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Abstract We show that the metric version of Pansu’s differentiability result for Lipschitz maps fails;
this illustrates an interesting difference between Euclidean domains and domains that are non-abelian
stratified groups.
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1. Introduction

Differentiability of Lipschitz maps is a basic tool for tackling several questions in geomet-
ric measure theory. In fact, Lipschitz maps allow a natural generalization of the notion
of surface. In a general metric space, these are the subsets which are parametrized by
Lipschitz maps defined on some Euclidean space. These subsets are called rectifiable.
When the target is another Euclidean space, by Rademacher’s differentiability theorem,
many of the classical properties of smooth surfaces can be extended to rectifiable sets
(see [4] or [14] for a complete presentation of the subject). Recently, some properties
of rectifiable sets as the existence almost everywhere of tangent spaces, the regularity
of their Hausdorff measure, area and co-area formulae have been extended to general
metric spaces (see [1, 9, 10]). The key idea is to replace the notion of differentiability
with a weaker one, namely metric differentiability, and to prove that any metric-valued
Lipschitz map defined on a Euclidean space is metrically differentiable.

In [15], on the other hand, Rademacher’s theorem was generalized from the Euclidean
setting to the framework of non-abelian stratified groups. This boosted the development
of geometric measure theory methods in such groups (see, for example, [2,6,7,11–13,
16–18]).

In [16], a further extension of the metric differentiability into this non-abelian frame-
work is achieved and used as the main tool to obtain the non-existence of quasi-isometric
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embeddings of non-abelian stratified groups into Alexandrov metric spaces with non-
negative or non-positive curvature in the sense of Topanogov. More precisely, in [16] a
partial metric differentiability of Lipschitz maps along the so-called horizontal directions
of the group is proved, leaving open the question of complete metric differentiability, as
posed in the same paper in Remark 3.

The question of whether the full metric version of Pansu’s extension of Rademacher’s
theorem is valid also arises in another context. In [3, § 11.4], David and Semmes note that
metric differentiability is perhaps the most powerful tool for finding bi-Lipschitz pieces of
mappings and for deciding which metric spaces look down on others. In [8, Question 22],
Heinonen and Semmes asked in particular whether the three-dimensional Heisenberg
group looks down on all other spaces. Of course, this would be an easy consequence of
the metric differentiability.

In this note, however, we present a counterexample showing that the metric differentia-
bility of Lipschitz maps may fail when the domain of the map is a non-abelian stratified
group, instead of a Euclidean space.

2. Some basic definitions

In this brief section we recall the main notions we are going to use. A stratified group
is a graded, nilpotent, simply connected Lie group G, such that there exists a subspace
of left-invariant vector fields which generate all of the Lie algebra G with respect to the
Lie product of vector fields. We have a grading G = V1

⊕
· · ·

⊕
Vn and a one-parameter

group of dilations. Setting δr : G → G,

δr

( n∑
i=1

vi

)
=

n∑
i=1

rivi, r > 0,

where vi ∈ Vi, for i = 1, . . . , n. The integer n is called the degree of nilpotency of the
group (see [5] for more information on stratified groups). These types of groups can be
endowed with a natural left-invariant distance d : G×G → [0, +∞[ which is homogeneous
with respect to the group of self-similarities, that is

d(δrx, δry) = rd(x, y),

for any r > 0, x, y ∈ G. Note that we have identified the group with its Lie algebra, using
the fact that G is simply connected. Hence there exists a diffeomorphism between G and
G.

Now we introduce the definition of metric differentiability generalized to stratified
groups.

Definition 2.1. We say that a map ν : G → [0, +∞[ is a homogeneous seminorm if
for each x, y ∈ G and r > 0 we have

(1) ν(δrx) = rν(x),

(2) ν(xy) � ν(x) + ν(y).
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Definition 2.2. Let (Y, ρ) and (G, d) be a metric space and a stratified group, respec-
tively. We say that a map f : A → Y , where A is an open subset of G, is metrically
differentiable at x ∈ A, if there exists a homogeneous seminorm νx such that

ρ(f(xδtv), f(x))
t

→ νx(v), as t → 0+,

uniformly in v which varies in a compact neighbourhood of the unit element.

Remark 2.3. We point out that if G = R
n, then any Lipschitz map is metrically

differentiable almost everywhere, as proved in [1], [9] and [10]. Furthermore, in [16] it
is shown that bi-Lipschitz maps are almost everywhere metric differentiable on stratified
groups if one allows the direction v to vary only among the elements of V1, namely the
horizontal directions. The latter result directly applies also to an arbitrary Lipschitz map
f : G → Y , since it follows from the metric differentiability of the bi-Lipschitz graph
map (x → (x, f(x))) into the �1-product G × Y . So, it is clear that we will consider
non-horizontal directions in order to show that the metric differentiability does not hold
in general.

The stratified group we choose to build our counterexample is the three-dimensional
Heisenberg group H, which can be linearly identified with R

3. We denote the elements
η, ξ ∈ H as ξ = (z, t), η = (w, τ), where z = (z1, z2), w = (w1, w2) belong to R

2. As
usual, on H we have the non-abelian group operation

(z, t)(w, τ) = (z + w, t + τ + 2(z1w2 − z2w1)).

In this case the non-horizontal directions are of the type (0, 0, s), with s �= 0. We consider
G : H → R, defined as G(z, t) = |z| ∨

√
|t|, where the symbol ‘∨’ denotes the ‘maximum’

operation. It is known that d(ξ, η) = G(ξ−1η), for ξ, η ∈ H, yields a left-invariant distance
in the Heisenberg group (see, for example, [6]). The dilations δr : H → H are defined
as δr((z, t)) = (rz, r2t). It is clear that these dilations scale homogeneously with the
distance d.

3. The counterexample

In this section we build a new metric ρ on H such that the identity map I : H → H is
a Lipschitz function with respect to the homogeneous distance d on the domain and the
metric ρ on the codomain, more precisely a 1-Lipschitz function. We will show that with
this distance the metric differentiability fails. We have seen that a homogeneous distance
in the Heisenberg group can be defined as d(ξ, η) = G(ξ−1η), where G(z, t) = |z| ∨

√
|t|.

We obtain our counterexample by replacing the square root function in the definition
of G with a concave map g : [0, +∞[ → [0, +∞[ such that the function S : H → R,
S(z, t) = |z| ∨ g(|t|) satisfies the following three claims.

(1) The function S : H → R yields a left-invariant metric on H which is defined as
ρ(ξ, η) = S(ξ−1η), ξ, η ∈ H.

(2) The map I : (H, d) → (H, ρ) is 1-Lipschitz.
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(3) If we consider the non-horizontal direction v = (0, 0, 1) ∈ H, then for any ζ ∈ H

there does not exist the limit of
ρ(I(ζδtv), I(ζ))

t
=

ρ(δtv, 0)
t

, as t → 0+;

in fact, we reach the maximal possible oscillation of the quotient:

lim sup
t→0+

ρ(I(ζδtv), I(ζ))
t

= 1, lim inf
t→0+

ρ(I(ζδtv), I(ζ))
t

= 0.

Claim (3) says in particular that the 1-Lipschitz map I : (H, d) → (H, ρ) is not metrically
differentiable at any point of H. The following two theorems will prove the existence of
a map g : [0, +∞[ → [0, +∞[ such that our claims are satisfied and in this way establish
the counterexample.

Theorem 3.1. Let κ : [0, +∞[ → [0, +∞[ be a convex, strictly increasing function
which is continuous at the origin and satisfies κ(0) = 0. Then, defining h(t) = κ(t) + t2,
the concave map g = h−1 yields a function S(z, t) = |z| ∨ g(|t|) which satisfies claims (1)
and (2).

Proof. The convexity and the continuity at the origin of κ imply κ(t)+κ(s) � κ(t+s)
for any t, s � 0, hence

h(t + s) � h(t) + h(s) + 2ts, for t, s � 0. (3.1)

The function h(t) = κ(t) + t2 is strictly monotone, thus g = h−1 is well defined and
S(z, t) = |z| ∨ g(|t|) also. The triangle inequality for the function ρ(ξ, η) = S(ξ−1η) is
equivalent to S(ξη) � S(ξ) + S(η), for every ξ, η ∈ H. We denote ξ = (z, t), η = (w, τ),
where z = (z1, z2) and w = (w1, w2), and then

S(ξη) = |z + w| ∨ g(|t + τ + 2(z1w2 − z2w1)|).

If |z + w| � g(|t + τ + 2(z1w2 − z2w1)|), then we clearly have

S(ξη) = |z + w| � |z| + |w| � S(ξ) + S(η).

So, our inequality holds if we prove that

g(|t + τ + 2(z1w2 − z2w1)|) � S(ξ) + S(η). (3.2)

We have

|t + τ + 2(z1w2 − z2w1)| � |t| + |τ | + 2|(z1, z2) · (w2, −w1)| � |t| + |τ | + 2|z| |w|

and |t| = h(g(|t|)) � h(S(ξ)), |τ | = h(g(|τ |)) � h(S(η)), hence

|t + τ + 2(z1w2 − z2w1)| � h(S(ξ)) + h(S(η)) + 2S(ξ)S(η).

The latter inequality and property (3.1) give |t + τ + 2(z1w2 − z2w1)| � h(S(ξ) + S(η)),
which corresponds to g(|t+ τ +2(z1w2 − z2w1)|) � S(ξ)+S(η). It remains to prove that
I : (H, d) → (H, ρ) is 1-Lipschitz. This fact is equivalent to showing that S � G, which
is true if g(|t|) �

√
t, that is |t| � h(

√
|t|) = κ(

√
t) + |t|. So the proof is complete. �
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Now, among all the maps κ which have the properties assumed in the preceding lemma,
we want to find a particular one which produces the oscillation required in claim (3). We
notice that if v = (0, 0, 1) ∈ H, then ρ(I(ζδtv), I(ζ)) = ρ(δtv, 0) = g(t2), so claim (3) is
equivalent to requiring the following:

lim sup
t→0+

g(t2)
t

= 1, lim inf
t→0+

g(t2)
t

= 0, (3.3)

where g = h−1 and h(t) = κ(t) + t2.

Theorem 3.2. There exists a strictly increasing convex map κ : [0, +∞[ → [0, +∞[,
continuous at the origin, with κ(0) = 0, such that, defining g = h−1, with h(t) = κ(t)+t2,
t � 0, the upper and lower limits as given in (3.3) hold.

Proof. It is easy to see that the requirements (3.3) for g are equivalent to the condi-
tions

lim sup
t→0+

κ(t)
t2

= +∞ and lim inf
t→0+

κ(t)
t2

= 0, (3.4)

on the corresponding function κ. To find such a κ, we use the following simple observation.
If we are given an affine, increasing function κ that vanishes at some positive number
t′ very close to zero, then the quotient κ(t)/t2 oscillates a lot. Indeed, if t declines from
1 towards t′, then the quotient first gets very large and then approaches zero. Stopping
shortly before t′, we can connect κ to another affine function with smaller but still positive
slope that vanishes much closer to zero. Thus, the considered quotient oscillates along
the new function even more and the combined function is convex.

To make this argument precise, we fix two positive sequences (εl) ⊂ ]0, 1[, (ml) ⊂
]0, +∞[, with εl → 0 and ml → +∞ as l → ∞. We consider an arbitrary number b0 > 0
and choose t0, a0 > 0 such that t0ε0 < b0, a0 < ε0t

2
0. Then we define κ0(t) = a0+b0(t−t0),

observing that κ0(t0)/t20 < ε0. We consider β1 = a0/t0 < t0ε0 < b0 and fix τ1 ∈ ]0, t0[
such that β1/τ1 > m1. We observe that

lim
b→β+

1

b

τ1
+

(β1 − b)t0
τ2
1

=
β1

τ1
> m1, lim

b→β+
1

t0(b − β1)
b2 = 0;

hence we can choose b1 ∈ ]β1, b0[ such that

b1

τ1
+

(β1 − b1)t0
τ2
1

> m1 and
t0(b1 − β1)

b2
1

<
1
2
. (3.5)

We now define κ1(t) = t0(β1 − b1) + b1t, so by the first inequality (3.5) we have
κ1(τ1)/τ2

1 > m1 and κ1(t0) = β1t0 = a0 = κ0(t0). We note that κ1(t̄) = 0 if and only
if t̄ = t0(b1 − β1)/b1 > 0. By the second inequality of (3.4) we get t̄ < 1

2b1, and since
κ1(τ1) > 0 we infer that t̄ < τ1. Thus, we can choose t1 ∈ ]t̄, min(τ1,

1
2b1)[ such that

κ1(t1) < ε1t
2
1 and t1ε1 < b1. Defining a1 = κ1(t1), we see that κ1(t) = a1 + b1(t − t1)
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and we have shown that for every b0, a0, t0, m1 > 0, with a0/t0 < b0, for each ε1 > 0 and
m1 ∈ R there exist t1 < τ1 in ]0, t0[ and a1 > 0, b1 ∈ ]0, b0[ such that

κ1(t0) = κ0(t0), κ1(τ1)/τ2
1 > m1,

κ1(t1)/t21 < ε1, κ1(t1)/t1 < b1 < b0, t1 < 1
2b1.

This procedure can be iterated by induction, obtaining for each j � 1 that there exists
τj , tj > 0, τj ∈ ]tj , tj−1[, and aj , bj > 0 such that the map κj(t) = aj + bj(t − tj) satisfies

κj(tj−1) = κj−1(tj−1), bj < bj−1,

κj(τj)/τ2
j > mj , κj(tj)/t2j < εj , tj < 2−jbj .

}
(3.6)

We define

κ(t) = κ0(t)1[t0,+∞[(t) +
∞∑

j=1

κj(t)1[tj ,tj−1[(t),

observing that tj < bj/2j < b0/2j → 0 as j → ∞, so by conditions (3.6), κ is a strictly
increasing convex map defined on ]0, +∞[. The convexity follows from the continuity and
from the fact that the sequence of slopes (bj) decreases as the intervals get close to the
origin. By the construction of κ we have that

lim inf
t→0+

κ(t)
t2

� lim sup
j→∞

κ(tj)
t2j

� lim
j→∞

εj = 0, (3.7)

lim sup
t→0+

κ(t)
t2

� lim inf
j→∞

κ(τj)
τ2
j

� lim
j→∞

mj = +∞. (3.8)

The sequence (κ(tj)) converges to zero as j → ∞ and κ is monotone, so κ(t) → 0 as
t → 0+ and κ is continuous at the origin. Thus, we have proved the existence of a
strictly increasing convex map κ : [0, +∞[ → [0, +∞[ which is continuous at the origin
with κ(0) = 0 and which satisfies (3.7) and (3.8). These two conditions are of course
just (3.4), so our proof is finished. �
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