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Abstract

The definition of severe acute respiratory infection (SARI) – a respiratory illness with fever and
cough, occurring within the past 10 days and requiring hospital admission – has not been
evaluated for critically ill patients. Using integrated electronic health records data, we devel-
oped an automated search algorithm to identify SARI cases in a large cohort of critical care
patients and evaluate patient outcomes. We conducted a retrospective cohort study of all
admissions to a medical intensive care unit from August 2009 through March 2016.
Subsets were randomly selected for deriving and validating a search algorithm, which was
compared with temporal trends in laboratory-confirmed influenza to ensure that SARI was
correlated with influenza. The algorithm was applied to the cohort to identify clinical differ-
ences for patients with and without SARI. For identifying SARI, the algorithm (sensitivity,
86.9%; specificity, 95.6%) outperformed billing-based searching (sensitivity, 73.8%; specificity,
78.8%). Automated searching correlated with peaks in laboratory-confirmed influenza.
Adjusted for severity of illness, SARI was associated with more hospital, intensive care unit
and ventilator days but not with death or dismissal to home. The search algorithm accurately
identified SARI for epidemiologic study and surveillance.

Highlights

• SARI is a public health concept being adopted worldwide.
• We made a search algorithm that correctly identified large SARI patient cohorts.
• The algorithm is useful for epidemiologic research in intensive care settings.
• Outcomes between SARI and non-SARI patients were different.
• Further differentiation among critically ill patients may be feasible.

Introduction

Severe acute respiratory infections (SARIs) are the third leading cause of death worldwide [1].
Epidemics of SARIs, including the Middle East respiratory syndrome, severe acute respiratory
syndrome and pandemic influenza, have shown the damage that SARIs can inflict.
Unfortunately, SARI therapeutics and surveillance infrastructure are relatively underfunded
and SARIs continue to be a worldwide threat [2].

A first step in improving the care of patients with SARIs is recognition. Knowing that a
novel influenzalike illness (ILI) or pneumonia is present in the community can influence prac-
tice. Practitioners may use isolation more consistently and order targeted testing and interven-
tions. Administrators can change staffing and stocking models to prepare intensive care units
(ICUs) and emergency departments. Government and public health officials can allocate
resources and personnel and update media. However, current public health recognition sys-
tems are inadequate in scope and are often too slow to be clinically useful.

The World Health Organization (WHO) developed a surveillance definition for SARI to
improve comparability and consistency in SARI reporting. This definition starts with the
case definition of ILI as an acute respiratory infection in a person with a fever (⩾38 °C),
cough and onset within the past 10 days. A SARI is defined as an ILI requiring hospitalisation
[3]. This definition was chosen because of its feasibility in worldwide implementation.
However, the correlation between SARI and patient outcomes has not been evaluated.

As a first step toward improving the recognition of SARI, we sought to identify a comput-
able phenotype for SARI in patients admitted to an ICU and to evaluate the association
between SARI and patient outcomes. Such a computable phenotype could be used to develop
practical real-time detection tools for SARI.
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Methods

We conducted a retrospective cohort study to derive and validate
a computable phenotype for SARI. We obtained Mayo Clinic
Institutional Review Board approval for this minimal-risk study.

Data sources

Data sources included manual review of medical records for val-
idation and development of a gold standard, the Mayo Clinic ICU
Data Mart [4] and the Mayo Clinic Advanced Cohort Explorer.
The Mayo Clinic ICU Data Mart is a repository of all physiologic,
laborator and clinical data for ICU admissions at Mayo Clinic.
The Advanced Cohort Explorer is a tool that allows for searching
records, diagnoses and billing data, laboratory results and imaging
and flow sheet data for all patients.

Patients

Patients were eligible if they had been admitted to the medical
ICU at our institution from August 2009 through March 2016.
Only index admissions were included. This period was chosen
to encompass several flu seasons, including one pandemic season.
Flu was chosen as the disease for our case study for derivation and
validation because it is a SARI with reliable annual activity and
because confirmatory testing is readily available. Patients were
excluded if they were younger than 18 years, did not have research
authorisation on file, or were admitted to a nonparticipating ICU.

Approach to the computable phenotype

Patients admitted in the peak influenza years of 2009 and 2010
(September–December in both years) were chosen as derivation
and validation cohorts. Computable phenotypes were initially
derived from the 2009 data and were then applied to the 2010
data. These 2 years were chosen to ensure that the algorithm
could perform for pandemic and nonpandemic years.

We designed a series of text-based note searches and algo-
rithms examining laboratory and vital parameters to iden-
tify SARI. Simultaneously, independent investigators manually
reviewed the charts of patients to classify them as patients with
SARI and to identify which components of the definition were
met. The electronic and manual searches were reconciled and dis-
agreements were resolved by a reviewer for whom the initial
assessments were masked. The adjudicated outcomes became
our gold standard for evaluating the computable phenotypes.
Our a priori target for performance was sensitivity and specificity
of at least 90%.

We further compared our computable phenotype to billing
data. We used a search of discharge codes (International
Classification of Diseases, Ninth Revision [ICD-9]) for pneumonia
and influenza to identify probable SARIs (Supplemental Box). We
sought to have our text-based search outperform billing-based
approaches for identifying ILI.

To examine construct validity, we also plotted the percentage
of admissions with SARI over time against the percentage of posi-
tive influenza swabs in a given season. Although SARI is not lim-
ited to influenza, a peak of SARI activity near the peak of flu
activity would support the performance of the computable
phenotype. To examine for the validity of this construct across
different patterns of disease, two time periods were used: the

consecutive 2014 and 2015 nonpandemic influenza seasons and
the pandemic 2009 season.

Approach to evaluating SARI

Validated Data Mart tables reporting on ICU use (ventilator days
and length of stay) and outcomes (mortality and discharge to
home) were compared between SARI patients and non-SARI
patients in the larger cohort of all patients admitted from
August 2009 through March 2016 with the computable pheno-
type evaluated above. Differences were analysed with the
Student t test for continuous data and the χ2 test for categorical
data. Adjusted models for Acute Physiology and Chronic
Health Evaluation (APACHE) were based on standard least
squares and nominal logistic regression models. Model compari-
son was performed with the model comparison platform with the
hypothesis test that matched model values for area under the
curve (AUC) were equivalent. P values <0.05 were considered sig-
nificant. We performed all statistical analyses with JMP 12 soft-
ware (SAS Institute Inc).

Results

Computable phenotype derivation

During the peak flu activity of the 2009 season, 618 patients meet-
ing the inclusion criteria were admitted to our medical ICU. Of
these, 87 patients (14.1%) met the definition for SARI.

We first designed a search for each of the components of the
SARI definition. Fever was classified as objective or subjective.
Objective fever was defined as a recorded fever (⩾38 °C) in the
first 24 h after admission. Subjective fever was defined as a fever
at home, during transit, or under other circumstance where the
temperature was not directly measured and reported. In the der-
ivation cohort, objective fever achieved 100% sensitivity and spe-
cificity with a search of the vital signs flow chart.

Our ultimate search strategy for subjective fever was to search
the admission notes for chief complaint, diagnosis and history of
present illness and the impression/report/plan portion of the
notes with the terms fever, febrile, elevated temperature, or fevers
and then to exclude with negation terms such as no, denies, uncer-
tain, not, or if spike(s) that appeared in the same sentence as the
original search terms. This strategy had 94.7% sensitivity and
94.9% specificity.

The search for cough was more challenging because of variable
reporting and negation terms in different sections of the notes.
After several iterations, we could not improve on the simple
search for the term cough in the admission chief complaint, diag-
noses, history of present illness, or the impression/report/plan
portion by excluding with the negation terms denies, not and
no. The final sensitivity was 89.6% and the specificity was 97.4%.

After several iterations of adding terms for acuity to the search,
we found that this only decreased sensitivity. Ultimately, it
appeared that by restricting our search to ICU patients with the
above terms in portions of the note reporting on acute illness, it
was not necessary to specify the 10-day acuity period. Likewise,
since our inclusion criteria required hospital admission, we did
not need to specify any additional terms describing admission.

Aggregating our search resulted in an overall sensitivity of
83.9% and specificity of 94.2% in the derivation cohort. Further
subset analysis suggested that some of the factors complicating
the computable phenotype came from nonspecific terms found
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in notes for patients with chronic obstructive pulmonary disease
(COPD). When those 148 patients were excluded, the sensitivity
improved to 86.9% and the specificity improved to 95.6%. The
billing search had a sensitivity of 73.8% and a specificity of
78.8%. Given the high specificity of our search and our inability
to improve it further without excluding important populations,
we applied the computable phenotype to the validation cohort
without excluding COPD patients.

Computable phenotype validation

In the validation period, 198 patients were admitted to the med-
ical ICU. Of these, 14 were adjudicated as SARI (7.1%). Overall,
the computable phenotype performed well, with 88.9% sensitivity
and 96.7% specificity, outperforming manual searches, which
were 57.1% sensitive and 95.9% specific. This was also better
than the ICD-9 searches, which were 78.8% sensitive and 71.1%
specific. Individual manual and computable phenotype item per-
formance is summarised in Table 1.

Overall, we had not achieved our initial goal of sensitivity and
specificity greater than 90%. However, even though we could not
improve the values, the specificity was high and the computable
phenotype outperformed both manual and ICD-9–based searches.
Therefore, we continued to assess SARI outcomes despite not
meeting our prespecified goal.

SARI and patient outcomes

From August 2009 through March 2016, a total of 13 689 patients
had an index admission in the ICU. Of these, 1269 were classified
as having SARI. Characteristics of these patients are summarised
in Table 2.

Overall, SARI patients tended to be older and sicker and
require longer ICU and hospital stays. However, despite this,
rates of survival to discharge and discharge to home were compar-
able between SARI and non-SARI patients. When adjusted for
APACHE score, SARI was still not associated with differences
in the rate of survival to discharge or discharge to home (Table 3).

SARI+

Because SARI appeared to be more closely linked to ventilator use
than to other outcomes, we conducted an exploratory analysis of
‘SARI + ’ patients—that is, patients with SARI who received
advanced ventilatory support with invasive or noninvasive mech-
anical ventilation or with a high-flow nasal cannula. This is sum-
marised in Table 4.

This approach did not improve the AUC for SARI with rela-
tion to patient outcomes. We additionally explored a partitioning
approach with SARI variables (objective or subjective fever and
cough) and oxygen support in the first 24 h. In this model,
including minimum temperatures <35 °C, results did improve
the AUC for mortality prediction. However, this did not improve
with SARI patients overall, because all but 20 patients who were
relatively hypothermic also reported having subjective fever symp-
toms. Overall, more complicated formulations for SARI did not
lead to significant improvements in SARI linked to outcomes.

SARI over time

When the pandemic season of 2009 was examined, the peak of
SARI activity coincided with the peak of influenza activity
(Fig. 1). This was consistent with the construct. SARI activity,
however, seemed to have a second increase as the severity of the
flu season decreased.

When the 2014 and 2015 seasons were examined, similar
trends were present (Tables S1 and S2 and Supplementary
Figure). Overall, SARI peaks were associated with peaks in flu
activity. This was most notable in 2014 and 2015, although con-
siderable noise was observed. Predictably, the summer activity of
SARI reached its nadir around the same time as influenza.
However, there appeared to be a larger second peak of SARI activ-
ity after the flu season each year. This may have indicated pneu-
monia or other respiratory infections, consistent with the SARI
model.

Discussion

We aimed to identify a computable phenotype that could identify
SARI activity. According to the performance of the computable
phenotype, it can identify SARI with better accuracy than proce-
dures that use either billing data or manual chart review.
Moreover, the SARI activity identified by the computer pheno-
type shows a predictable correlation to flu activity, consistent
with our construct. A valid computable phenotype for SARI
opens the door to big-data research into this important area.
The strategy for identifying SARI can be adapted to develop
and explore large cohorts for further research.

Components of the SARI definition are available in medical
charts within the first days after admission. The phenotype
could thus be detected early and used for epidemiologic monitor-
ing and study. More importantly, it opens the door to big-data
tools being used to improve the quality of care for SARI patients.
Our group has applied similar computable phenotypes to func-
tion as early detectors of sepsis and acute respiratory distress syn-
drome and it has developed intervention alerts to improve care
delivery [5, 6]. SARI care models need further development and
big data may help in developing this lagging field.

One area that may be further refined is the end points and
definitions for SARI. We did find that, in aggregate, SARI is asso-
ciated with more days on the ventilator, in the ICU and in the

Table 1. Sensitivity and specificity of queriesa

Item Sensitivity, % Specificity, %

Objective fever

Computable phenotype 97.7 (88.2–99.6) 100 (97.6–100)

Manual search 38.6 (25.7–53.4) 89.0 (83.0–93.0)

Subjective fever

Computable phenotype 94.4 (81.9–98.5) 98.0 (94.2–99.3)

Manual search 83.3 (68.1–92.1) 94.6 (89.8–97.3)

Cough

Computable phenotype 97.0 (84.7–99.5) 100 (97.6–100)

Manual search 89.7 (73.6–96.4) 95.6 (91.2–97.9)

SARI

Computable phenotype 88.9 (67.2–96.9) 96.7 (92.9–98.5)

Manual search 57.1 (32.6–78.6) 95.9 (91.8–98.0)

SARI, severe acute respiratory infection.
aValues are presented as mean (95% CI).
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hospital. Therefore, SARI is a valid patient-oriented concept tied
to meaningful end points. However, we also found that many
cases of clear clinical SARI (eg, H1N1 influenza virus infection
in patients using a ventilator) were missed by the definition. A
big-data approach is only as good as its inputs and thus its defini-
tions and further consideration should be given as to whether the
standing SARI definition is adequate for critical illness research
and quality improvement.

Despite the increase in ventilator use and length of stay, the
ultimate end point of death was no different between SARI
patients and non-SARI critically ill patients. This is a novel

finding because most SARI mortality research to date has exam-
ined subsets of the SARI population, such as children and adults
and human immunodeficiency virus–positive or negative patients
[7–9]. Two studies reported high rates of mortality among SARI
patients but did not compare them to a larger cohort [10, 11].
Another study by Sakr et al. [11] did find a correlation with
SARI and mortality; however, those authors also identified several
other independent risk factors that could aid risk stratification in
an ICU.

Part of our observed lack of mortality correlation may include
our selection bias for ICU patients. The patients with SARIs
received comprehensive treatment and support in critical care set-
tings and outcomes may be different if this approach were applied
to a larger cohort of hospitalised patients. A more appropriate
comparator among critically ill patients may be an age- and
comorbidity-matched cohort of non-SARI patients. Nonetheless,
if SARI activity does not correlate with mortality end points in
the ICU, it may be worthwhile to consider a different definition
for ICU outcomes which further differentiates the most severely

Table 2. Characteristics of patients admitted to ICU

Item Overall (N = 13 689)
SARI

(n = 1269) Non-SARI (n = 12 420) P value

Male, % 54.4 54.3 54.4 0.95

Age, mean (S.D.), y 63.2 (18.8) 64.7 (18.4) 63.1 (18.9) 0.004

APACHE III score, mean (S.D.) 65.9 (26.0) 67.4 (22.8) 65.8 (22.3) 0.03

Day 1 SOFA score, mean (S.D.) 4.8 (3.5) 5.1 (3.2) 4.8 (3.5) 0.01

Ventilator days, mean (S.D.) 2.2 (3.6) 3.1 (4.7) 2.1 (3.4) <0.001

Noninvasive 0.3 (0.8) 0.4 (1.0) 0.2 (0.8) <0.001

Invasive 0.7 (2.3) 1.2 (3.4) 0.6 (2.2) <0.001

Hospital LOS, mean (S.D.), d 8.2 (11.0) 10.2 (16.0) 8.0 (10.4) <0.001

ICU LOS, mean (S.D.), d 2.2 (2.9) 2.9 (3.9) 2.1 (2.8) <0.001

Survival to ICU discharge, % 92.8 92.4 92.8 .60

Survival to hospital discharge, % 88.2 87.2 88.3 .23

Percentage discharged to homea 41.6 41.4 41.7 .89

APACHE, Acute Physiology and Chronic Health Evaluation; ICU, intensive care unit; LOS, length of stay; SARI, severe acute respiratory infection; SOFA, Sequential Organ Failure Assessment.
aDetailed discharge status was available for 7766 patients. In a comparison of patients discharged to home and all others, 4533 did not have SARI and 3233 did.

Table 3. SARI patient outcomes

Item

Odds ratio
(95% CI)
adjusted

for APACHE

Mean difference
(95% CI)
adjusted

for APACHE
P

value

Ventilator use 1.50 (1.33–1.70) … <0.001

Noninvasive 1.91 (1.69–2.17) … <0.001

Invasive 1.02 (0.89–1.18) … .74

Ventilator daysa … 1.11 (0.82–1.40) <0.001

Noninvasive … 0.20 (0.11–0.30) <0.001

Invasive … 0.90 (0.62–1.18) <0.001

Hospital LOS, d … 2.15 (1.52–2.78) <0.001

ICU LOS, d … 0.77 (0.61–0.93) <0.001

Survival to ICU
discharge

1.12 (0.88–1.40) … .34

Survival to hospital
discharge

1.14 (0.95–1.38) … .23

Percentage discharged
to home

1.03 (0.87–1.20) … .89

APACHE, Acute Physiology and Chronic Health Evaluation; ICU, intensive care unit; LOS,
length of stay; SARI, severe acute respiratory infection.
aAnalysis was restricted to patients whose treatment included the use of a ventilator.

Table 4. Diagnostic performance of SARI in predicting poor outcome

Outcome
AUC SARI
(95% CI)

AUC SARI +
(95% CI)a

P
value

Survival to ICU
dismissal

0.51 (0.50–0.52) 0.50 (0.49–0.51) 0.02

Survival to ICU
dismissal adjusted for
APACHE III

0.80 (0.79–0.82) 0.80 (0.79–0.82) 0.45

Survival to hospital
dismissal

0.50 (0.50–0.51) 0.51 (0.50–0.52) 0.07

Survival to hospital
dismissal adjusted for
APACHE III

0.79 (0.78–0.80) 0.79 (0.78–0.80) 0.70

APACHE, Acute Physiology and Chronic Health Evaluation; AUC, area under the curve; ICU,
intensive care unit; SARI, severe acute respiratory infection.
aSARI + patients received advanced ventilatory support with intensive or noninvasive
mechanical ventilation or with a high-flow nasal cannula.
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ill patients. For example, a patient with SARI who requires venti-
lator care, vasopressors, or other organ support in the first 24 h
after admission would likely be part of another tier of outcomes
among the critically ill. For SARI to be the most useful for critical
care research, the criteria probably need to be developed further
beyond cough, fever, acuity, respiratory illness and hospital
admission. A potential template for this may come from the
European Adaptive Randomised Controlled Trial to Improve
Survival in Hospitalised Patients With Severe Acute Respiratory
Infection. This ongoing study enrolls adult patients who are
highly suspected of having community-acquired pneumonia
according to at least two clinical criteria and radiologic confirm-
ation and requiring invasive mechanical ventilation in the first
48 h [12]. This definition is more restrictive than the WHO
surveillance definition of SARI, but it may be worth additional
evaluation as a potential definition for identifying the most vul-
nerable, at-risk SARI patients and designing improved care pro-
cess models. In our present study, we did not directly compare
this definition with the WHO definition of SARI because of
known issues with electronic surveillance and interrater reprodu-
cibility of radiographic findings well described in the ventilator-
associated–event literature [13]. This may be a topic for future
studies.

A limitation of our temporal correlation is a restriction of this
analysis to patients with laboratory-confirmed influenza. Other
SARIs most certainly contributed to the activity seen and may
be responsible for much of the activity. However, as a disease
with a well-documented and well-followed seasonality, it provides
a good natural experiment and has been used in other studies to
evaluate the utility of the SARI definition [14].

Another limitation of this study is the patient population.
Medical ICU patients were selected because they are an enriched
population for SARI with diverse causes and presentations; how-
ever, computable phenotype elements may not apply to general
medical ward patients or other types of ICU patients. Further val-
idation will be needed to apply this search to other groups.

Overall, the SARI computable phenotype was successful in
accurately and efficiently identifying large numbers of patients
with SARIs. SARI is associated with some clinically meaningful
end points, although further differentiation of degrees of illness

may improve its utility in identifying patients at risk for poor out-
comes. This SARI computable phenotype will allow for initial
evaluation and monitoring of the epidemiology of SARI in
large, electronic patient cohorts.
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