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Abstract. The convection-driven MHD dynamo in a rotating spherical shell is simulated numer-
ically. Convection cells are regarded as a connecting link between the global and local electro-
magnetic processes. Local (in many cases, bipolar) magnetic structures are regularly produced
by convection cells. Dynamo regimes in “thick” and “thin” shells are discussed. In the first case,
the “general” magnetic field maintained by the dynamo has a sign-alternating dipolar compo-
nent, which varies cyclically, although not periodically. The local structures, as they disintegrate,
change into background fields, which drift toward the poles. From time to time, reversals of the
magnetic fields in the polar regions occur, as “new” background fields expel the “old” fields. In
the second case, the system settles down to a nearly stationary regime without polarity reversals.
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1. Introduction
Mean-field electrodynamics can satisfactorily describe the behaviour of large-scale mag-

netic fields of cosmic bodies, including polarity reversals and the propagation of dynamo
waves. However, such problems as the formation of local magnetic fields and their rela-
tionship to the global fields completely fall beyond the scope of mean-field theories. To
obtain a unified description of both the global and local processes, we need “determin-
istic” models that deal with structural elements of the velocity field and magnetic field
instead of the averaged parameters of the turbulent flow.

The idea that convection cells in the solar subphotospheric zone could be a connecting
link between global and local magnetic fields traces back to the mid-1960s. Tverskoy
(1966), based on a simple kinematic model, has shown that a flow with the topology of
a convection cell can amplify the magnetic field and produce bipolar magnetic configu-
rations. This approach was also used by Getling & Tverskoy (1971a, 1971b) to construct
a model of the global MHD dynamo in a rotating spherical shell, whose building blocks
are convection cells locally amplifying the magnetic field.

In recent years, the above property of the convection cells was also demonstrated in
numerical simulations by Getling (2001) for incompressible and by Dobler & Getling
(2004) for compressible fluids. As for the simulation of the dynamo process in stellar
convection zones on both global and local scales, the currently available computing re-
sources cannot ensure an adequate description of the whole range of scales of convective

† The work of A.V.G. was supported by the Deutscher Akademischer Austauschdienst, Euro-
pean Graduate College “Non-Equilibrium Phenomena and Phase Transitions in Complex Sys-
tems,” and Russian Foundation for Basic Research (project code 04-02-16580).

482

https://doi.org/10.1017/S1743921307000944 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921307000944


Global and local magnetic fields in a cellular dynamo 483

motions. However, reproducing convection cells of a specific characteristic size in a global
numerical model is quite possible.

Here, we numerically simulate the dynamo action of cellular magnetoconvection in a
rotating spherical shell. The bipolar local magnetic configurations produced by convection
cells can in principle be associated with local manifestation of solar activity, and their
subsequent evolution can lead to the regeneration of the global poloidal field.

2. Formulation of the problem and numerical technique
We consider a spherical shell of thickness d = ro − ri (where ro and ri are the outer

and inner radii of the shell; η = ri/ro is specified as a geometrical parameter of the
problem), which is filled with an electrically conducting fluid and rotates at a constant
angular velocity Ω about a fixed axis êz. We use a Boussinesq approximation with a
small quadratic term included in the temperature dependence of density and assume that
internal heat sources are uniformly distributed throughout the shell with a mass density
q. Both the quadratic term and internal heating favour the development of polygonal
convection cells similar to the cells observed on the Sun (instead of meridionally stretched,
banana-like convection rolls).

Under static conditions, in the absence of fluid motion, the heat-transfer equation yields
the following temperature distribution (from here on, we measure the radial coordinate
r in units of the shell thickness d):

TS = β0 −
β

2
d 2r2 +

β1

d

1
r
, β =

q

3χcp
, β1 =

ηd∆T

(1 − η)2
, (2.1)

where χ is the thermal diffusivity, cp is the specific heat at constant pressure, and β0 is
a constant. Generally, ∆T is related to the actual Ti − To as follows:

∆T = Ti − To −
1
2
βd 2 1 + η

1 − η
; (2.2)

it reduces to Ti−To in the case of q = 0. The shell is self-gravitating, and the gravitational
acceleration averaged over a spherical surface r = const can be written as g = −(γd)r,
where r is the position vector with respect to the centre of the sphere and r is its
length measured, as specified above, in units of d. In addition to d, the time d2/ν, the
temperature ν2/γαd4 (where α is the volumetric coefficient of thermal expansion), and
the magnetic induction ν(µρ)1/2/d are used as scales for the dimensionless description
of the problem, where ν denotes the kinematic viscosity of the fluid, ρ is its density, and
µ is its magnetic permeability. We denote the magnetic diffusivity as νm.

The physical parameters of the problem are two Rayleigh numbers [specified by the
internal heat sources q and by the externally specified temperature difference Ti−To; see
(2.2)], the Coriolis number, and the hydrodynamic and magnetic Prandtl numbers:

Ri =
αγβd 6

νχ
, Re =

αγ∆Td 4

νχ
, τ =

2Ωd 2

ν
, P =

ν

χ
, Pm =

ν

νm
. (2.3)

Since the velocity field u as well as the magnetic induction B are solenoidal vector
fields, they can be represented in terms of poloidal and toroidal components as

u = ∇× (∇v × r) + ∇w × r, B = ∇× (∇h × r) + ∇g × r. (2.4)

We assume stress-free boundaries with fixed temperatures. For the magnetic field,
electrically insulating boundaries are used, so that the poloidal component of the field
inside the shell must be matched to a potential fields outside the shell.
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Figure 1. Static profiles of the temperature and temperature gradient in the thick-shell model
with internal heating.

We use the pseudospectral method described by Tilgner & Busse (1997) and Tilgner
(1999), which is based on an expansion of all dependent variables in spherical harmonics
for the θ and ϕ dependences; in particular, for the magnetic scalars,

g =
1
r

∞∑

l=0

l∑

m=−l

Gm
l (r, t)Pm

l (θ) exp{imϕ}, h =
1
r
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l=0

l∑

m=−l

Hm
l (r, t)Pm

l (θ) exp{imϕ}

(2.5)

(with truncating the series at an appropriate upper bound for l), where Pm
l denotes the

associated Legendre functions. For the r dependence, truncated expansions in Chebyshev
polynomials are used. The equations are time-stepped by treating all nonlinear terms
explicitly with a second-order Adams–Bashforth scheme, whereas all linear terms are
included in an implicit Crank–Nicolson step.

In addition, we specify the fundamental (lowest nonzero) azimuthal number m0 as
a computational parameter. Thus, only the following azimuthal harmonics are really
considered:

1, e±im0ϕ, e±2im0ϕ, e±3im0ϕ . . . .

In other words, we impose an m0-fold symmetry in the ϕ direction. If m0 �= 1, this
reduces the computation time.

3. Results
We compare here two cases, which differ in the shell thickness by a factor of eight.

Accordingly, the sizes of the convection cells obtained in computations also differ greatly.
In the language of solar physics, the cells in the case of the “thick” shell resemble and
correspond in their size to the largest known cells of solar convection — the giant cells,
which fill the entire thickness of the convection zone. If computations are carried out for
the “thin” shell, the cells appear similar to those localized in a subsurface layer of the
Sun and can be associated with the supergranules.

3.1. “Thick” shell
First, we describe the case of a “thick” shell with internal heating, for which we assumed
η = 0.6, Ri = 3000, Re = −6000, τ = 10, P = 1, Pm = 30, and m0 = 5. A quadratic
term was present in the temperature dependence of density. The distributions of the
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Figure 2. Typical patterns of the radial velocity component on the sphere r = ri + 0.5 (left)
and of the radial magnetic-field component on the sphere r = ro (right) in the thick-shell model.
Positive values are represented by solid (red) contours, zero values by dotted (green) contours,
and negative values by dashed (blue) contours.
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Figure 3. Variation in the amplitude of the dipolar harmonic of the poloidal magnetic field,
H0

1 (r, t), at r = ri + 0.5 in the thick-shell model.

temperature TS(r) and its gradient dTS/dr for the corresponding static-equilibrium state
are shown in figure 1. Obviously, the outer part of the shell is convectively unstable and
the inner part is stable.

In this case, a very stable pattern of convection cells with a dodecahedral symmetry
can be observed (figure 2), and it is especially “stiff” because of the fivefold symme-
try imposed. The entire pattern drifts in the retrograde direction, in agreement with
theoretical predictions (Busse 2004).

It is interesting that the pattern of differential rotation obtained in our simulations
resembles the pattern actually observed on the Sun, although no anisotropic turbulence
is included in the model (this suggests that convection affected by rotation, even on large
scales, is in a sense similar to such turbulence).

The pattern of magnetic field is more involved than the flow. However, we have to note
some remarkable features of the computed dynamo process, which is cyclic, although not
quite regular.

First, local magnetic structures associated with convection cells emerge repeatedly
as bipolar magnetic regions (see figure 2). They change their configuration and finally
dissipate into much weaker remnant fields. In general outline, the pattern of bipolar
regions resembles the pattern of solar magnetic bipoles.

Second, the dipolar component of the global magnetic field exhibits polarity reversals
(see figure 3 for a graph of the amplitude of the dipole component, H0

1 ). The background
fields — remnants of the decaying local magnetic structures — drift toward the poles
and “expel” the “old” background fields present in the polar regions. Such poleward
drift of the new polarity, which replaces the old one, also resembles the process actually
observed on the Sun. The resulting polarity reversal can be directly observed if we follow
the magnetic-field pattern in the polar regions.
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Figure 4. Typical patterns of the radial velocity component on the sphere r = ri + 0.5 (left)
and of the radial magnetic-field component on the sphere r = ro (right) in the thin-shell model.
The same form of representation as in figure 2 is used.

Third, an interesting intermittent behaviour is exhibited by the variations in the full
magnetic energy of the system and in two particular fractions of the energy associated
with the axisymmetric and nonaxisymmetric parts of the dipolar components of the
magnetic field (i.e., those that are antisymmetric with respect to the equatorial plane).
The axisymmetric part is represented by the spherical harmonics with l odd and m = 0
[see (2.5)], and the nonaxisymmetric part by other harmonics with l + m odd. As can
be seen from the corresponding diagram (not presented here), the main peaks in the
graph of the total energy are alternately associated with increases in the energies of
the axisymmetric and the nonaxisymmetric part of the magnetic-field component with
a dipolar symmetry. To our knowledge, no counterpart to this phenomenon has been
revealed on the Sun.

3.2. “Thin” shell
Another cellular-dynamo regime corresponds to the case of a “thin” shell, for which
η = 0.95. Internal heating is again specified, with Ri = 3 and Re = 0, and a quadratic
term in the temperature dependence of density is also specified. The other parameters
are P = Pm = 1, τ = 10, and m0 = 2. The static temperature profile has a very small
curvature in this case, being visually indistinguishable from a linear, conductive profile.

Typical patterns of the velocity field and magnetic field observed in this case are shown
in figure 4. In this case, the “background” fields cannot be separated from the fields of
“active regions” (which pack the spherical surface very closely), and the evolution of the
fields reaches shortly a nearly stationary regime. No polarity reversals are observed, and
the energy varies little.

4. Discussion and conclusion
Thus, we have constructed relatively simple numerical models of the self-sustained pro-

cess of generation of interacting global and local magnetic fields. As in the hypothetical
solar dynamo, the generation is driven by thermal convection in combination with dif-
ferential rotation. Let us make some remarks concerning the possibility of reproducing,
in this way, the patterns actually observed on the Sun.

On the one hand, the “dodecahedral” pattern of large cells is highly stable and does
not undergo any changes other than the overall azimuthal drift. For this reason, the sites
of local amplification and structuring of the magnetic field are fixed to certain latitudes.
Therefore, the latitudinal drift of the generation zones of local fields is prohibited under
the conditions of the thick-shell model, and even if the model includes many important
dynamical properties of solar convection, it nevertheless will not reproduce such features
as, e.g., the butterfly diagram. The global magnetic field is, however, developed fairly
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well in this model and exhibits irregular variations, which include redistribution over
latitudes and sign reversals.

On the other hand, the thin-shell model clearly demonstrates the possibility of the
above-mentioned local processes on a much smaller scale. It might be speculated that, if
the large-scale seed field from which local fields originate should drift latitudinally and
exhibit cyclic variations, the pattern of local fields would visually exhibit these changes.
In our thin-shell model, however, the pattern of convection cells and local fields is fairly
uniform and the global field varies little, as can be judged by the slow and smooth
variations in the amplitudes of the lowest harmonics and in the energy associated with
the global magnetic field.

Thus, a step toward more realistic simulations of solar-type dynamos could likely be
made if at least two characteristic scales of convection are reproduced in the model, e.g.,
those present in the two models described here. In this case, the interaction of small-scale
cells with the large-scale magnetic field would appear as the control of the generation of
local magnetic fields by the global field.
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Discussion

Brandenburg: What fraction of the total magnetic energy is contained in the dipolar
component?

Getling: Typically, the energy associated with the axisymmetric part of the dipolar
component of the magnetic field ranges from one-fifth to one-third of the total magnetic
energy. The largest values of this fraction are reached at the energy maxima.

Tikhomolov: Did you include rotation? How does it influence the patterns in magnetic
field and convection cells?

Getling: Rotation is here an essential ingredient of the dynamo mechanism. It should,
however, be kept in mind that the rotation of the whole pattern, which is so pronounced
in the movie illustrating the case of the thick shell, is a retrograde drift of the pattern
rather than the rotation of the system itself. The latter was subtracted, so that the movie
represents the pattern in the frame of reference rotating with the system.
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