TL . Then w may be
considered to act on an arbitrary a £ L to produce an element in its algebraic closure
L, although, in general, any action of eprq (with q > 1) has to prescribe which gth
root is extracted. It was shown by Adeleke, Glass and Morley [1] that w cannot act
as the identity on L even if there is complete freedom in the selection of roots. Of
course, when L = R, w can be regarded naturally as an element of Sym (R), the group
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of bijections of R into itself, and their theorem implies that the subgroup of Sym(R)
generated by TJJ and P£ is isomorphic to the free product P£ * Ti.

This result incorporates the pioneering work of White [5] who proved that the
subgroup of Sym(R) generated by TR and ep for a fixed odd prime p is their free
product. Later, Cohen [2], overcame major technical obstacles to probe the analogue
of the theorem of Adeleke, Glass and Morley for the free product P+ * TL , where P+

is the group of all positive rational powers, that is,

P+ = {eprq: p, q co-prime positive integers}.

It would be natural to seek to extend the above results to the free products Po * TL
and P * TL , where PQ , P are the groups of all odd rational powers (positive and
negative) and all non-zero rational powers, respectively, that is,

-Po = {eprq '• Pi 9 co-prime odd integers},

P = {eprq '• Vi 1 non-zero co-prime integers}.

For these we adopt the conventions that the action of any element of P on zero is
undefined and that two words in P*TL can be supposed to have the same action on L

if they agree whenever both are defined. Whereas, however, the exact set of a £ C with
\a\ < 2 for which ta and e_i do not generate a free product Z*(Z/2Z) is unknown, it is
certainly non-empty (see [4]); in particular ti and e_i themselves do not generate such
a free product because, for example tie-it^1 e_itie_i has order 2, yet is not conjugate
to e_i, as can easily be seen. It is therefore pointless to investigate these free products
in their entirety. So let So(L) be the subset of Po * TL comprising those non-empty
words in whose reduced form the power e_iri (= eir_i) (corresponding to x i—* 1/x)

does not appear and S(L) be the corresponding subset of P *TL- Then So(L) and
S(L) are closed as regards the taking of inverses. We shall show that no member of
So(L) has the same action as the identity whenever it is defined. We believe that a
similar result prevails for S(L) but have not undertaken the details of a proof. Our
dual aim is to present the extended result and to display the nature of the proof which
is a considerable refinement of those of [5] and [1] distilled from [2] but freed from the
technicalities of [2]. Indeed, the proof given here is far more perspicuous than that of

For w in So(L) let Q^, be the field (finitely) generated over Q by {a G L: ta occurs
in the expansion of w}. Evidently, for any a in I , aw is undefined only on a finite
subset of Q,,,, the algebraic closure of Qw.

THEOREM 1. Let L be a Held of characteristic zero and w a word in So{L).

Then for every a in L not in a certain subset of LC\ Qw, aw is defined and aw ^ a,

no matter how the roots are extracted at any stage.
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Of course in Theorem 1 we can replace L by its algebraic closure. Further, given
to, define K — Qw which we may assume to be a subfield of C. The bulk of the proof
is associated with proving that £to ^ £ for any element £ transcendental over K; we
may adjoin £ to L if necessary. It is then easy to deduce the result for a in K, see
Section 6. So until then we suppose £ is a given transcendental.

In fact we deduce Theorem 1 from a stronger result which is the subject of the

next section.

2. HYPOTHESIS H

We use notation and conventions developed from [5], [1] and [2].

Any word w in S0(L) can be expressed (essentially uniquely) as a string of symbols
w — Vi ...vn that allow no cancellation. Here n is the length of w. Specifically, each
VJ (1 ^ j < n) is either ta (o(^ O ) e l ) , ep (p £ Z, \p\ > 1) or rq {q G Z, |g| > 1). In
particular, any ep or rq with p = ±1 or q = ±1 have been absorbed into neighbouring
symbols. Moreover, rq must be followed by a translation (unless it is at the end of w).

If vi = ta, then w will be called a translation word. If a consecutive pair eprg has p/q

positive we can assume both p and q are positive whereas, if p/q is negative we permit
the (harmless) ambiguity about which of the pair p, q is positive. Given C — Ci>

we define the transcendental chain for w to be {£i, . . . , £ n + i} , where £j+i = (jVj,

j = 1, . . . , n and, when VJ = rq, some choice of root is made.

There is also a syllable form for w. To this end, call a word / none of whose

symbols is a root a rational word because C,f is a rational function in K((). Associated

with its action is a rational function f(x) which is either x + a (a ^ 0) or

(2.1) / (» ) = ( . . . ( ( * + a i ) P 1 + a2)P l + • • • + at)" + al+1 {I > 1),

where \pj \ > 1, 1 ^ j ^ £ and a.j ^ 0, 2 ^ j ^ £, though oi or a*+i may be zero.
From this, w has an expression (essentially unique) as w — si .. .at (fc ^ 1), where
for each j — 1, . . . , k — 1, the syllable Sj has the shape Sj = fjTqi , with fj a rational
word that, for j > 1, is necessarily a translation word. When j = k there need not
be a concluding root rqk though it is sometimes convenient to interpret gj. as 1 in the
latter situation. Associated with the syllable form is the syllable transcendental chain

, where

This is a sub-chain of {£i, . . . , £ n + i} . In association with either chain we sometimes
use notation such as (/jj, fij) (i < j) as shorthand for a sub-word 8i... Sj-\ of w whose
action sends /z< to /x;-.
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When k = 1 and w is a rational word (represented by (2.1)) we can dispose of
Theorem 1 by the following argument. By an easy induction on ^, / is a quotient
of co-prime polynomials /1//2 with max(deg/1, deg/2) = |pi . . .p / | and the result is
immediate.

When / is not rational word, for each j = l , . . . , J b + l , define Kj = K(y.i, fij),
where each such field is evidently an algebraic extension of K\. We shall show that,
in fact, Kk+i ^ K\ and hence (£,+1 = /i*+i =) (w ^ ((= £1 = pi), which implies
Theorem 1 for £. This assertion is incorporated in the main result we shall prove which
we label Hypothesis H for comparison with [1] and [2]. (Recall that a field F is a pure
extension of a field E if F = £7(ft1/"1) for some b G E and positive integer m.)

THEOREM 2 . (Hypothesis H) Let w — v\... vn = s\... sk be a word in So(L)
and £ be transcendental over K. Then

C JST(Ci, C») C . . . C

H2 : K\ C K2 C . . . C Kk+i, where the inclusions are strict

(except the final one if q^ = 1).

Hi : if F is a pure extension of Ki contained in Kn+i, then F C K?,.

Note that E\ implies that K^ C iJT2 C . . . C Kk+i and that the substance of H2

is that generally these containments are strict. We also note the following immediate
consequence of Theorem 2 (specifically of H2 )•

COROLLARY 3 . For w, ( as in Theorem 2, [Kk+i: Kx] - \qi... ft I •

The truth of Theorem 2 for words of length not exceeding n will be labelled H[n)
and that of each part Hj{n), j = 1, 2, 3, as appropriate. H(n) is established by
induction on n. H(l) is simple and the induction step proceeds in stages according to
the scheme

B{n) =• Hx{n + 1) =*• H2(n + 1) => Jfj(n + 1).

Since we shall always assume H(n) and be investigating H(n + 1), throughout we shall
suppose that w = vx . . . v n + 1 (with associated transcendental chain {Ci, . . . , Cn+2})-
Nevertheless we shall continue to suppose w = si... Sk has Jb syllables and use the
notation of this section. The theorem is easy if k = 1 so we assume k ^ 2.

We observe that induction always takes care (easily) of words that begin or end
with a translation so we may assume this is not the case. Moreover, as far as Theorem 2
is concerned, we may replace Ci by Cr1 and/or Cn+2 by Cn+2 > ^ necessary, and assume
that w begins and ends with a positive power ep (p > 1) or positive root rq (q > 1).
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3. P R O O F OF Hi(n + l)

By Hi (n) (applied to Vi ... vn and V2 ... wn+i)

(3.1) K(Ci) C K{Ci, &) C . . . C A-(Ci, Cn+i)

and

(3.2) * • « , ) C ff(fc, 6 ) £ . . . C K((2, U+2).

Suppose, however, that if(Ci, Cn+2) does not contain Jf(Ci, Cn+i)- Then obviously
«n+i is a power (and sj. does not end in a root). Trivially, Cn+2 = Cn+i»n+i G
K((n+i) and hence Jf(Ci, Cn+2) is strictly contained in K(d, Cn+i)- Further, Vi is
a root because otherwise £2 £ if(Ci) a11^ t^e inconsistent conclusion K(£i, Cn+i) Q
K((x, Cn+2) is a consequence of adjoining Ci to the final two fields in the chain (3.2).
Moreover, we may also assume that if(Ci, Cn+2)l~l Jf(Ci, C2) = ^(Ci); f°r t m s purpose,
if «i = rq (q > 1) it may be necessary to replace Ci (= C*) ^y C™ > where m (^ q)
is a positive divisor of q, and «i by r , /m . Since Cn+2 G /f(Cn+i) and Ci G K(£2) we
deduce that

(3.3) *•(&, Cn+l) = A-(Cl, Cn+2) = X(Ca, Cn+l),

this field strictly containing if(Ci) Cn+2).
In terms of syllables, (3.1)-(3.3) yield the following (for which we note that /*i =

(3.4)

a field which strictly contains Kk+i = K{t*i, Hk+i)- Moreover, Kk+i D K2 = -K̂ i and
Kk = Kk+i(fi2) is a pure extension of Kk+i of degree q.

Suppose that Jfc = 2. Then w = rqf, where / is a rational translation word. From
the above, if3 D #2 = #1 so that /i3 = /(M2) G ^(A*I) = -^(z1!)- Hence, identically

(3.5) /(*) = *(*•)

for some rational function g. This is easily seen to be impossible since / is a translation
word: in any case it is covered by Lemma 4 below.

Suppose therefore that fc > 2. Now Kk/Kk+i is a cyclic Galois extension of
degree q (since K, being algebraically closed, contains all 9th roots of unity). We
apply to Kk a generating automorphism r of its Galois group. Thus r fixes Kk+i
(element-wise) and sends fi2 to u/i2, where w is a primitive qth root of unity. Set
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M3 — T(/X3) G Kk and let the second syllable a2 be / r j . An application of T to the
expression fx3 = /(/x2) yields JI$ = /(w/x2). Both K3 — K(/J.2, ^3) and K(n2, T^s) are
pure extensions of K2 = -^(/^z) of degree d contained in Kk and so, by Hs(n) applied
to the word (fj,2, Mt), we deduce that these two fields are identical. Prom the basic
result on pure extensions (see Exercise 16.16 of [3]) it follows that for some t (prime to
d) Hzjl\ G K(fi2). Hence, taking dth powers and, setting x = n2, we have

(3.6) f(x)f\«,x) = hd(x),

identically for some rational function h{x). Evidently, (3.6) is impossible when f(x) —
x + a. For other cases it is timely to introduce a lemma adapted from [5], [1] and [2].
It disposes immediately of (3.5) and (3.6) and plays a similar role in the verification of
H2 and H%. For other cases it is timely to introduce a lemma adapted from [5], [1]
and [2].

LEMMA 4 . Suppose that p, q, d are odd integers of absolute value exceeding 1
and u> (^ 1) is a qth root of unity. Suppose also that f, g, h are rational functions
in K(x) with f(x) = fo({x + a)p), a ^ 0, / ^ ff. Then, for no integer t is there an
identity of the form

(3.7) / ( x ) / ' ( ^ ) j ( x ' ) - hd(x).

PROOF: Easily we may assume that p, q and d are positive. Assuming (3.7), we
may multiply it by (f2(x)f2(<*>x)q2(x

q)) , where f2 and g2 are the denominators of
/ and g, respectively, and obtain an analogous identity with / and g replaced by
polynomials f2f and g2g, respectively in which case the "new" h is also a polynomial.
The result is then immediate from Lemma 10 of [1] or Lemma 9.1 of [2]. D

4. PROOF OF H2(n + 1)

We can now assume Hi(n + 1) in addition to H{n). By ^2(^)1 it remains to
prove that Kk C Kk+\ when a* ends in rq (q > 3). Assume that Kk = Kk+i • This
is unaffected when q is replaced by a prime divisor d. If fik+i 6 K(C2, l*k), then

/**) = K{(,2, Hk+i) contradicting H2(n) applied to ((2, (n+2)- Hence
A**) and, in particular, w must begin with a power, v\ — ep (p ^ 3), say.

Now, by assumption and H\{n + 1),

(4.1)

From (4.1) the field K((2, fik+i) intermediate between K(£2, /it) and K((i, /i*) has
the form K(£*, Hk) for some proper divisor s of p. Since d = [K((2, pk+i): K((2, ftk)],
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we have p = sd. By replacing v\ by ep/, we can assume p — d. Summarising,

(4.2) K((

For an analysis of (4.2) write

(4.3) w = ... emg~lTqfrd,

where only the latter section of w is displayed and / and g are rational translation
words with g~x denoting the inverse of g. Also let u = (s i . . . s j t_ i ) = {/ik, £i)
have {i/i = fik, "2)---} as its associated syllable transcendental chain and put F —

K(fik, Pk+i)- Since [t^+1 = /(/**)> F is a. pure extension of K{yi) (= K(/j,k)) of

prime degree d contained in K((J,k, Ci) but not K(fik, &)• Apply JTa(n) to the word

tt with respect to #(1/1) C F C if(/xj., Ci). Then F C if(i/i, i/2). Unless u is a

monosyllable, by Hi(n) applied to u, K{v\, *>s) C K[y\, (,2) = K(fik, C2) which yields

the contradiction fik+i £ -^(£21 A1*)- Thus u is indeed monosyllabic with K(/ik){Ci) =

K(fj.k)(fik+i) = F and, necessarily, m = d and

(4.4) to = edg^rqfrd.

Hence, for some t (prime to d), pk+if*\ G ^ ( M * ) - Raising this to the dth power and

setting x = fik we obtain from (4.4)

f{x)g\x<) = hd(x)

for some rational function h. This contradicts Lemma 4. D

We remark that now that H^n + 1) has been established we may use Corollary 3.

5. P R O O F OF H3(n + 1)

We may assume H\{n + 1), f j (n + 1), J?a(n) and Corollary 3.

Let F be a pure extension of Kx contained in Kk+i but not in K2 • By H3(n)

we can suppose sjt ends in a root rq (q > 1). To obtain a contradiction, it suffices to
suppose that FI{K2 D F) is a pure extension of prime degree d. Again by JETs(n) we
can suppose that F £ Kk . Hence F(/ik) (= -F i , say), which clearly contains Kk, must
be a pure extension of Kk of degree d contained in Kk+i • By Corollary 3 we may
replace the final root rq of w by r j and assume that Fi = Kk+i.

Again write w as (4.3) (where q has a new meaning). When k ^ 3 let Fo be the
subfield F(fik-i) of Fi. When fc = 2, defer the possibility

(5.1) #1 C #2 C F = Fj =
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meantime, and otherwise set Fo = F. Then Fo contains Kk-\, yet F0/Kk-i
{FQ/(K2 n fo) when k — 2) must be an extension of degree d. By Corollary 3,
[Kk+i: -Kfc-i] = qd and so Fo ^ Fi, whereas F0(iik) = Kk+i; in particular, Kk+i/F0

is a pure extension of degree dividing q. Hence there is an i^o-automorphism T of
Kk+i which maps \ik •-» ufJ-k, where w (^ 1) is a gth root of unity. Moreover, if
k = 2 and (5.1) holds, then K3/K1 is a cyclic extension of degree dq and there is
a K\ -automorphism T of K3 with a similar property. Set JIk+1 = r(/it+i) G ifjt+i.
Then, in either case, clearly irfc(/Z*+i) = Kk(fik+1) (= X"fc+1), whence /ifc+i/**+i 6 A"fc

for some integer t (indivisible by d). Further, K(jik, /it+iMt+i) ^ ^(M*J MI) yet

As in Section 4 (following (4.3)), by applying I?3(n) to u — (si ...sjb_i)~ with
syllable transcendental chain {/it = 1/, 1/2, ...} we deduce that /ij.+i/!j.+1 € if(»'i) V2) —
if(/Xjb)(i/2). Hence d | m and, for some integer u, divisible by m/d,

Taking dth powers and replacing fit by x yields

f(x)f\a>x)g«(x') = hd(x),

for some rational function h. This contradicts Lemma 4. D

The proof of Theorem 2 is complete.

6. COMPLETION OF THE PROOF OF THEOREM 1

With w, £ as in Theorem 2 and Corollary 3 we can explicitly construct P(z, y),
a monic irreducible polynomial in z of degree \q\.. .qk\ with coefficients in K(y) such
that P(fik+i, fit) {= P(Cw, £)) = 0. The same P is obtained no matter how we extract
roots when we consider the action of w.

Set Pk+i(z, y) = z —y and define Pj{z, y), j = k, ..., 1, as follows:

let Pj{z, m) =
t=0

where Q, = \qj\ and Uj+i is a primitive Qjih root of unity. Then Pj(z, y.j) is a
polynomial in z whose coefficients are rational functions in K(pj) C K(£, fij) with
Pj transcendental over K. To obtain Pj{z, y) simply replace these coefficients by the
corresponding rational functions in an indeterminate y (transcendental over K{z)).
Put P(z, y) = Pi(z, y) and our claim is justified (by Corollary 3).

It follows that P(z, £) certainly cannot have z — £ as a factor. Specialising
£ —» a G K we conclude that P(z, a) is undefined or has a factor a — a for only
finitely many values of a . For all other values of a in K, P(a, a) •£ 0 and so aw ^ a.
This completes the proof. u
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