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To summarize: this text will prove very useful to a beginning postgraduate student working
in the area of nonlinear PDEs. The book is not perfect, both in the organization of the material
and in the finer points of proofreading; it is to be hoped that all of these shortcomings will be
corrected in subsequent printings.

M. GRINFELD

REFERENCES

1. H. BREZIS, Analyse fonctionnelle, theorie et applications (Masson, 1983).

2. K. DEIMLING, Nonlinear functional analysis (Springer-Verlag, 1985).

3. L. C. EVANS, Partial differential equations (Amer. Math. Soc, 1998).

4. J. SMOLLER, Shock waves and reaction-diffusion equations (Springer-Verlag, 1983).

PRETZEL, O. Codes and algebraic curves (Oxford Lecture Series in Mathematics and its
Applications No. 8, Clarendon Press, 1998), xii + 192 pp., 0 19 850039 4, £35.

The algebraic-geometry codes known as geometric Goppa codes, discovered in 1981, have
extraordinary error-correcting capacity. This text has the single specific aim of making them and
their background comprehensible to those who, drawn by the impressive credentials, nevertheless
are daunted by the formidable nature of the machinery their definition and properties involve.
The author's intention is to provide a geometrically intuitive, but rigorous, approach that will
harmonise with the modern algebraic one presented, for example, in the (undeniably superb)
volume by H. Stichtenoth, Algebraic function fields and codes (Springer-Verlag, 1991), and will
allow the reader to access to the relative sophistication of the latter. Arising out of an earlier text
of the author, Error correcting codes and finite fields (Oxford, 1992), it is not in itself a general
work on codes, but is, however, essentially self-contained.

The work is divided into two parts, each of which can be read largely independently of the
other. Part I contains a transparent and frankly affine account of the concepts and theory of
plane curves (with analogies to the theory of functions) up to the statement (only) of key
theorems such as the Riemann-Roch theorem. This gives the reader a clear feel for divisors, their
degree and dimensions of associated linear spaces, genus, etc. The geometric Goppa codes
associated with smooth plane curves over a finite field Fq are then defined and their parameters
and properties explained in terms of these numbers. A feature is the focus on specific examples,
the (elliptic) cubic x3 + y3 = 1, the Klein quartic x*y + y3 + x = 0 and the (Hermitian) quintic
xs + y5 = \ over F16, for which a handy compact version is tabulated. There is also a full account
of the error-processing algorithm of Skorobogatov-Vladut (1990), which is fairly simple but does
not allow correction up to the capability of the code, and that of Duursma (1993), which deals
with this weakness but may not always be practical.

Part II contains the elements of the theory of function fields of one variable in the
Chevalley-Deuring-Stichtenoth tradition but tailored to and simplified for the present context.
This works well and all the theorems of Part I are duly justified. What I did miss here was a
review of the definition of a geometric Goppa code in respect of a general function field and its
first degree places. Though there would have been formal similarity to material in Part I, the
increased scope to function fields, presented as fields of curves in higher dimensional space or as
extensions of non-rational function fields, might have merited some space. This is particularly
relevant to the final chapter which describes how the rates of geometric Goppa codes can
approach (or even beat) the famous Gilbert (or Gilbert-Varshamov) lower bound: the codes in
question cannot be those associated with plane curves. Indeed, recent work, such as that of
Niederreiter and Xing, and that of Stepanov, tends to be in this direction. This having been said,
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it is conceded that plane curves yield plenty of good examples, and virtually all those in
Stichtenoth's book come into this category.

I enjoyed reading this book and believe it is successful at doing its job. As a footnote, let me
record that a preprint by Niederreiter, Xing and Lam, 'A new construction of algebraic-geometry
codes', has recently come to hand. In it Goppa's construction is powerfully extended using higher
degree places. This might be an incentive for the reader of Pretzel's text, or ammunition for a
future edition.

S. D. COHEN

CVETKOVIC, D., ROWLINSON, P. AND SIMIC, S. Eigenspaces of graphs (Encyclopedia of
Mathematics and its Applications, Vol. 66, Cambridge University Press, Cambridge, 1997),
xiii + 258 pp., 0 521 57352 1, £45 (US$69.95).

It is over forty years since Collatz and Sinogowitz's seminal paper [1] on the eigenvalues of a
graph. Since then, there have been over a thousand papers on the subject, as well as three
important books by Cvetkovic, Doob and Sachs [2], Biggs [3], and Cvetkovic, Doob, Gutman
and Torgasev [4]. These books reviewed the progress in the subject over the intervening years; in
particular, the third edition of [2] describes recent developments up to 1995.

The book under review extends the subject further by concentrating on the eigenspaces of
a graph. If G is a graph with vertex-set {u, vn], then its adjacency matrix is the nxn
matrix A = (ay), where atj is the number of edges joining the vertices u, and Vj. The spectrum
of G is the set of eigenvalues of A, and does not depend on the particular labelling of the
vertices; the index of G is the largest eigenvalue of A. Although the eigenvalues of certain
families of graphs specify the graphs completely, this is far from being true in general; for
example, Schwenk [5] has proved that almost no tree is determined by its eigenvalues. Such
considerations lead to a search for sets of graph invariants that specify a graph uniquely, and
in this book the authors obtain such a set of invariants - the distinct eigenvalues and a
certain type of basis for R".

There are nine chapters. The first two provide a masterly summary of earlier spectral results,
designed to bring the reader up to speed on the results needed for later chapters; in particular,
there is an introductory discussion of graphs that are characterized by their spectrum. In Chapter
3 the authors introduce several eigenvector techniques and use them to investigate the indices
of various families of graphs. Chapters 4-6 inject a more geometrical flavour by discussing
eigenspace invariants such as the angles of a graph. Although the eigenvalues and angles do not
specify the graph completely, except in small cases and for particular families of graphs, they
prove to be a most useful tool in the general discussion, and contribute to our understanding of
strongly regular graphs, the graph reconstruction conjecture, and graph perturbations (changes
in the spectrum caused by adding or deleting individual vertices and edges).

Chapters 7 and 8 form the core of the book. Chapter 7 continues the geometrical approach
through the notion of a star partition of vertices, an important concept that enables one to
construct natural bases {star bases) for the eigenspaces of a graph. In Chapter 8 a unique
canonical star basis is obtained for each graph, and it is this basis, together with the distinct
eigenvalues, that forms the complete set of invariants for the graph. The authors also present
efficient algorithms for finding star bases for a given graph. The final chapter is a survey of some
interesting results that are related to graph eigenspaces, but which do not fit readily into earlier
chapters.

This book is highly recommended for anyone interested in learning about current trends in
spectral graph theory, especially those developments of a more geometrical nature.

R. J. WILSON
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