J. Austral. Math. Soc. (Series A) 28 (1979), 100-106

ON CHARACTERS IN THE PRINCIPAL 2-BLOCK, II

MARCEL HERZOG and CHERYL E. PRAEGER

(Received 30 August 1977; revised 18 December 1978)

Communicated by M. H. Newman

Abstract

Let k be a non-zero complex number and let u and v be elements of a finite group G. Suppose that at most one of u and v belongs to O(G), the maximal normal subgroup of G of odd order. It is shown that G satisfies X(v) - X(u) = k for every complex nonprincipal irreducible character X in the principal 2-block of G, if and only if G/O(G) is isomorphic to one of the following groups: C_2 , $PSL(2, 2^n)$ or $P\Sigma L(2, 5^{2a+1})$, where $n \ge 2$ and $a \ge 1$.

Subject classification (Amer. Math. Soc. (MOS) 1970): 20 C 20

1. Introduction

Let G be a finite group. It was shown by Berger and Herzog (1978) that if $u \in G$ and $k \in \mathbb{C}$ satisfy:

$$X(1) - X(u) = k$$

for every complex non-principal irreducible character in the principal 2-block of G, then either $u \in O(G)$ or G/O(G) is isomorphic to one of the following simple groups: C_2 , $PSL(2, 2^n)$, $n \ge 2$. The converse also holds.

The aim of this paper is to consider the more general equality

$$(1) X(v) - X(u) = k,$$

where k is a non-zero complex number, $v, u \in G$ and (1) holds for every complex non-principal irreducible character in the principal 2-block of G. In this case we obtain new candidates for G/O(G), namely $P\Sigma L(2, 5^{2a+1})$, $a \ge 1$, the extension of $PSL(2, 5^{2a+1})$ by the group of automorphisms of the Galois field with 5^{2a+1} elements.

The first author was supported by a grant from the Israel Commission for Basic Research.

Our main result is

THEOREM 1. Let G be a finite group, u and v be elements of G and k be a non-zero complex number. Suppose that (1) is satisfied by every complex non-principal irreducible character of G belonging to B, the principal 2-block of G. Then, either $\{u, v\} \cap O(G)| = 1$ or $k = \pm 4$ and G/O(G) is isomorphic to $P\Sigma L(2, 5^{2a+1})$, $a \ge 1$.

We also prove the following

PROPOSITION. Let $G = P\Sigma L(2, 5^{2a+1})$, $u \in G$ be an involution and $v \in G$ be of order 2a+1 such that $G = \langle PSL(2, 5^{2a+1}), v \rangle$. Then (1) holds for every complex non-principal irreducible character in the principal 2-block of G, with k = 4.

The authors are grateful to the referee for providing the proof of the Proposition. Combining these results with the Theorem of Berger and Herzog (1978), we get

THEOREM 2. G satisfies the assumptions of Theorem 1, if and only if G/O(G) is isomorphic to one of the following groups: C_2 , $PSL(2, 2^n)$, $n \ge 2$ and $P\Sigma L(2, 5^{2\alpha+1})$, $a \ge 1$.

In this paper G denotes a finite group. The order of G is g and if $v \in G$, o(v) denotes the order of v. The principal 2-block of G is denoted by B, and the number of irreducible characters in B is b. The letter X will always denote an irreducible character in $B(X \in B)$. A fixed Sylow 2-subgroup of G will be denoted by S. If H is a subgroup of G and $v \in G$, then $o(v \mod H)$ is the least positive integer n satisfying $v^n \in H$, and exp H is the least positive integer m satisfying: $h^m = 1$ for every $h \in H$. The group of outer automorphisms of H will be denoted by Out H. We denote by Σ or Σ^{\ddagger} the summation over all $X \in B$ or $X \in B \setminus 1_G$, respectively. The expression 'the orthogonality relations in blocks' will be abbreviated by O.R.B. Finally, C_2 will denote the cyclic group of order 2.

2. Proof of Theorem 1

It is well known that $O(G) = \bigcap \{ \ker X \mid X \in B \}$. As $k \neq 0$, it follows that not both u and v belong to O(G). So assume that $u, v \notin O(G)$ and it suffices to prove the theorem under the assumption that O(G) = 1.

It is well known that if $y \in G$, then $\sum^{*} X(y)$ is a rational integer. Thus, by (1), $(b-1)k \in \mathbb{Z}$ and since X(v) - X(u) is an algebraic integer, we conclude that

$$(2) k \in Z - \{0\}.$$

Suppose that $y \in G$ does not belong to the 2-sections of either v or u in G. Then, by (1) and the O.R.B.,

$$0 = \sum X(y) (X(v) - X(u)) = k \sum^{*} X(y)$$

yielding

102

$$\Sigma^* X(y) = 0.$$

It follows that $y \neq 1$ and consequently we may assume without loss of generality that

(4)
$$v$$
 has odd order, $o(v) > 1$.

Let w be a 2-element of G of maximal order, and let z be the involution in $\langle w \rangle$. Then, by the O.R.B., $\sum X(1) X(z) = 0$, and since as in Berger and Herzog (1978)

(5)
$$X(w) \equiv X(z) \equiv X(1) \pmod{\mathscr{P}},$$

where \mathcal{P} is the prime ideal lying over 2 in \mathcal{O} , the integers in $Q(\sqrt[g]{1})$, it follows that

$$\sum^{*} X(1) \equiv \sum^{*} X^{2}(1) \equiv \sum^{*} X(1) X(z) \equiv 1 \pmod{2}.$$

Hence

(6)
$$\sum^{\sharp} X(w) \equiv \sum^{\sharp} X(z) \equiv \sum^{\sharp} X(1) \equiv 1 \pmod{2}.$$

Thus, in view of (3) and (4), w = z and we get

(7) $\exp S = 2$, where S is a Sylow 2-subgroup of G,

(8) G has one class of involutions, and

(9) o(u) = 2f, where f is an odd integer.

In particular, G has exactly two 2-sections.

Choose *H*, a minimal normal subgroup in *G*. As O(G) = 1, it follows by (8) that G/H is of odd order and as in Berger and Herzog (1978), either H = S or *H* is isomorphic to one of the following simple groups: PSL(2,q), q > 3, $q \equiv 0$, 3 or 5 (mod 8), *J* (Janko's smallest group) or Re(q) (a group of Ree type). Since none of the above-mentioned groups satisfies (1) for a *v* satisfying (4), it follows that

(10) G/H is a non-trivial soluble group of odd order.

Let Y be a non-principal linear character of G/H and suppose that $Y \in B$. Clearly, by (1) and (2), $k = \pm 1$ or ± 2 . If $k = \pm 2$, then by (1) {Y(v), Y(u)} = {1, -1}, which is impossible since G/H is of odd order. If $k = \pm 1$, then by (1)

$$\{Y(v), Y(u)\} = \{\exp(\frac{1}{3}\pi i), \exp(\frac{2}{3}\pi i)\}$$
 or $\{\exp(\frac{4}{3}\pi i), \exp(\frac{5}{3}\pi i)\},\$

again in contradiction to (10). Thus:

(11) No non-principal linear character of G/H belongs to B.

Proceeding exactly as in Berger and Herzog (1978), we get

 $(12) \quad G = C_G(S) H,$

- (13) H is non-abelian simple,
- (14) G/H is isomorphic to a subgroup of Out H,
- (15) $H \neq J$, $PSL(2, 2^n)$, $n \ge 2$, and
- (16) If Y is an irreducible character of G/H belonging to B, then Y = 1.

Suppose that $H \simeq \operatorname{Re}(q)$. As in Berger and Herzog (1978), *B* consists of 8 characters X_i , i = 1, ..., 8, such that $X_i|_H = \xi_i$, i = 1, ..., 8. We use here the notation of Ward (1966) for the irreducible characters and elements of *H*. By the O.R.B., (1), (4) and (9) we get

$$0 = \sum \bar{X}(v) X(u) = 1 + k \sum^{*} X(u) + \sum^{*} |X(u)|^{2}$$

whence

(17)
$$0 = k \sum^{\sharp} X(u) + \sum |X(u)|^2.$$

In addition, the O.R.B. yield:

(18)
$$0 = \sum X(u) X(R) = X_1(u) + X_2(u) + X_3(u) + X_4(u)$$

and

(19)
$$0 = \sum X(u)(3X(R) + X(S) + X(V) + X(W)) = 6X_1(u) + 6X_2(u).$$

As $X_1(u) = 1$, (18) and (19) yield:

(20)
$$X_2(u) = -X_1(u) = -1, \quad X_4(u) = -X_3(u).$$

The O.R.B. also yield:

$$0 = \sum X(u) X(Y) = m(X_5(u) + X_6(u) + X_7(u) + X_8(u))$$

whence

(21)
$$X_5(u) + X_6(u) + X_7(u) + X_8(u) = 0.$$

It follows from (17), (18) and (21) that

$$(22) k = \sum |X(u)|^2.$$

Applying the O.R.B. to v we get

$$0 = \sum X(v) X(JR) = X_1(v) - X_2(v) + X_3(v) - X_4(v),$$

which implies in view of (1) and (20)

(23)
$$X_3(u) = -X_4(u) = (k-2)/2.$$

Thus k is even, and by (20), (22) and (23):

 $k \ge 1 + 1 + (k - 2)^2/2$.

It follows that one of the following holds:

$$k = 4$$
, $X_i(u) = 0$ for $i = 5, 6, 7, 8$,

or

$$k = 2$$
, $X_i(u) = 0$ for $i = 3, 4, 5, 6, 7, 8$

Another application of the O.R.B. yields, in view of (1), (20) and (23),

$$0 = \sum X(v) X(JS) = 1 - (k-1) - (3k/2 - 1) + (k/2 + 1)$$

so that k = 2.

A final application of the O.R.B., together with (20), yields:

$$0 = \sum X(u) X(1) = 1 + (-1)(q^2 - q + 1) = q(1 - q),$$

a contradiction.

Finally, suppose that $H \cong PSL(2,q)$, q > 5 and $q \equiv 3$ or 5 (mod 8). As in Berger and Herzog (1978), *B* consists of 4 characters X_i , i = 1, ..., 4, such that $X_i|_H = \theta_i$, i = 1, ..., 4. We use here the notation of Ward (1966), pp. 62–65, for the irreducible characters and elements of *H*. By the O.R.B. we have

$$0 = \sum X(u) X(R) = X_1(u) - eX_4(u),$$

where $e = \pm 1$ satisfying $q \equiv 4 + e \pmod{8}$, as defined in Ward's paper. Hence,

Thus, again by the O.R.B.,

$$0 = \sum X(u) X(1) = 1 + (q+e) (X_2(u) + X_3(u))/2 + eq$$

yielding

(25)
$$X_2(u) + X_3(u) = -2e.$$

A final application of the O.R.B., together with (1), (24) and (25), yields

$$0 = \sum X(v) X(S_0^{(q-e)/4}) = 1 - 2ke + 2 + ek + 1,$$

whence k = 4e and $X_4(v) = 5e$.

Now by (10) and (14)

$$(26) \qquad PSL(2,q) \subset G \subseteq P \sum L(2,q).$$

Thus G has a 2-transitive permutation representation of degree q + 1, the restriction of which to H is also 2-transitive. Let Y be the irreducible character of G of degree q corresponding to this representation. Then $Y|_H$ is irreducible, and since Y(1) = q, $Y|_H = \theta_4 = X_4|_H$ and consequently $X_4 = Y \cdot \xi$, where ξ is a linear character of the cyclic group G/H (see Isaacs (1976), (6.17)). Thus $5e = X_4(v) = Y(v) \xi(v)$, where Y(v) is an integer ≥ -1 and $\xi(v)$ is an odd root of 1. We conclude that e = 1 and Y(v) = 5. So v fixes exactly 5+1 = 6 elements in the permutation representation of G. Let $q = p^e$ and let $o(v \mod H)$ be d. Then d divides c and

$$6 = \text{fix}(v) = 1 + p^{c/d}$$

Consequently p = 5 and d = c; as $5^c = q \equiv 4 + e = 5 \pmod{8}$, c = 2a+1 for some $a \ge 1$. Since $o(v \mod H) = c = 2a+1$, by (26) $G = P \sum L(2, 5^{2a+1})$, and the proof of Theorem 1 is complete.

3. Proof of the Proposition

Let 2a+1=r, $q=5^r$ and let $H \triangleleft G$, $H \simeq PSL(2,q)$. Since |G:H|=r, then $u \in H$. It follows from the arguments of Section 2 that the principal 2-block B of G consists of 4 irreducible characters: X_i , i=1,...,4, such that $X_i|_H = \theta_i$, i=1,...,4. For the irreducible characters and elements of H we use again the notation of Ward (1966), pp. 62-65.

As in Section 2, G has an irreducible character Y of degree q corresponding to the 2-transitive permutation representation of G of degree 1+q on Ω , and again $Y|_H$ is irreducible, whence $Y|_H = \theta_4$. Being the unique extension of θ_4 which is rational, $Y \in B$ forcing $Y = X_4$. Moreover, Y(u) = 1 and Y(v) = 5 since v fixes exactly 6 elements of Ω . Thus X_4 satisfies (1) with k = 4, and it suffices to show that also X_2 and X_3 do so. By the O.R.B. we have:

$$0 = \sum X(u) X(v) = 1 - X_2(v) - X_3(v) + 5$$

whence $X_2(v) + X_3(v) = 6$. As $X_2(u) = X_3(u) = -1$, it suffices to show that $X_2(v) = 3$. In particular, it suffices to show that $\psi = \theta_2$ has an extension $\hat{\psi}$ to G with $\hat{\psi}(v) = 3$, since being the unique extension of ψ which is rational on $v, \hat{\psi} \in B$ whence $\hat{\psi} = X_2$.

Let $R = \langle v \rangle$ and choose $Q \in \text{Syl}_5(H)$ and a cyclic subgroup C of H of order (q-1)/2, such that $N \equiv N_H(Q) = QC$ and $R \subseteq N_G(Q) \cap N_G(C)$. It follows from the character table of H that $\psi|_N = \theta + \lambda$, where θ is irreducible of degree (q-1)/2 and $\lambda^2 = 1_N$. Now θ has a unique extension $\hat{\theta}$ to NR such that $\hat{\theta}$ is real (see Isaacs

(1976), Theorems 11.22 and 6.17, remembering that N has 2 irreducible characters of degree (q-1)/2 and |NR:N| is odd). It can be shown similarly, that ψ has a unique extension $\hat{\psi}$ to G such that $\hat{\psi}|_{NR}$ contains $\hat{\theta}$ as a component. Thus $\hat{\psi}|_{NR} = \hat{\theta} + \hat{\lambda}$, where $\hat{\lambda}$ is an extension of λ . Since $\hat{\psi}$ is unique and $\hat{\theta}$ is real, so also $\hat{\psi}$ is real, forcing $\hat{\lambda}(v)$ to be real. Consequently $\hat{\lambda}(v) = 1$ and it suffices to show that $\hat{\theta}(v) = 2$.

Since θ is a character of N induced from Q, $\theta|_C$ is the regular character of C. Write the representation which affords $\hat{\theta}|_{CR}$ with reference to a basis consisting of eigenvectors for a generator c of C. As the eigenvectors correspond to distinct eigenvalues, and as v normalizes C, the matrix representing v must be monomial, and has precisely two zero entries on the diagonal (namely, in the positions corresponding to the eigenvalues +1 and -1 of c; no other $\frac{1}{2}(q-1)$ th root of 1 is invariant under the fifth powering action of v). Thus $\hat{\theta}|_{CR} = \mu + \nu + \tau$, where μ and ν are linear characters and τ is a character vanishing on v and on uv, where u denotes an involution in C. Since $\hat{\theta}$ is real, $\mu + \nu$ is real on v and on uv. Choose the notation so that $\mu(u) = 1 = -\nu(u)$. Then both $(\mu + \nu)(v) = \mu(v) + \nu(v)$ and $(\mu + \nu)(uv) = \mu(v) - \nu(v)$ are real, forcing $\mu(v)$ and $\nu(v)$ to be real. Consequently $\mu(v) = \nu(v) = 1$ and $\hat{\theta}(v) = 2$, as required.

References

- Thomas R. Berger and Marcel Herzog (1978), 'On characters in the principal 2-block', J. Austral. Math. Soc., (Ser. A) 25, 264-268.
- I. Martin Isaacs (1976), Character theory of finite groups (Academic Press, New York, San Francisco and London).
- Harold N. Ward (1966), 'On Ree's series of simple groups', Trans. Amer. Math. Soc. 121, 62-89.

Department of Mathematics Institute of Advanced Studies The Australian National University Canberra, Australia 2600 and Department of Mathematics Tel-Aviv University Tel-Aviv, Israel Department of Mathematics University of Western Australia Nedlands, Australia 6009