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Ping-pong ball avalanche experiments

J- McErwaing, K. NisHIMURA
Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Fapan

ABSTRACT. Ping-pong ball avalanche experiments have been carried out for the last
3 years at the Miyanomori ski jump in Sapporo, Japan, to study three-dimensional granular
flows. Up to 550 000 balls were released near the top of the landing slope. The balls then
flowed past video cameras positioned close to the flow, which measured individual ball
velocities in three dimensions, and air-pressure tubes at different heights. The flows devel-
oped a complicated three-dimensional structure with a distinct head and tail, lobes and
“eyes”. “Eyes” have been observed in laboratory granular flow experiments, and the other
features are similar not only to snow avalanches, but also to other large-scale geophysical
flows. The velocities attained showed a remarkable increase with the number of released
balls. A power law for this relation is derived by similarity arguments. The air-pressure data
are used to deduce the structure of the airflow around the avalanche and, in conjunction with
the kinetic theory of granular matter, to estimate the balance of forces in the avalanche head.

INTRODUCTION

Snow avalanches have been measured and observed in the
Shiai valley, Kurobe, Japan, since 1989. Though there are
partial data on the internal velocity distribution for both
dense and powder parts (Gubler, 1987; Kawada and others,
1989; Nishimura and others, 1989, 1993b; Dent and others,
1995; Nishimura and Ito, 1997), the data are insufficient to con-
strain and discriminate between current avalanche models
(for a survey of current models see Harbitz, 1999), and thus
insufficient to allow a quantitative understanding of the dy-
namics and internal structure of snow avalanches. The poor
quality of the data is due to the unpredictability, scarcity and
intense destructive power of avalanches.

Avalanches can be modelled in the laboratory using gran-
ular materials on inclined planes, usually in water for powder
avalanches (Tochon-Danguy and Hopfinger, 1975; Hopfinger
and Tochon-Danguy, 1977; Beghin and Brugnot, 1983;
Hermann and others, 1987; Beghin and Olagne, 1991; Keller,
1995) or in air for dense avalanches (Hutter, 1991; Greve and
Hutter, 1993; Nishimura and others, 1993a; Greve and others,
1994; Hutter and others, 1993; Gray and others, 1999; Wieland
and others, 1999). Laboratory experiments are much easier to
perform than field experiments and are usually easily repeata-
ble. However, the small size of the granular particles used
makes direct observation of individual particles difficult, and
only a few similarity parameters are typically satisfied (Keller,
1995). For example, no laboratory experiments have yet been
carried out in which a dense granular flow becomes a turbu-
lent suspension by entraining the ambient fluid, though in
some experiments (Rzadkiewicz and others, 1997) a small
number of the grains may enter suspension. Instead experi-
mental models of powder-snow models in water tanks use a
denser fluid or a premixed turbulent suspension. Laboratory
granular flows also rarely exhibit the complex three-dimen-
sional structure which is characteristic of avalanches and other
large geophysical flows. For these reasons for the last 5 years
large-scale granular flow experiments have been carried out
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using golf balls and ping-pong balls. The first experiments
were carried out on long (20-30 m) chutes and more recently
on the Miyanomori ski jump (the normal hill for the 1972
Olympics) in Sapporo, Japan. Ping-pong balls are particularly
suitable, since they reach terminal velocity in only a few
metres, so fully developed flows occur even on short slopes.
These experiments have been described in several papers
(Nishimura and others, 1997, 1998; Keller and others, 1998).

The aim of these experiments is to elucidate the dynamics
of two-phase granular flows rather than to directly extrapo-
late the results to snow avalanches. The experiments provide
detailed data and insights on the physically significant dy-
namical processes controlling avalanches. The hope is that
this will lead to a theory of snow avalanches based on physical
processes with no free parameters.

The kinetic theory of granular matter provides only
poor agreement with experiments (Haff, 1983; Jenkins and
Savage, 1983; Lunn and others, 1984; Jenkins and Richman,
1988; Johnson and others, 1990; Anderson and Jackson, 1992;
Hutter and Rajagopal, 1994; Jenkins, 1994), but does provide
a theoretical framework for discussing stresses in granular
flows. Another approach is the direct simulation of granular
flows using the discrete-element method (Campbell and
Brennen, 1985; Campbell and Gong, 1986; Cleary and
Campbell, 1993; Campbell and others, 1995; Hanes and
others, 1997; Hermann and Luding, 1998). These simulations
have increased the understanding of granular flows, includ-
ing two-phase flows, but these simulations have not yet
accurately dealt with particles strongly coupled to fluids or
three-dimensional anisotropic flows.

The ping-pong ball avalanches can be described by well-
known equations. The airflow obeys the Navier—Stokes
equations, and individual ping-pong balls follow Newton’s
law, whereby the force on a particle is a function of gravity,
particle—particle contacts, particle—ground contacts and air
drag. The no-slip boundary condition between particles and
the airflow determine the drag force. For small numbers of
particles at low Reynolds numbers in closed domains these
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Ing. 1. Cross-section of the landing slope of the Miyanomori
ski jump. Marked distances are measured from the top of the
landing slope.

equations can be directly solved (Glowinski and others,
1996; Hu, 1996; Blackmore and others, 1999), but this is cur-
rently impossible for this experiment, because of the large
number of particles and the large range of length and time-
scales. Particle—particle collisions occur over time intervals of
order of 10 s, whereas the duration of the flow in these experi-
ments is around 30s. The length scales in these experiments
are given by the length of the ski jump (160 m), the volume of
the flow (V1 m3 =1m), the diameter of the balls (0.038 m) and
the compression of the balls during collisions (10 * m).

This paper discusses two complementary approaches for
describing the experiments. The first is to consider the flow as
a single object moving down the ski jump and to use similar-
ity arguments to deduce gross features of the flow. The second
approach is to use two-phase flow equations that couple the
Navier—Stokes equation for the airflow to the kinetic theory
equations for the ball flow using an (empirical) drag force.

EXPERIMENT

The experiments were undertaken at the Miyanomori ski
jump. The landing slope was 160 m long and 60 m high
(Fig. 1) and covered with an artificial surface. Standard
ping-pong balls, with a diameter of 38 mm and mass of
248 g per ball, were placed in a large box, 15m (30m in
1996) along from the top of the landing slope. Flow was in-
itiated by opening the hinged door on the front of the box.
The balls then flowed down the slope and past the measure-
ment sensors which were all placed near the middle of the
slope 100 m down from the top (83 m from the front of the
box). The experimental procedure is described in more
detail in Nishimura and others (1997).

Ball measurements

A video camera was set pointing perpendicularly down at
the slope (I1g. 2) at a height of 0.82 m. Balls closer to the lens
of the camera appear larger than those which are further
away. Thus the z coordinate of a ball can be calculated by
measuring the size of a ball in the video picture, since all
the balls have the same diameter. The & and y coordinates
of a ball are given directly by its position in the video frame.
Comparing positions for the same ball from adjacent video
fields gives the three-dimensional velocity of a ball (time-
averaged over the 1/60 s between video fields.)) The necessary
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Fig. 2. Schematic of the video camera _for measuring ball
positions.

camera corrections and detailed method are described in
Keller and others (1998).

Air measurements

Measuring air velocity in particulate flows is very difficult.
In snow avalanches ordinary meteorological anemometers
are inaccurate because of the snow particles, and are usually
destroyed (Kawada and others, 1989; Nishimura and others,
1989). Nishimura and Ito (1997) and Nishimura and others
(1997) have developed the use of pressure measurements
(sampling frequency 1 KHz) for inferring air speed. A tube
connected to a pressure-difference sensor is set so that the
open end points downwards, perpendicular to the main
flow direction (Fig. 3). Note that this is not a Pitot tube since
each tube has only one opening and the pressure difference
1s measured with respect to the air pressure some distance
from the flow. Bernoulli’s law then gives

Ap = —1/2p0", (1)

where Ap is the pressure difference, p, is the air density and v
is the air speed parallel to the slope. However, this equation is
only valid when the airflow is perpendicular to the end of the
pipe and the local static pressure is known. Also the sensor
itself disturbs the flow. The Reynolds number for the flow
around the tube is approximately 10 000 (wind speed 10m's ",
tube diameter 0.0l m), so the flow will be partially turbulent
around the sensor. The interaction of the pressure sensor with
the flow, coupled with the rapid pressure fluctuations as a
result of the turbulent flow field, would lead to inaccurate
measurements if solely based on Equation (1). Therefore the
pressure tubes were calibrated by measuring the static pres-
sure depression in a wind tunnel over a range of velocities.
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Fig. 3. Schematic of the air-pressure sensors.
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Fig. 4. Front view of a 550 000 ball avalanche at the Miyano-
mort skijump. The horizontal lines are 5 m apart and the lowest
one is 90 m_from the top of the landing slope.

Four of these air-pressure sensors were placed 100 m down the
slope at heights of 0.01, 0.15, 0.3 and 0.45 m.

Front position

Several video cameras were placed to the side and at the
bottom of the slope. As can be seen in Figure 4 the leading
edge of the avalanche is clearly visible. The position of the
front was measured and used to calculate the front velocity.

RESULTS

When the door of the box was opened, the balls at the front
of the box rapidly accelerated down the slope (Figs 4 and 5).
The front velocity was much larger than the tail velocity
(the last balls took several seconds to leave the box). For a
550000 ball flow, the front of the flow accelerated approxi-
mately linearly with distance until it reached a speed of

As density in a granular flow increases, the collision rate
increases, thus increasing dissipation and reducing granu-
lar pressure. The density thus continues to increase and
the collision rate diverges, so that a group of particles
can come to rest in continuous contact in finite time.
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Fig. 5. Side view of the head of a 550 000 ball avalanche at the
Miyanomort ski jump.

18 ms ' after 65 m, whereas the balls in the tail had a speed
of only a few metres per second, similar to the speed of a
single ball. The front velocity was roughly constant for the
next 30 m until the slope angle started to decrease. This
large disparity in speed between head and tail caused the
flow to elongate so much that at times it covered more than
half the slope. The flows can be separated into three distinct
regions: a short, high, fast-moving head; a longer, lower
body moving at the same speed; and a very long tail moving
much slower, consisting of separated balls.

Other macroscopic features of the flow are interesting,
but hard to quantify. At the beginning of the flow there are
often several waves within the flow which move faster than
the body and coalesce in the head (Nishimura and others,
1998). Obvious features are two roughly circular regions of
reduced flow height, symmetrically located about the flow
centre line, a little behind the head, called “eyes” after
Nohguchi and others (1997). They can be seen on the third
line up from the bottom of Figure 4 as the darker regions.
Similar patterns have been reported in laboratory granular-
flow experiments with styrene foam particles (Nohguchi,
1997) and with ice particles (personal communication from
Y. Nohguchi, 1998). In these experiments the particles are ap-
proximately 1 mm in diameter and the flows contain 1000—
100 000 particles. For such a feature to exist in experiments
of such different scales suggests that the mean velocity fields
and flow structure are similar in all these experiments. The
“eyes” may represent a pair of vortices shed by the head, but
only a detailed quantitative analysis of ball velocities can
confirm this. In the tail the balls are not distributed evenly
but tend to cluster, because of inelastic collapse.”

Front velocity

In Nohguchi (1997), granular-flow experiments with styrene
particles were performed and the front velocity was
observed to increase with the number of balls. Similar in-
creases were observed in these experiments. Nohguchi
(1997) deduced that the maximum front velocities, u, for
flows which vary only in the number of balls, N, should
scale according to

uoc N6, (2)

In order to derive Equation (2), the drag force was assumed
to be a linear function of the flow velocity. However, the
result can be obtained without this assumption as follows:
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Fig. 6. Front velocities at the k point for different-sized
avalanches.

The critical assumption is that there is only one significant
length scale given by

L(z) o« V3 o dNY/3 (3)

where V is the volume of all the balls and d is the ball diameter.
The implied constant of proportionality in Equation (3) is
constant between experiments with different numbers of balls,
but is not constant along the slope, i.e. the height and width
of the flow at any given position (z) scales with the number
of balls. Equation (3) will not be true initially when the
input box size is important, nor will it be true where the flow
1s only a few balls thick. However, all the flows with more
than ~ 10000 balls are observed rapidly to reach a self-
similar shape in about 10 m, and the flows are many particle
diameters thick except in the tail.

The effective gravitational acceleration in the downslope
direction of the flow is g* = g(1 — pa/pp)(sin @ — pcosd),
where 0 is the angle of the slope, £ is the coefficient of friction
with the slope, g is the acceleration due to gravity, and p,
and py, are the air and ball densities, respectively. After the
initial surge from the box the flow is close to its equilibrium
velocity, i.e. it is accelerating/decelerating slowly, so inertia
can be ignored. The Reynolds number for the airflow is of
the order 10° so air viscosity can be ignored. Under the
length-scale assumption in Equation (3) the non-dimen-
sional density ratio p,V/(INm), where m is the mass of a
single ball, is constant for different-sized flows since
V o N. Therefore air density p, need not be further consid-
ered as a dimensional variable since it can be substituted by
m/L3. The dependence on the box size and ball diameter
has already been discussed, which leaves only three vari-
ables g%, L and u. Thus the only dimensionless combination

05

04+ \

that can be formed containing the front velocity is the den-
siometric Froude number

u*(z)
Fr(x) = 4
= T @ W
This must be constant for different flows, and thus
u(z) = /L(z)g* (2)Fr(z) & NV (5)

since L oc N'/3.

In Nishimura and others (1998) the front velocity was
measured between the k point and the p point (where the
slope angle, 36°, is roughly constant and steepest; see Fig. 1).
The remarkably good fit between this equation and experi-
ment is seen in Figure 6 and provides additional justification
for Equation (3). As expected, the error is worse for flows with
small particle numbers, since they rapidly spread into single
ball thickness layers with two significant length scales dN''/?
(width and length) and d (height). The height is likely to be
the significant length scale in this range, so for small flows we
expect the velocities to be independent of flow size.

Flow structure and ball velocities

By analyzing the video film (Keller and others, 1998), indi-
vidual particle positions can be calculated, and by identifying
balls between adjacent video frames, particle velocities are
obtained. Figure 7 shows the perpendicular positions, viewed
from the side, and velocities for a 200 000 ball flow as the
particles are advected beneath the camera. The time interval
of one profileis 17 ms (1/60 s). This technique, however, cannot
see through ping-pong balls, and in the dense head (volume
fraction ~ 0.2) only the balls from the top 0.2 m can be identi-
fied, so there is a blank region in Figure 7, marked “passage of
head”, where there is no data.

If the structure of any feature in the flow of size [ is chan-
ging slowly on the time-scale [/u, where u is the mean flow
velocity, then we can regard these data as providing a cross-
section through the flow in the direction of mean velocity, in
this case down the slope. For Figure 7 the mean flow velocity
is15ms ', 50 0.1s corresponds to 1.5 m. The head of 1 m length,
0.4 m height, followed by a body of 0.2 m height is visible. The
full flow (not shown in Fig. 7) has a body of approximately
constant height (0.2 m) and length (10 m), followed by the tail
of the flow which stretches back to the box and consists of
separated balls.

The shape of the velocity profile in a steady shear flow is
governed by the relative magnitude of the drag forces on the
upper and lower surfaces, the body forces and the vertical
transport rate of momentum. Figure 8 shows that the mean
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Fig. 7. Ball heights in a 200 000 ball avalanche calculated as the balls are advected beneath a fixed video camera. The lines show

the ball trajectories from one field to the next.
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Fig. 8 Vertical profile of ball downslope () velocity. The
height and velocity of each data point are an average over 50
balls calculated from video camera measurements of the front
and body.

downslope () velocity of the balls decreases monotonically
with height. There is no visible velocity reduction at the
base, indicating that surface friction is unimportant. The
mean velocity decreases slowly in the dense part of the flow
by about Ims ', and then very rapidly in the less dense top
layer by a further 1-2 m s~ . This diffuse top layer of saltating
balls moving along approximately parabolic trajectories is
visible in Figures 5 and 7 and has been discussed in the lit-
erature (Johnson and others, 1990). This behaviour is char-
acteristic of dilute energetic flows. In high-density flows, on
the other hand, the top surface 1s well defined to within a
particle diameter. The lower mean velocity of these saltating
balls is easily explained by the extra air drag they experi-
ence since they move in regions of higher relative air
velocity. The relative air velocity in the bulk of the flow must
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g, 9. Ball velocity standard deviation for a 300 000 ball
experiment. ( Data have been smoothed.)
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be much lower since the flows are in approximate equilib-
rium and move up to four times faster than the terminal
velocity of an individual ball.

The central part of the ski jump is composed of down-
slope pointing bristles, and experiments with individual
balls show that it is totally inelastic — the balls bounce to
no observable degree — so that horizontal momentum can-
not be converted to vertical momentum by collisions with
the slope, but only in collisions with other balls. Since verti-
cal motion will rapidly decay through ground collisions, a
priori one might have expected a high-density flow where
the balls are in continuous contact with very small fluctu-
ation velocities. This is indeed what happens initially when
the balls slump out of the box. However, this dense-flow
state is unstable, and, as the flow accelerates, the velocity
fluctuations increase and the density decreases.

The kinetic theory of granular matter follows that of gases
and describes a system by a particle distribution function f,
where f(c,x,t) dcdx is the number of particles with velocity
c and range dc that are centred at x and range dx at time ¢.
The number density n(x,t) is the integral of f over all
velocities and the volume fraction ¢(x,t) = n(x, t)7d*/6. The
mean value of any particle property ¥(c, X, t) is defined as

1
W= / f(e,x, tygde. (6)

The mean velocity field u(x,t) is thus (c), the fluctuation
velocity C = ¢ — uand the second moment of the fluctuation
velocity K (x,t) = (CC). The granular temperature T'(x, t)
=1/3(K,, + K,y + K..) is the isotropic component of K.
The stress tensor (sometimes referred to as the pressure tensor
(Jenkins and Savage, 1983)) for a granular flow is

o= ¢pp K + mOI[C], (7)

where py, is the ball density, m is particle mass and @[C]
denotes the collisional transport of velocity fluctuation.
The notation follows Jenkins and Richman (1988), where it
is shown that in dilute flows the collisional transport term
can be ignored. The dilute approximation consists of retain-
ing only terms that are constant or linear with respect to
volume fraction ¢ and is valid when the strength of mean
shear relative to velocity fluctuations is small. This approx-
imation 1s assumed valid for the rest of the paper.

The square root of the diagonal elements of K are the
velocity standard deviations along the coordinate axis and
are shown in Figure 9. The standard deviation is taken over
each video field. This shows that the perpendicular (K.,),
and cross-slope (Ky,) velocity deviations are roughly similar
in the head and the body, 1.5 and 0.5 mss ', respectively. How-
ever, the downslope (K,;) is low initially, then increases
rapidly in the head to reach a maximum of 25ms ' before
decaying to a nearly constant 0.5ms ' in the body. The
results are similar for other flows.

Kinetic theories (Lunn and others, 1984; Anderson and
Jackson, 1992) of granular matter often postulate that K is
isotropic, i.e. the diagonal stresses K., K, and K, are
identical and the off-diagonal stresses are zero. This is
clearly not the case for these flows. Figure 9 shows that the
diagonal elements of K are never equal. Since K is sym-
metric and positive definite it can be decomposed into its
principal stresses (eigenvalues) and principal axes (eigen-
vectors). The rotation of the principal axes away from the
coordinate axes (0, 8, 0) is shown in Figure 10. The large
rotation of the principal axes in the head is clearly visible, in
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Iag. 10. Rotation angles of the principal axes of the granular
stress tensor _for a 300 000 ball experiment. ( Data have been
smoothed.)

contrast to the much smaller rotation in the body. On sym-
metry grounds one would expect 8, to be identically zero if
the measurements had been taken along the centre line of
the flow, but since the measurements were taken slightly to
the side the results are not surprising. The large rotations 6,
and 0, and small rotation 0, suggest a shearing motion in
the plane of the slope but no vertical shearing. These data
are consistent with video footage in which horizontal
velocity structure is visible, and with Figure 8 which shows
that there is no appreciable vertical shearing.

In the case of steady and uniform flow, the mean velocity
must be constant and the momentum equation for the flow is

V- oo K + ¢Vp = ¢prg + ¢f (8)

where pis the air pressure, g is gravity and f is the drag force
from the air on the balls (Jenkins, 1987). For a free surface to
be steady and clearly delineated there is a kinematic con-
straint that n - K - n vanishes on the surface, where n is the
surface normal. That is to say, as well as the mean velocity
vanishing normal to the surface, so must the velocity fluctu-
ation. This term, if non-zero, would result in a diffusion out-
ward from the surface of the volume fraction ¢. The top
surface, in contrast, is diffuse, ¢ slowly decreases with z,
and such a condition is not satisfied. Figure 5 shows that
the front is indeed very clearly defined, which requires that
K, =0.Since K is calculated from averages over two video
fields, the value at the front is not known, but extrapolating
the curve makes it plausible that K, is indeed zero (Fig. 9).

There is also a dynamical requirement given by Equa-
tion (8) that the forces on the front should balance.

00 4y n 0oy 00,

op _ .
o oy — T o5 = 0fs — ¢mrgsing. 9)

Unfortunately only a dozen balls or so in each video frame
can be identified, which does not provide enough data to
calculate y and z derivatives unless averaged over the whole
length of the flow. Assuming that the only z dependence of
stress is that required to counteract gravity, the 9/0z terms

can be dropped. The 0/0y terms should be zero on the
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centre line (y =0) of the flow and can also also be dropped.
The equation is then
004,

op .
5e T Pg, = ¢fe — dpvgsind, (10)

and can be integrated if f, is known to provide a variant of

Bernoulli’s law. We will return to this equation after a discus-
sion of the air-pressure data.

Pressure measurements

Although in the general case of flow past bodies of arbitrary
form the actual flow pattern bears almost no relation to the
pattern of potential flow, for streamlined shapes the flow may
differ very little from potential flow; more precisely, it will be
potential flow except in a thin layer of fluid at the surface of
the body and in a relatively narrow wake behind the body
(Landau and Lifshitz, 1987). In particular, in front of the ava-
lanche head the flow will be irrotational since the Reynolds
number is very high (for length 1 m and velocity 10ms ', one
has Re ~ 10°. A simple approximation is to assume that the
flow field is that of irrotational flow around a sphere where
the sphere represents the head of the gravity current (cf. Fig.
7) in a stationary frame. The flow field has the required sym-
metries since it is symmetric about the cross-stream (y =0)
plane and, if the influence of the ground on the airflow is
assumed to be small, the flow field can be reflected in the
perpendicular (z =0) plane.

A similar approach to the ambient flow around gravity
currents was pioneered by von Karman (1940). He consid-
ered the local flow around where the head meets the ground
and used this to deduce the head angle (60°). This is accurate
over distances small compared to the head height. Similar
ideas were also discussed in Hampton (1972), but he consid-
ered the ambient flow around semi-infinite debris flows, so
his approach is correct over scales large compared to the
head height but small compared to the flow length. In con-
trast, the approach in this paper is equivalent to retaining
the first three terms (up to the dipole) in a multi-pole expan-
sion and is therefore asymptotically correct.

To apply Bernoulli’s theorem it is most convenient to
work in a frame in which the flow field can be approximated
as steady. This is true in a frame moving with the same
velocity as the avalanche head since the slope angle changes
slowly. The velocity distribution around a stationary sphere
of radius R in a flow field moving with constant velocity v at

v(x) = —v + 1 (3X(Xv) - v) . (11)

infinity is

223 x?
Using Bernoulli’s theorem the corresponding pressure distri-
bution 1s
Ap(x) =1/2p,0*R?/2?

[2— R*/2* — 3/4sin*0(4 — R*/2%)]
where x cos § = x - v. Regarding the pressure sensors as fixed
on the centre line, the data are not of sufficiently high quality
to warrant a more complicated approach, then x(t) =

v(R/v —t), where ¢ = 0 is taken as the time when the front
reaches the sensor. The output from a pressure sensor is then

Ap(t) = 1/2p,0*(1 —vt/R) 2 — (1 —vt/R)*]. (13)

Figure 11 shows the result of fitting this curve to the data from

(12)

one of the sensors. The equation has three free parameters: the
impact time, which is taken as the point of highest pressure,
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Fig. 11. Static air-pressure change as the front of a 300 000 ball
avalanche is advected past the sensor at height 0.3 m. The balls
reached the sensor at t = 0, and for t < 0 the line of best fit
(least mean squares ) is drawn assuming the pressure distribu-
tion in front of a sphere (two free parameters effective radius R
and velocity v ).

the effective radius R, and the effective velocity v. The pres-
sure data were sampled at 1000 Hz and passed through a
4 ms width Gaussian filter, p, was taken as 12 kgm ~ and an
additional correction was applied after calibrating the sensors
in the wind tunnel.

The velocities implied by the pressure data are shown in
Table 1. The lower three sensors are all in rough agreement,
with the velocity increasing slightly with height. The differ-
ence between these velocities and the video-derived head
velocity (of order 5ms ') is the penetration velocity of the
air into the head. Not surprisingly, this decreases with height
as the air flows over the avalanche rather than into it. The
flow velocities from the top sensor (height 0.45m) are low
because it is largely out of the flow in a region of reduced air
velocity. The third column of Table 1 compares the air
velocities with the scaling Equation (2). The agreement for
the lowest three sensors in the flow is very good and provides
further evidence in favour of the length-scaling hypothesis.

Though the calculated velocities match the scaling law
reasonably well, the radii do not (Table 2). A possible
explanation is as follows. The flow field far from the body is
that of a dipole imposed on constant flow. The magnitude of
the dipole is the surface area of the implied sphere times the
velocity wR%u Close to the front, however, the flow field, to
second order, will be more like that around an ellipsoid (this

Table 1. Comparison of implied velocities for 150 000( vy )
and 300 000(v2) ball avalanches

Hﬁig}ll‘ U1 Vg 2]/61]1 /UQ
-1 -1
m ms ms
0.01 7.55 8.16 1.04
0.15 8.21 9.66 0.95
0.30 8.88 10.13 0.98
045 6.81 8.96 0.85
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Table 2. Comparison of implied radii_for 150 000( Ry ) and
300000( Ra) ball avalanches

Height Ry Ry 23R /Ry 2V'Ri/Ry
m m m
0.01 076 0.88 1.09 1.02
015 068 0.80 1.06 1.00
030 0.87 1.02 1.08 1.01
045 098 1.08 114 1.07

is the result of expanding the surface to second order in the
coordinates). The equation fit is influenced by the region of
high pressure difference close to the flow front, and the
length scale measured here is actually the local radius of
curvature. Thus 1/R =1/R; 4+ 1/R». Video footage and
pictures of the slope show that the flow front is reasonably
approximated by the parabola y = 2?/d where d = 5m
and y is the distance from the centre line. Thus in Figure 4
it can be seen that 5 m back from the front the flow is 10 m
wide. The measured radius of curvature in the z—y plane is
thus Ry = d/2 = 2.5 m independent of the flow scale.This does
not necessarily contradict the scaling hypothesis, because
this is a local length scale and the width of the flow is still
expected to scale as N3, Thus if Ry scales and R is con-
stant the ratio between the front radii is

1/Ry +1/Ry
1/(ARy) + 1/ R,
A-1 771
mrml
where A = (N’/N)l/3 is the length-scaling ratio. When A is
close to 1 this can be simplified to

R/R= XU LO[1- N, (14)

and thus the scaling exponent v = 1/3 is altered to v =
v/(1+ Ri/Rs). To the same order of approximation, R;
can be taken from the flows for either N or N'. The fourth
column of Table 2 shows the excellent fit obtained with this
analysis for Ry /Ry = 2.5 and 7/ = 5/21.

This is a very tentative solution, and an explanation is
still required as to why the front should have a constant
parabolic shape.

The definition of the calculated radius is somewhat arbi-
trary. The pressure data could be equivalently fitted to

Ap(t) = 1/2p20* (1 — t/to) 2= (L = t/t0)°],  (15)
where % is a time constant. The radius is then deduced from
R = tyv. The above analysis took v as the air velocity, but a
more natural choice would be to use the velocity of the co-
ordinate frame, i.e. the front velocity u if this is known.
Since this velocity has the same scaling, this would only
result in the implied radii being multiplied by some constant
factor, so the previous discussion is unaffected.

R/R =

)\[lJr

Air pressure through the front

Within the ping-pong ball flow the steady-state mass and
momentum equations for the airflow are

V- (1=¢)v=0, (16)
(1= O)(v- Vv + (1= )Vp=—6f.  (I7)
To calculate the pressure inside the flow these equations
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Pressure (Pa)

0 0.1 0.2 0.3
Time (s)

Ing. 12, Aur pressure through the front at 0.01m _for 300 000
balls. The front reaches the sensor att = 0s.

must be integrated. A simple approximation for the force
valid to lowest order in ¢ is

£ = pu?/a, (18)

where a = p,u3./(py, — pa)g = 0.08 m is an air-drag length
scale and wur is the terminal velocity of an individual ball
(75ms ). An analytic solution is not casy to find. However,
if the streamlines are not diverging (or converging) too
rapidly, the continuity equation can be approximated by
(1 — ¢)v = vg over short distances if the streamlines diverge
slowly, where v is the penetration velocity of the air into the
front. This is most likely to be true close to the ground, where
symmetry suggests there will be a streamline passing
straight through the centre of the flow. Substituting this into
Equation (17) and integrating along this streamline yields

P = po — pud — Bipu/ex / o(s)ds + O(¢?),  (19)

where s is the distance along a streamline. Even if the sur-
face of the flow is sharply defined to within a ball diameter,
¢ changes more slowly because it is defined as an average
over a volume containing many balls. Suppose the ball con-
centration is 0 outside the flow and ¢. = const. inside the
flow. Then ¢ increases linearly from 0 to ¢. over a width w
of order do. s Integrating Equation (19) gives

s
) 2 % (1 +£) S S w
P —Po = —Vydcpa (20)
(1 + 7252;1”) s> w,

accurate for small s. Over longer distances the streamlines
will diverge as the airflow is deflected up and out of the
avalanche, the velocity will decrease and the pressure will
increase (see Fig. 12).

The rapid decrease in pressure as the flow front goes past
the sensor that is predicted by this equation is clearly seen in
Figure 12 (and also Fig. 11). The total pressure drops by 84 Pa
from 0's to 0.035s. The front velocity is around 15ms ', so
this corresponds to a distance of 0.5m, certainly much
larger than w, and Equation (20) is v3¢. ~ 9 m?s % From
Table 1 the air velocity for this flow at 0.0l m is 8ms ', so
v =7ms 'and ¢ = 0.2. This value for the volume fraction
seems reasonable and is much lower than the maximum
packing fraction, thus justifying the dilute approximation.

The z component of the momentum equation for the
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ping-pong balls Equation (8) can now be integrated with
the same approximations to give
2

Ka() = [p(0) — p(2)]/py + ’;—; —agsinG.  (21)
D

Att = 00355 (using linear interpolation) K,, = 1.9 m?s
[p(0) — p(x)]/pr, = 0.96 m*s * and zp,v3/prex = 4.5m”s >
and zgsinf = 25m”s > These quantities are all of the
same order, showing that the structure of the head is deter-
mined by the balance between air drag, granular stress and
gravity. Further back in the body of the avalanche, K, is
approximately constant and the pressure varies only slowly.
Since the effect of surface drag appears to be small this im-
plies that the air drag on the top surface balances gravity.

A more detailed analysis of Equation (21) is not appropri-
ate for several reasons. The large fluctuations of the air pres-
sure in the avalanche imply that the flow is turbulent, and
make interpretation of the air-pressure data very difficult
since the sensor measures a complicated function of the local
velocity and local pressure which can be simply understood
only if the direction of the velocity is known. The ball velocity
data also contain a lot of noise since in a typical frame only a
dozen balls can be identified. Though mean values of the
velocity are reasonably accurate, derivatives of K are much
less so. There is an additional problem that the balls that were
identified might be very special (perhaps only those with low
vertical velocity have been sampled, for example), possibly
leading to systematic errors which have not been estimated.
In addition, the ball position measurements were taken I m
to the left of the flow centre and the location of the pressure
measurements. Despite all these difficulties, the data do sug-
gest a number of significant processes within the avalanches.

DISCUSSION

Classical work on gravity currents is based on perfect-fluid
theory and assumes that the effects of viscosity and mixing
of the fluids at the interface can be ignored (Benjamin, 1968).
A major result of Benjamin (1968) is that, except when a
gravity current exactly fills half a cavity, energy dissipation
must occur through the formation of a head and turbulent
flow behind it. Extensions to the basic theory include lower-
boundary effects (Simpson, 1972) and a mixing region
behind the head (Simpson, 1986), but there is still assumed
to be a clear boundary at the front of the current.

A complete description of the flow field for a mixture of
Newtonian fluids requires only one velocity field. This is
because there can be no relative motion (at a point) between
two fluids since a no-slip condition holds everywhere, so the
velocity fields for each fluid (where they are defined) must
be identical. Thus mixing between fluids is a slow diffusion
process and there are often well-defined boundaries. The
stability of boundaries is also enhanced by surface tension.
However, when one of the fluids is a non-cohesive granular
fluid there is no surface tension and the granular fluid will
generally have a distinct velocity field. This is because
although on the surface of each grain a no-slip condition
holds, very large velocity gradients can exist across a narrow
boundary layer, so the difference between the ambient fluid
velocity field and the granular velocity field averaged over
volumes containing a few grains can be very large. For grains
falling in a gravitational field, for example, the relative
velocity will be of the order of the terminal velocity.

The standard gravity-current theory (Benjamin, 1968)
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Fg. 13. Schematic of the airflow round and through a ping-
pong ball avalanche.

(correctly) assumes a stagnation point at the front of a grav-
ity current because the velocity of the ambient and the
current must be equal. This need not be true for granular
gravity currents, and the air-pressure data show that there
is a significant relative velocity over the width of the head
(Fig. 13). The drag force is related to the relative velocity, so
a large difference between these avalanches and standard
gravity currents is that the drag is a body force over the
head of the avalanche rather than a surface force over the
head’ front surface. Analysis of the forces in the head of the
avalanches shows that there is an approximate balance of
forces on the balls between gravity, granular stress and air
drag, and that surface friction is negligible. The air drag is
balanced by a large, anisotropic increase in the granular
stress and gravity. This increase is a result of an increase in
the downslope fluctuation velocity which then leads to an
increase in vertical and cross-slope fluctuations through col-
lisions. Though a quantatitive balance of the vertical forces
in the head has not been accomplished, the granular stress
and the vertical component of the drag are probably both
significant and lead to the height of the flow. Air drag may
also directly enhance vertical velocity fluctuations. Further
back in the body of the avalanche the granular stresses are
constant (downslope) and the height is lower. Since surface
drag is negligible, the gravity must be balanced by air-drag
forces through the top surface. A likely mechanism for this is
momentum transfer by the saltating particles. During their
high trajectories they have time to exchange considerable
horizontal momentum with slowly moving air, and when
they collide with the main body this momentum will be al-
most perfectly transferred. In effect, there is a drag inter-
action between the main body and the airflow over the
whole height of the saltating balls. Though this has not been
quantified, this mechanism of momentum transfer is most
likely more efficient than the drag on the upper surface of a
smooth gravity current and helps explains why steady flows
occur on such steep slopes even with such a large relative
density (pp/pa = 90).

CONCLUSIONS

The air-pressure distribution in front of the ping-pong ball
avalanches is well approximated by irrotational flow around
a sphere. This approach could be extended to the flow
behind the head by comparing the data with turbulent wake
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theory, but this is difficult because of the complicated inter-
action of the pressure sensors with the airflow when the
velocity direction is unknown. The implied air velocities
scale as the sixth power of the number of balls, in agreement
with dimensional analysis and the scaling for the ping-pong
ball velocities. The length scales implied by the airflow are of
the same order of magnitude as the front height, but only
obey the scaling law if the shape of the head is assumed to
have a constant curvature (in the plane of the slope). Kinetic
theory calculations show a quantatitive balance of forces in
the head between gravity, granular stress and air drag.
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