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Abstract

In this paper a homotopy co-momentum map (à la Callies, Frégier, Rogers and Zambon) transgressing
to the standard hydrodynamical co-momentum map of Arnol’d, Marsden, Weinstein and others is
constructed and then generalized to a special class of Riemannian manifolds. Also, a covariant phase
space interpretation of the coadjoint orbits associated to the Euler evolution for perfect fluids, and in
particular of Brylinski’s manifold of smooth oriented knots, is discussed. As an application of the above
homotopy co-momentum map, a reinterpretation of the (Massey) higher-order linking numbers in terms
of conserved quantities within the multisymplectic framework is provided and knot-theoretic analogues
of first integrals in involution are determined.
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1. Introduction

In this paper we discuss some applications of multisymplectic techniques in a hydrody-
namical context. The possibility of applying symplectic techniques therein ultimately
comes from Arnol’d’s pioneering work culminating in the geometrization of fluid
mechanics [1–3, 32]. In particular, in this connection we may mention the paper [40],
with its symplectic reinterpretation [36–38], and the general portrait depicted in [6].
Here we wish to apply some recently emerged concepts in multisymplectic geometry
(mostly building on [7, 45, 46]) and construct an explicit homotopy co-momentum
map [7] in a hydrodynamical setting, leading to a multisymplectic interpretation
of the so-called higher-order linking numbers, viewed à la Massey [23, 39, 48].
The construction is generalized to cover connected compact oriented Riemannian
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manifolds having vanishing intermediate de Rham groups. Moreover, a covariant
phase space interpretation of the multisymplectic setting is outlined.

We make clear from the outset that our constructions, together with the covariant
phase space portrait, do not adhere to the standard multisymplectic approach to
continuum mechanics set forth, for example, in [20, 33] but they are based instead
on the peculiar structure of an ideal fluid, whose configuration space is the ‘Lie group’
of diffeomorphisms preserving a volume form, and the latter is directly taken as a
multisymplectic form [8].

The layout of the paper is as follows. First, in Section 2, we give an example
of homotopy co-momentum map in fluid mechanics—in the sense of Callies et al.
[7]—transgressing to Brylinski’s symplectic structure on loop spaces and descending,
in turn, to the manifold of smooth oriented knots; see [4, 6] and below for precise
definitions. We briefly discuss the (non)equivariance of the above construction with
respect to the group of volume-preserving diffeomorphisms of 3-space and we outline
a generalization thereof in a Riemannian framework, signalling potential topological
obstructions. Moreover, covariant phase space aspects are analysed. In Section 3 we
prepare the ground for later applications by depicting a hydrodynamical multisym-
plectic portrait of basic knot-theoretic objects, used, in Section 4, to reinterpret the
Massey higher-order linking numbers in multisymplectic terms: the 1-forms appearing
in the hierarchical Massey construction (viewed, in turn, differential-geometrically
à la Chen) provide an example of first integrals in involution in a multisymplectic
framework. The last section is devoted to gathering together the conclusions and to
pointing out possible directions for further research. Appropriate background material
is provided within the various sections in order to ease readability.

This paper is an improved version of part of the preprint [34].

2. Multisymplectic geometry and hydrodynamics of perfect fluids

In the present section we freely use basic material on symplectic and multisymplec-
tic geometry tailored to our subsequent needs, prominently referring, for additional
details, to [37, 48, 49] for the former and to [45, 46] for the latter. For general
background on symplectic geometry and (co-)momentum maps we quote, among
others [1, 3, 21].

2.1. Tools in multisymplectic geometry. All our objects are smooth, unless differ-
ently specified. A (finite-dimensional) multisymplectic manifold (M,ω) is a manifold
(connected, for simplicity) equipped with a closed (n + 1)-form ω (called a multisym-
plectic form or n-plectic form) such that the map α, given by

X(M) � ξ �→ α(ξ) := ιξω ∈ Λn(M),

which sends vector fields to n-forms (via contraction), is injective [8]. Dropping the
last condition leads to the concept of pre-n-plectic form. The n = 1 case retrieves
(pre)symplectic manifolds.
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[3] A hydrodynamical homotopy co-momentum map 337

In the multisymplectic context, the generalization of the (co-)momentum maps of
the symplectic case leads to the more refined concept of homotopy co-momentum
map, presently to be succinctly reviewed. One first introduces the so-called Roger’s
Lie n-algebra of observables L∞(M,ω) [42]. Referring to [7, 16, 42, 45, 46] for a full
coverage of the relevant apparatus, not needed to its full extent here, we just point out
that the latter is a graded vector space L whose degree i pieces read

Λn−1
Ham(M), i = 0, Λn−1−i(M), i = 1, 2, . . . , n − 1,

together with suitable multilinear maps denoted collectively by �. The suffix ‘Ham’
refers to the Hamiltonian (n − 1)-forms, that is, those forms H such that

ιXω + dH = α(X) + dH = 0

for a vector field X preserving ω (that is, LXω = 0), called, in turn, a Hamiltonian
vector field pertaining to H.

A form β is said to be strictly (respectively, globally; respectively, locally) conserved
by an ω-preserving vector field X if LXβ = 0 (respectively, LXβ is exact; respectively,
LXβ is closed). Cartan’s formula immediately shows that closed forms are globally
conserved; indeed, for such a form,

LXβ = dιXβ + ιXdβ = dιXβ.

Recall, from [46], that a homotopy co-momentum map is an L∞-algebra morphism
stemming from what is called an infinitesimal action of g on M (with g being the Lie
algebra of a generic Lie group G, acting on M by ω-preserving vector fields),

( f ) : g→ L∞(M,ω),

given explicitly by a sequence of linear maps

( f ) = { fi : Λig→ Λn−i(M) | 0 ≤ i ≤ n + 1}

fulfilling f0 = fn+1 = 0 (we have tacitly set Λ−1(M) = 0) and

Im f1 ∈ Λ1
Ham(M) (2-1)

together with (for p ∈ Λk(g))

− fk−1(∂p) = d fk(p) + ς(k)ι(vp)ω (2-2)

(k = 1, . . . , n + 1). We explain the notation. If p = ξ1 ∧ ξ2 ∧ · · · ∧ ξk, then vp = v1 ∧
v2 ∧ · · · ∧ vk where vi ≡ vξi are the fundamental vector fields associated to the action
of G on M. One sets ι(vp)ω = ι(vk) · · · ι(v1)ω, ς(k) := −(−1)k(k+1)/2 and defines ∂ ≡ ∂k :
Λkg→ Λk−1g via

∂(ξ1 ∧ ξ2 ∧ · · · ∧ ξk) :=
∑

1≤i<j≤k

(−1)i+j [ξi, ξj] ∧ ξ1 ∧ · · · ξ̂i ∧ · · · ∧ ξ̂j ∧ · · · ξk

(with ˆ denoting deletion as usual and with ∂0 = 0; one has ∂2 = 0).
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Formula (2-2) tells us that the closed forms

μk := fk−1(∂p) + ς(k)ι(vp)ω (2-3)

must actually be exact, with potential − fk(p). Closure can be quickly ascertained as
follows (in view of Lemma 2.16 in [46] and keeping in mind that dω = 0):

d( fk−1(∂p) + ς(k)ι(vp)ω) = ς(k)(−1)kι(v∂p)ω − ς(k − 1)ι(v∂p)ω

≡ [−ς(k + 1) − ς(k − 1)]ι(v∂p)ω

= 0,

since in general ς(k)ς(k + 2) = −1. Notice that the special case k = n + 1 asserts that
the function μn+1(·) is constant, and its value is fixed by the condition

fn(∂p) + ς(n + 1)ι(vp)ω = 0.

This can be rephrased, upon resorting to [7, Section 9] (we use a different notation),
by asserting that the g-(n + 1)-cocycle

cx(p = ξ1 ∧ ξ2 ∧ · · · ∧ ξn+1) = ιvpω |x
in the Chevalley–Eilenberg cochain (CE) complex CE(g) ought to be a boundary,

cx = δCE(b),

for a fixed but generic point x ∈ M (the class [cx] being in general independent of x ∈ M
[7, Cor. 9.3]); the operator δCE is the CE-differential defined by duality, (δCEφ)(p) :=
φ(∂p), φ ∈ CE(g), and extended by linearity. Independence of x is expressed via the
formula [7, Prop. 9.1]

cx′ − cx = δCE(b), (2-4)

where

b(v1 ∧ v2 ∧ · · · ∧ vn) := −ς(n + 1)
∫
γ

ι(v1 ∧ v2 ∧ · · · ∧ vn)ω

and γ is a path connecting x to x′ (recall that M is assumed to be connected).
We resume the above discussion in Section 2.3.

2.2. The hydrodynamical Poisson bracket. In the present subsection we briefly
review, for motivation and further applications, the symplectic geometrical portrait
underlying the theory of perfect fluids, in its simplest instance. We denote by g the
(infinite-dimensional) Lie subalgebra of X(R3) consisting of the divergence-free vector
fields on R3 (the ‘Lie algebra’ of the ‘Lie group’ G = sDiff (R3) of volume-preserving
diffeomorphisms of R3. As is often done, we gloss over analytic subtleties; see,
for example, [2, 3, 13, 29] for more information). We just recall here that G is a
regular Lie group in the sense of Kriegl and Michor [29, 38.4] and that its associated
exponential map is not even locally surjective (a quite general phenomenon). We also
tacitly assume that our fields rapidly vanish at infinity, so that convergence problems
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are avoided and boundary terms are absent. The ‘hydrodynamical’ Lie bracket,
given by [ξ1, ξ2] = curl(ξ1 × ξ2) and equalling minus the standard one, is employed
throughout.

Also, following [3], for example, we consider the so-called regular dual g∗ of g
consisting of all 1-forms modulo exact 1-forms,

g∗ := Λ1(R3)/dΛ0(R3),

together with the standard pairing (ω ∈ g∗, ξ ∈ g)

(ω, ξ) =
∫
〈ω(x), ξ(x)〉 d3x.

Nevertheless, we feel free to use suitable genuine distributional elements as well
(i.e. currents in the sense of de Rham, [12]) from the full topological dual (without
introducing new notation for the latter). Everything is clear from the context.

The (regular) dual g∗ is naturally interpreted as a Poisson manifold with respect
to the hydrodynamical Poisson bracket (Arnol’d–Marsden-Weinstein Lie–Poisson
structure),

{F, G}([v]) =
∫
R3

〈
v,
[
δF
δv

,
δG
δv

]〉
d3x,

with v ∈ g (velocity field), w := curl v its vorticity, with [v] denoting the ‘gauge’ class
of v: [v] = {v + ∇ f }; see, for example, [3, 30, 32, 36–38, 49]. The Euler evolution, in
its so-called vorticity form

∂w
∂t
+ [w, v] = 0,

is volume-preserving and also preserves the symplectic leaves of g∗ given
by the G-coadjoint orbits O[v] ≡ Ow. The symplectic structure on Ow is the
Kirillov–Kostant–Souriau (KKS) one [27, 28, 47]:

ΩKKS([v])(ad∗b([v]), ad∗c([v])) =
∫
R3
〈v, [b, c]〉 d3x =

∫
R3
〈w, b × c〉 d3x

with the coadjoint action reading, explicitly, up to a gradient (not influencing
calculations),

ad∗b(v) = −w × b (≡ ad∗b([v])).

The Hamiltonian algebra Λ pertaining to Ow consists of the so-called Rasetti–Regge
currents originally introduced in [40] and further developed in [6, 36–38, 49]):

λb(v) =
∫
〈b, v〉 =

∫
〈B, w〉

(with curl B = b), fulfilling, for b, c ∈ g,

{λb, λc} = λ[b,c],
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that is, the map

g � b �→ λb ∈ Λ
is a G-equivariant co-momentum map (observe, in particular, that δλb/δv = b).

The preceding portrait carries through to the singular vorticity case, in particular
when the vorticity field is δ-like and concentrated on a two-dimensional patch,
filament or loop. Dealing with the latter case, we ultimately retrieve the Brylinski
manifold Y consisting of smooth oriented knots (smooth embedded loops modulo
orientation-preserving reparametrizations) together with its symplectic structure ΩY

and the original Rasetti–Regge currents (see [4, 6] for more details):

ΩY (·, ·)(γ) :=
∫
γ

ν(γ̇, ·, ·) =
∫
γ

〈γ̇, · × ·〉, λb(γ) :=
∫
γ

B. (2-5)

Indeed, recall that, given a volume form ν on a three-dimensional M, one gets, by
transgression, a 2-form Ω on LM via the formula

Ω = ιV

∫
S1

ev∗(ν) (2-6)

where ev : LM × S1 → M given by ev(γ, t) := γ(t) is the evaluation map of a loop γ ∈
LM at a point t ∈ S1 ≡ [0, 1]/˜ (endpoint identification), and ιV denotes contraction
with the vector field on LM given by V |γ= γ̇. More explicitly, given tangent vectors u
and v at γ, the symplectic form reads (cf. [6], formula 6-8, p. 238):

Ωγ(u, v) =
∫ 1

0
νγ(t)(γ̇(t), u(t), v(t)) dt (2-7)

(where we set γ̇ = dγ/dt). The above construction carries through to Y . In this case, the
coadjoint orbits are labelled by the equivalence types of knots (via ambient isotopies),
by virtue of a result of Brylinski; see [6].

2.3. A hydrodynamical homotopy co-momentum map. In this subsection
we elaborate on the previous discussion by introducing an explicit homotopy
co-momentum map, departing from the standard setting since our group G = sDiff (R3)
is infinite-dimensional. We start from the observation [8] that the volume form in R3,
ν := dx ∧ dy ∧ dz, can be interpreted as a multisymplectic form: in this case the map α
is bijective (in particular, injective). In coordinates, if ξ = (ξi), then

α(ξ) = ιξν = ξ
1dy ∧ dz + ξ2dz ∧ dx + ξ3dx ∧ dy.

Upon introducing the Hodge ∗ relative to the standard Euclidean metric and the
associated ‘musical isomorphisms’, we have (ξ ∈ X(R3), β ∈ Λ2(R3))

α(ξ) = ∗(ξ�), α−1(β) = (∗β)�.

Then we have, for ξ ∈ g (via Cartan’s formula),

0 = Lξν = dιξν + ιξdν = dιξν = div(ξ)ν
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and thus we have an isomorphism g � Z2(R3) (closed 2-forms onR3). This is important
in the sequel. The above also expresses the fact that ν is a strictly conserved 3-form.

We now give the promised example of homotopy co-momentum map emerging in
fluid dynamics. Define, for b ∈ g,

f1(b) := −B,

where B = B� and B is again a vector potential for b, that is, curl B = b, chosen, for
example, in such a way that div B = 0 (Coulomb gauge).

It can immediately be checked that

d f1(b) + ιb ν = d f1(b) + α(b) = 0. (2-8)

The above formula tells us that f1(b) is a Hamiltonian 1-form for b (and, conversely,
that the vector field b is a Hamiltonian vector field pertaining to f1(b), in accordance
with (2-1) in Section 2.1). Any f1(b) above is also a Noether current in the sense of
Gotay et al. [20]. In order to complete the definition of a homotopy co-momentum
map, we just have to find f2 satisfying formula (2-2) above. Indeed, for k = 1 we
retrieve (2-8). The case k = 2 reads

− f1(∂p) = d f2(p) + ιvpν. (2-9)

For ξi ∈ g (i = 1, 2), let p = ξ1 ∧ ξ2, so ∂p = −[ξ1, ξ2].
Then one checks (using, for example, [46, Lemma 2.18], or the preceding subsec-

tion) that

d f1([ξ1, ξ2]) = d(ιξ1∧ξ2ν) = −ι[ξ1,ξ2]ν

(recall that ιξ1∧ξ2ν = ν(ξ1, ξ2, ·)). Therefore, the 1-form μ2(ξ1, ξ2) := f1([ξ1, ξ2]) −
ιξ1∧ξ2ν is closed, hence exact, and (2-9) tells us that f2(p) is a potential for it and,
as such, is determined up to a constant c(ξ1, ξ2). In order to prove that we have a bona
fide co-momentum map, we must have, in particular, for q = ξ1 ∧ ξ2 ∧ ξ3, the explicit
formula

f2(∂q) = ν(ξ1, ξ2, ξ3) (2-10)

which is a priori true up to a constant c(ξ1, ξ2, ξ3) by virtue of (2-9) and [7, Lemma
9.2]. However, the constant is in fact zero since ν(ξ1, ξ2, ξ3) vanishes at infinity, and
the same is true for f2(∂q) upon solving the related Poisson equation

Δ f2(∂q) = Δν(ξ1, ξ2, ξ3)

(obtained via a straightforward computation; notice that we use the Riemannian
Laplacian, which is minus the standard one).

An alternative derivation uses x-independence of the class [cx]. Upon taking S3 =

R
3 ∪ {∞} , we have c∞ = 0, hence cx = δCE(b), with

b = −
∫
γ∞

ι(v1 ∧ v2)ν
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(γ∞ being a path connecting x to ∞, cf. (2-3): the expression is meaningful in
view of the assumed decay at infinity of our objects). This is equivalent to the
previous equation (2-10). The function f2 is the given by the solution of a Poisson
equation,

f2 = Δ
−1δμ2

(in the present case δ = − ∗ d∗). This completes the construction of the required
homotopy co-momentum map.

We define Poisson brackets via the expression

{ f1(b), f1(c)}(·) := ιcιbν(·) = ν(b, c, ·) (2-11)

which is employed below and in Section 4.
We may also naturally ask the question whether the above map ( f ) is (infinitesi-

mally) G-equivariant, in the sense of [46]: in particular, one should check the validity
of the formula

Lξ f1(b) = f1([ξ, b])

for all ξ, b ∈ g. However, working out the two sides of the above equation easily yields,
in particular, for ξ = b, the equality

d B(b) = 0,

that is, in vector terms 〈B, b〉 = c = 0 since b is compactly supported. However, if
one considers a flux tube with nonzero helicity

∫
〈B, b〉 (see [4, 35, 48] and below

for further elucidation of this train of concepts), we get a contradiction. Notice that
the argument does not depend on the choice of B. The lack of G-equivariance is not
surprising, since our construction involves Riemannian geometric features. We may
now recap the preceding discussion via the following theorem.

THEOREM 2.1.

(i) The map ( f ) previously given through the above fj : Λjg→ Λ2−j(R3), fulfilling
(2-8), (2-5), and (2-6), yields a homotopy co-momentum map; explicitly,

f1 = f1(b) := −B, ( f1 = � ◦ curl−1); f2 = Δ
−1δμ2.

(ii) The above homotopy co-momentum map transgresses, via the evaluation map
ev : LR3 × R � (γ, t) �→ γ(t) ∈ R3, to the hydrodynamical co-momentum map of
Arnol’d, Marsden and Weinstein, defined on the Brylinski manifold Y of oriented
knots (cf. Section 2.2).

(iii) Moreover, we have the formula

{ f1(b), f1(c)} − f1([b, c]) = −d f2(b ∧ c). (2-12)

(iv) The map ( f ) is not G-equivariant in the sense of Ryvkin–Wurzbacher–Zambon
[46].
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PROOF. We need only address point (ii): observe that the relevant piece of the
homotopy co-momentum map is f1 which, under transgression, becomes

μb = −
∫
γ

B = −λb

that is, up to sign, the Rasetti–Regge current λb pertaining to b ∈ g independent of the
choice of B. This is in accordance with the general result in [46] asserting that, roughly
speaking, homotopy co-momentum maps transgress to homotopy co-momentum maps
on loop (and even mapping) spaces. Actually, the ansatz for the f1 term was precisely
motivated by this phenomenon.

Formula (2-12) in (iii) is just a rewriting of (2-9). �

2.4. A generalization to Riemannian manifolds. We should notice that a hydrody-
namically flavoured homotopy co-momentum map can be similarly construed also for
an (n + 1)-dimensional connected, compact, orientable Riemannian manifold (M, g),
upon taking its Riemannian volume form ν as a multisymplectic form and again the
group G, consisting of all volume-preserving diffeomorphisms, as symmetry group.
The divergence of a vector field X is defined via div X := ∗d∗X� = −δX�; the operator
∗ is the Riemannian Hodge star (e.g. [29, 51]). We can indeed prove the following
result.

THEOREM 2.2. Let (M, g) be a connected compact oriented Riemannian manifold
of dimension n + 1, n ≥ 1, with multisymplectic form ν given by its Riemannian
volume form, and such that the de Rham cohomology groups Hk

dR(M) vanish for
k = 1, 2, . . . n − 1 (one necessarily has H0

dR(M) = Hn+1
dR (M) = R). Let g0 be the Lie

subalgebra of g consisting of divergence-free vector fields vanishing at a point x0 ∈ M.
Then there exists an associated family of g0-homotopy co-momentum maps.

PROOF. As we have already noticed in general, the defining formula triggers a
recursive construction starting from f1, up to topological obstructions (we have a
sequence of closed forms, which must actually be exact, together with the constraint
fn(∂q) = (−1)(n+1)(n+2)/2ν(ξ1, . . . ξn+1), with q = ξ1 ∧ · · · ξn+1, for the constant function
μn+1(·)). In the present case, a natural candidate for the (n − 1)-form f1 can be readily
manufactured via Hodge theory (see, for example, [51]):

f1(ξ) := −Δ−1δ(ιξν) (2-13)

(the direct generalization of the preceding case) after imposing δ f1(ξ) = 0 (the
analogue of the Coulomb gauge condition), provided one can safely invert the Hodge
Laplacian Δ = dδ + δd, this being the case if Hn−1

dR (M) = 0. One can of course alter
the above definition by addition of an exact form. The topological assumptions made
ensure that the entire procedure goes through unimpeded due to the formula

d fk(ξ1 ∧ · · · ∧ ξk) = μk(ξ1 ∧ · · · ∧ ξk), k = 2, 3, . . . n
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(see Equation (2-3)). Finally, one needs to check that

fn(∂(ξ1 ∧ · · · ∧ ξn+1)) = −ς(n + 1)ι(ξ1 ∧ · · · ∧ ξn+1)ν, (2-14)

but this is true once we observe that, since cx0 = 0, the class [cx] = 0 (cf. Section 2.1).
Therefore, we eventually have the compact formulae

f1(ξ) := −Δ−1δ(ιξν); fk = Δ
−1δμk, k = 2, . . . , n. �

REMARK 2.3. We notice that the above result holds, in particular, for homology
spheres such as the celebrated Poincaré dodecahedral space. We point out that the case
in which the intermediate homology groups are at most torsion (hence not detectable
by de Rham techniques) is also encompassed: this is, for example, the case of lens
spaces. Notice that G-equivariance cannot be expected a priori. Also notice that one
could restrict to the natural symmetry group provided by the isometries of (M, g). See,
for example, [44] for a general discussion of topological constraints to existence and
uniqueness of homotopy co-momentum maps.

2.5. On weak homotopy moment maps. We should observe that any homotopy
co-momentum map induces a weak homotopy moment map (see, for example, [24, 31]):
if in (2-2) we set ∂p = 0, we get

d fk(p) + ς(k)ι(vp)ω = 0 (2-15)

for k = 1, . . . , n, which is the very property defining a weak homotopy moment map.
The paper [24] (Theorems 1.2–6) shows that such maps allow for direct generalizations
of the classical momentum map obstruction results. It would be interesting to adapt this
setting to our infinite-dimensional group situation. For the time being we just observe
that, in Theorem 2.2 above, upon relaxing the condition that our fields vanish at a
point, we get a weak homotopy moment map which, in general, is not a homotopy
co-momentum map since we drop condition (2-14).

2.6. Covariant phase space aspects. We now propose a multisymplectic interpre-
tation of the hydrodynamical bracket which ties in neatly with the topics discussed in
previous sections, via covariant phase space ideas [11, 15, 20, 26, 52], but without
literally following the standard recipe, as we see shortly.

Starting with a four-dimensional space-time M = R3 × R� (x, y, z, t), define the
obvious trivial bundle

E = M × R3 → M
and interpret Σ := R3 � (x, y, z) as a Cauchy ‘submanifold’ of M.

Any divergence-free vector field can be viewed as an initial condition v(x, 0) for
the (volume-preserving) Euler evolution (at least for small times, but as we previously
said, we do not insist on refined analytical nuances) v(x, t), yielding a section of E.
Using the 3-volume form ν, orienting fibres (notice that, when viewed on E, it is only
pre-2-plectic, which is to say closed but degenerate), and observing that we can set

J1v := w (:= curl v)
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(the natural ‘covariant; jetification of the section v—to be distinguished from the
standard jetification j1—if we wish to look at v as the vector space counterpart of a
connection 1-form, yielding a section of the jet bundle J1E → E), we can rewrite the
hydrodynamical bracket, mimicking [15], as

{F, G}([v]) =
∫
Σ=R3

〈
w,
δF
δv
× δG
δv

〉
d3x =

∫
Σ=R3
ν
(
J1v,

δF
δv

,
δG
δv

)
d3x =: (�)

since the variations δF/δv and δG/δv are vertical and divergence-free: δF/δv =
curl (δF/δw). Taking again b = curl B etc. and finally setting F = λ• (see, for example,
[37, 49]), we see that the expression (�) can be manipulated to yield the expressive
layout (with slight abuse of language)

(�) =
∫
Σ

(J1∗ν)(v, B, C) d3x =
∫
Σ

ν(J1v,J1B,J1C) d3x =
∫
Σ

ν(w, b, c) d3x

(in full adherence with the discussion in Section 2.2). The same portrait can be
painted, mutatis mutandis, for the singular case. Ultimately, we reach the following
conclusion.

THEOREM 2.4. (i) The Poisson manifold g∗ can be naturally be interpreted as a
(generalized) covariant phase space pertaining to the volume-preserving Euler evo-
lution: the latter indeed preserves the symplectic leaves of g∗ given by the G-coadjoint
orbits O[v].

(ii) The above construction reproduces the symplectic structure of Y upon taking
singular vorticities, concentrated on a smooth oriented knot: the covariant phase space
picture is fully retrieved upon passing to a two-dimensional space-time S1 × R�
(λ, t), with λ ∈ S1 ≡ Σ being a knot parameter (and staying of course with the same ν).

REMARK 2.5. We stress the fact that we did not literally follow the standard ‘mul-
tisymplectic to covariant’ recipe developed in [15]. In fact the multisymplectic
manifold we consider is not the one prescribed by [20] since we directly took
the standard volume form ν on R3 as a 2-plectic structure (or pre-2-plectic when
pulled back to E); cf. [8]. This neatly matches Brylinski’s theory and fits with the
stance long advocated, among others, by Rasetti and Regge and by Goldin (see also,
for example, [17–19, 40, 49]), pinpointing the special and ubiquitous role played
by the group G. Another motivation for considering ν is its pivotal role in the
formulation of conservation theorems (see [46]). We pursue this aspect in what
follows.

REMARK 2.6. In line with Remark 2.5, notice that the above description can, in
principle, be generalized to any volume form (on an orientable manifold), with its
attached group G. The covariant phase space picture should basically persist in the
sense that one might construct, in greater generality, an n-plectic structure out of
an (n + 1)-plectic one via an expression akin to (�). The (non-)G-equivariance issue
should be relevant in this context.
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Li

Ti

FIGURE 1. Tubular neighbourhoods.

3. A Hamiltonian 1-form for links

We may specialize the considerations in Section 2.3 to the case of links. The basic
and quite natural idea is to associate to a knot (or link) a perfect fluid whose vorticity
is concentrated thereon (cf. the preceding discussion on the Brylinski manifold). As
general references for knot theory we quote, among others, [43], together with [5] for
the algebraic-topological tools employed here. Recall that in general the Poincaré dual
[ηS] ∈ Hn−k(M) of a k-dimensional closed oriented submanifold S of an n-dimensional
manifold M is characterized by the property

∫
M
ω ∧ ηS =

∫
S

i∗ω

for any closed, compactly supported k-form ω on M (i : S ↪→ M being the inclusion
map). We shall view Poincaré duals as either genuine forms or currents in the sense of
de Rham [12].

Building on [4, 39, 48], let L =
⋃n

i=1 Li be an oriented link in R3 with components
Li, i = 1, . . . , n (required to be trivial knots) and let ωLi denote the Poincaré (or Thom)
dual (class) associated to Li: they are 2-forms localized in a cross-section of a suitable
tubular neighbourhood Ti around Li, with total fibre integral equal to one (see [5]), or,
as currents, 2-forms which are δ-like on Li (see Figure 1).

Then take, for each i = 1, 2, . . . , n, a 1-form vLi such that dvLi = ωLi , that is, vLi :=
ωai is the Poincaré dual (class) of a disc ai bounding Li (a Seifert surface for the trivial
knot Li). Specifically,

∂ai = Li, dvLi = dωai = ωLi = ω∂ai ;
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v

FIGURE 2. Poincaré duals.

see Figure 2. We list, for the sake of clarity, (de Rham) cohomology and relative
homology groups of S3 \ L with real coefficients, respectively:

H0(S3 \ L) � H3(S3, L) � R,

H1(S3 \ L) � H2(S3, L) � Rn,

H2(S3 \ L) � H1(S3, L) � Rn−1,

H3(S3 \ L) � H0(S3, L) � 0.

The (de Rham classes of) the forms (or currents) vLi in fact generate the cohomology
group H1(S3 \ L,R) (or, better, that of S3 \ T , with T =

⋃n
i=1 Ti). Their homological

counterparts are given by the (classes of) the discs ai. One can also interpret the
other groups: in particular, elements in H1(S3, L) can be represented by classes [γij]
of (smooth) paths γij connecting two components Li and Lj, subject to the relation
[γij] + [γjk] = [γik].

Now set

ωL :=
n∑

i=1

ωLi

(the vorticity 2-form for the link L) together with its velocity 1-form

vL =

n∑
i=1

vLi , dvL = ωL.

PROPOSITION 3.1. The position

H = vL

produces a Hamiltonian 1-form for links.

PROOF. The proof is straightforward. Indeed, for each component Li, the Hamiltonian
vector field ξLi for vLi ≡ vi is minus the vector field associated to the closed 2-form ωLi

(via the map α of Section 2). Explicitly, one has (setting ξL =
∑n

i=1 ξLi )

dvL + ιξLν = 0. (3-1)

�
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REMARK 3.2. Inspection of the very geometry of Poincaré duality shows that the
velocity 1-forms vi correspond (upon approximation of the associated Euler equation)
to the so-called linear induction approximation or binormal evolution of the ‘vortex
ring’ Li (‘orthogonal’ to the discs ai—an easy depiction; cf. Figure 2); see [25] for
more information. Formula (3-1) is the prototype for the calculations in Section 4.

Let us define the Chern–Simons (helicity) 3-form:

CS(L) := vL ∧ ωL.

Integration of CS(L) over R3 or S3 yields an integerH(L), the helicity of L:∫
S3

CS(L) =: H(L) =
n∑

i,j=1

�(i, j),

with �(i, j) = �(j, i) being the Gauss linking number of components Li and Lj if i � j
and �(j, j) the framing of Lj, equal to �(Lj, L′j) with L′j being a section of the normal
bundle of Lj; see, for example, [35, 41, 43, 48] and below. A regular projection of a
link onto a plane produces a natural framing called the blackboard framing.

On a Riemannian 3-manifold M, the helicity H pertaining to a perfect fluid with
velocity v and vorticity w = curl v is given (in notation as in the previous sections) by

H =
∫

M
〈v, w〉 =

∫
M

v ∧ dv

(the last expression being the differential form counterpart). Concretely, the helicity
can be viewed as a measure of the mutual knotting of two generic flow lines; see
[3, 35–37, 48] for a more extensive discussion. We used this concept in Section 2.3 to
prove the nonequivariance of the hydrodynamical homotopy co-momentum map.

4. A multisymplectic interpretation of Massey products

In this section we resort to the techniques developed in Sections 2 and 3 above and
propose a reformulation of the so-called higher-order linking numbers in multisym-
plectic terms. Ordinary and higher-order linking numbers provide a quite useful tool
for the investigation of Brunnian phenomena in knot theory: recall that a link is almost
trivial or Brunnian if upon removing any component therefrom one gets a trivial
link. They can be defined recursively in terms of Massey products, or equivalently,
Milnor invariants, by the celebrated Turaev–Porter theorem (see [14, 23, 39, 48]). We
review, briefly and quite concretely, the basic steps of the Massey procedure, read
differential-geometrically as in [23, 39, 48], presenting at the same time our novel
multisymplectic interpretation thereof.

Let L be an oriented link with three or more components Lj. The cohomological
reinterpretation of the ordinary linking number �(1, 2) of two components L1 and L2,
say, starts from consideration of the closed 2-form

Ω12 := v1 ∧ v2
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yielding the (integral) de Rham class

〈L1, L2〉 := [Ω12] ∈ H2(S3 \ L).

The linking number �(1, 2) is nonzero precisely when 〈L1, L2〉, which in H1(S3, L)
equals �(1, 2)[γ12], is nontrivial. If the latter class vanishes (that is, Ω12 is exact), we
have

dv12 + v1 ∧ v2 = dv12 + Ω12 = 0 (4-1)
for some 1-form v12. Now, assuming that all the ordinary mutual linking numbers of
the components under consideration vanish, one can manufacture the closed 2-form
(Massey product)

Ω123 = v1 ∧ v23 + v12 ∧ v3

yielding a third-order linking number (as a class):

〈L1, L2, L3〉 := [Ω123] ∈ H2(S3 \ L).

If the latter class vanishes, we find a 1-form v123 such that

dv123 + v1 ∧ v23 + v12 ∧ v3 = dv123 + Ω123 = 0. (4-2)

It is then easy to devise a general pattern, giving rise to forms vI , ΩI (I being a
general multi-index). Actually, everything can be organized—via Chen’s calculus of
iterated path integrals [9, 10]—in terms of sequences of nilpotent connections v(k),
k = 1, 2 . . . , on a trivial vector bundle over S3 \ L and their attached curvature forms
w(k) (ultimately, the ΩI; [22, 39, 48, 50]), everything stemming from the Cartan
structure equation

dv(k) + v(k) ∧ v(k) = w(k)

together with the ensuing Bianchi identity

dw(k) + v(k) ∧ w(k) − w(k) ∧ v(k) = 0

(the latter implying closure of the forms ΩI). In order to give a flavour of the
general argument, start from the nilpotent connection v(1) with its corresponding
curvature w(1):

v(1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 v1 0 0
0 0 v2 0
0 0 0 v3
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , w(1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 Ω12 = v1 ∧ v2 0
0 0 0 Ω23 = v2 ∧ v3
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Then proceed similarly with

v(2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 v1 v12 0
0 0 v2 v23
0 0 0 v3
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , w(2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0 Ω123 = v1 ∧ v23 + v12 ∧ v3
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(we made use of dv12 + Ω12 = dv23 + Ω23 = 0), and so on.
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L1 L1

v1

a12a2

a1

L2 L2 v2

v2Λv1

FIGURE 3. Starting the Chen procedure.

Also recall that all forms ΩI can be neatly interpreted, via Poincaré duality, as
auxiliary (trivial) knots LI , and vI as discs bounded by LI , in adherence to the
considerations in Section 3; see [39, 48] for more details and worked-out examples,
including the Whitehead link (involving fourth-order linking numbers with repeated
indices) and the Borromean rings (exhibiting a third-order linking number). Just notice
here that, for instance, formula (4-1) becomes, intersection-theoretically,

∂a12 + a1 ∩ a2 = 0;

see Figure 3. Formula (4-2) can be rewritten as

dv123 + ιξ123ν = 0,

where ξ ≡ ξ123 = α
−1(Ω123). The above (‘vorticity’) vector field ξ123 can be thought of

as being concentrated on the knot corresponding to ξ123, or, alternatively, in a thin tube
around it, when considering a bona fide Poincaré dual; cf. (3-1).

This tells us that v123 is a Hamiltonian 1-form in the sense of [46], and the formula

LξΩ123 = dιξΩ123 + ιξ dΩ123 = dιξΩ123

expresses the fact that Ω123 is a globally conserved 2-form, and the same holds for Ω12
and, in general, for ΩI , with their corresponding vector fields ξI . Specifically, we have
the following proposition.

PROPOSITION 4.1.

(i) The volume form ν and all Massey 2-forms are globally conserved.
(ii) The 1-forms vI = f1(ξI) are Hamiltonian with respect to the volume form.

PROOF.

(i) This is clear since the mentioned forms are closed.
(ii) The previous discussion can be rehearsed verbatim for a general multi-index I:

dvI + ιξIν = 0

(an extension of (3-1)), thus yielding the result. �

The following is the main result of this section.
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THEOREM 4.2. In the above notation, the 1-forms vI are first integrals in involution
with respect to the flow generated by the Hamiltonian vector field ξL, namely,

LξL vI = 0

(that is, the vI are strictly conserved) and

{vI , vJ} = 0

(for multi-indices I and J).

PROOF. Using Cartan’s formula, we get

LξL vI = dιξL vI + ιξL dvI = dιξL vI − ιξL ιξIν,

but the second summand vanishes in view of the general expression

{vξ, vη}(·) = ν(ξ, η, ·)

and of the peculiar structure of the vector fields involved (they either partially coincide
or have disjoint supports). By the same argument, one gets ιξL vI = 0, in view of the
Poincaré dual interpretation of vI (cf. Section 3), together with the second assertion; a
crucial point to notice is that the auxiliary links obtained via Chen’s procedure may be
suitably split from their ascendants, this leading to

ιξL vI = 0,

the consequent strict conservation of the vI being then immediate.
Notice that, in particular, from

ιξL vL = 0
(Poincaré dual interpretation again) we also get

LξL vL = 0

(this is not to be expected a priori in multisymplectic geometry; cf. [46]). �

We remark that, upon altering the vI by an exact form, we may lose strict
conservation, but in any case global conservation is assured (the Poisson bracket is
an exact form, by (2-12) in Section 2 and in view of commutativity of the vector fields
ξI and ξJ).

Ultimately, we can draw the conclusion that the Massey invariant route to ascertain
the Brunnian character of a link can be mechanically understood as a recursive test of a
kind of knot-theoretic integrability: the Massey linking numbers provide obstructions
to the latter.

Thus, somewhat curiously, higher-order linking phenomena are interpreted in terms
of multisymplectic geometry, which is a sort of higher-order symplectic geometry.
Also, integrability comes in with a twofold meaning: first, higher-order linking
numbers emerge from the construction of a sequence of flat, that is, integrable
nilpotent connections; second, this very process yields first integrals in involution in a
mechanical sense.
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5. Conclusions and outlook

In this note we have constructed a homotopy co-momentum map in a hydrodynam-
ical context, whereby we gave, as an application, a multisymplectic reinterpretation
of the Massey higher-order linking numbers, together with an extension thereof in a
Riemannian geometric framework. We have also exhibited a covariant phase space
interpretation of the geometrical framework involved.

The multisymplectic approach appears to be very promising for further advance-
ment in this area. Also, the notion of integrability cropping up in our analysis of
Massey products may deserve further scrutiny in a general multisymplectic context.
We hope to tackle (at least some of) the open questions raised in this paper elsewhere.
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