ELEMENTARY EQUIVALENCE AND THE COMMUTATOR SUBGROUP

by L. P. D. VAN DEN DRIES, A. M. W. GLASS, ANGUS MACINTYRE, ALAN H. MEKLER, and JOHN POLAND¹

(Received 23 September, 1980)

If G and H are elementarily equivalent groups (that is, no elementary statement of group theory distinguishes between G and H) then the definable subgroups of G are elementarily equivalent to the corresponding ones of H. But the commutator subgroup G' of G, consisting of all products of commutators $[a, b] = a^{-1}b^{-1}ab$ of elements a and b of G, may not be definable. Must G' and H' be elementarily equivalent?

A first thought might be that if G' is not definable, even allowing parameters, then it will follow that there is $H \equiv G$ with $H' \neq G'$. However, this naive idea fails.

EXAMPLE. Let G be the direct product of a countably-infinite free-nilpotent-of-class-2and-exponent-3 group with a countably-infinite group of exponent 3. If $H \equiv G$, then H' and G' are infinite abelian groups of exponent 3 and hence $H' \equiv G'$. But G' is not definable (by an obvious modification of the lemma below).

Despite this example, we will show the following theorem.

THEOREM. There exists groups G and H such that $G \equiv H$ (in fact $G \prec H$) but $G' \not\equiv H'$.

If $G \equiv H$, then no quantifier-free sentence will distinguish between G' and H', and the same is true for an \forall -sentence (and hence an \exists -sentence). About the simplest sentence to consider next would be something of the form $\forall x \exists y(x = y^2)$, so our construction begins with a group F of nilpotent class 2 and reduces modulo a normal subgroup that makes each commutator a square, but there is no uniform bound on the length of the commutator word being squared. An ultrapower of the resulting group G produces H with some non-squares in its commutator subgroup. Now for the details. We will say that G is a nil-2 group if it is a group satisfying $\forall x \forall y \forall z[x, y, z] = 1$, where [x, y, z] = [[x, y], z].

LEMMA. There is a nil-2 group G with the following pair of properties:

(a) every element of G' is the square of an element of G',

(b) for every $n < \omega$, there exist g_n and h_n in G such that $[g_n, h_n]$ is not the square of any product of at most n commutators.

Proof of the lemma. Our group G will be F/K where F is the free nil-2 group on $\{a_n: n < \omega\}$ and K will be a central subgroup generated by relations R_n $(n < \omega)$. For any word w in F', let l(w) be the minimum number of commutators required to witness that w is in F' and note that since F is free nil-2 on $\{a_n: n < \omega\}$ then [a, bc] = [a, b][a, c] and F' is

Glasgow Math. J. 23 (1982) 115-117.

¹ The authors would like to thank Bowling Green State University, Talisker Malt, and the Central States Universities, Inc., for making these results possible. Research was supported in part by a number of granting agencies.

a free abelian group with basis $\{[a_i, a_i]: i < j < \omega\}$ (see [1]). Hence for each $m < \omega$ there exists w in F' (for example $w = [a_0, a_1][a_2, a_3] \dots [a_{2m}, a_{2m+1}]$) such that $l(w^i) \ge m$ for all integers $t \ne 0$. For, suppose $([a_0, a_1] \dots [a_{2m}, a_{2m+1}])^i$ were the product of fewer than m commutators for some $t \ne 0$. As F' is free abelian on $\{[a_p, a_q]: p < q < \omega\}$, we have for some integers x(i, j) and y(i, j)

$$\prod_{0 \le p \le m} [a_{2p}, a_{2p+1}]^{t} = \prod_{0 \le j < m-1} \left[\prod_{i \le 2m+1} a_{i}^{x(i,j)}, \prod_{i \le 2m+1} a_{i}^{y(i,j)} \right]$$
$$= \prod_{0 \le p < q \le 2m+1} [a_{p}, a_{q}]^{v(p,q)},$$

where

116

$$v(p,q) = \sum_{0 \le j < m-1} \{x(p,j)y(q,j) - x(q,j)y(p,j)\}.$$

Hence the number

$$v(p,q) = \sum_{0 \le j < m-1} \{ x(p,j) y(q,j) - x(q,j) y(p,j) \}$$

equals t if p is even and p+1 = q and is 0 otherwise. If we let

$$A = \begin{bmatrix} x(0,0) & -y(0,0) & \dots & x(0,m-2) & -y(0,m-2) \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ x(2m+1,0) & -y(2m+1,0) & \dots & x(2m+1,m-2) & -y(2m+1,m-2) \end{bmatrix}_{(2m+2)\times(2m-2)}$$

and

$$B = \begin{bmatrix} y(1,0) & y(0,0) & \dots & y(2m+1,0) & y(2m,0) \\ x(1,0) & x(0,0) & \dots & x(2m+1,0) & x(2m,0) \\ & \ddots & \ddots & \ddots & \ddots & \\ y(1,m-2) & y(0,m-2) & \dots & y(2m+1,m-2) & y(2m,m-2) \\ x(1,m-2) & x(0,m-2) & \dots & x(2m+1,m-2) & x(2m,m-2) \end{bmatrix}_{(2m-2)\times(2m+2)}$$

then $A \cdot (1/t)B = J_{2m+2}$, where J_{2m+2} is a diagonal matrix with pp entry $(-1)^p$. Hence

column rank (A) = row rank (A) = 2m + 2.

Since A has only 2m-2 columns, we have the desired contradiction. (This simple argument is due to Pat Rogers—see the proof of Theorem 3.10 in [2].)

We are now ready to define the relations R_n , and words w_n , inductively. To ease our notation, let *i* and *j* denote the standard enumerations of ω such that $i(n) < j(n) \le n+1$ for all $n < \omega$ and $\{(i(n), j(n)): n < \omega\} = \{(r, s): r < s < \omega\}$. Define $w_0 = [a_2, a_3]$ and $R_0 = [a_0, a_1]^{-1}w_0^2$; and for each $n < \omega$, pick w_n such that $l(w_n^t) > 2 + n + \sum_{m < n} l(R_m)$ for all integers $t \ne 0$ —possible by the discussion above—and put $R_n = [a_{i(n)}, a_{j(n)}]^{-1}w_n^2$. As stated before, we let K be the subgroup generated by $\{R_n: n < \omega\}$ and put G = F/K.

Property (a) of the lemma now follows from the definition of G. (Since G is nil-2, it sufficed to arrange for the generators of G' to be squares.) To prove (b) choose r < s such

that $[a_r, a_s]$ does not appear in R_m for m < n and suppose $[a_r, a_s]$ were the square of some w, a product of n commutators (modulo K). Then in F, $[a_r, a_s]^{-1}w^2 = R_0^{k_0}R_1^{k_1} \dots R_t^{k_t}$ for some integers k_0, k_1, \dots, k_t , where $k_t \neq 0$. By the choice of r and $s, t \ge n$. Recall that $R_t = [a_{i(t)}, a_{j(t)}]^{-1}w_t^2$; so $l(w_t^{2k_1}) \le 2 + n + \sum_{m \le t} l(R_m)$ which contradicts the choice of w_t .

Proof of the theorem. Let G be as in the lemma; if σ denotes $\forall x \exists y(x = y^2)$ then $G' \models \sigma$. To construct H (with $H' \models \neg \sigma$) either take a non-trivial ultrapower of G, or use a simple compactness argument on

 $T = \text{Th}(G) \cup \{ \{c, d\} \text{ is not the square of the product of } n \text{ commutators} : n < \omega \},\$

where c and d are constants added to the language of groups. T is consistent since G can be interpreted as satisfying any finite subset of T, and H can be any model of T.

REFERENCES

1. A. I. Mal'cev, Two remarks on nilpotent groups, *Mat. Sb.* (*N.S.*) **37(79)** (1955), 567–572 (in Russian).

2. Pat Rogers, Preservation of saturation and stability in a variety of nilpoent groups, J. Symbolic Logic **46** (1981), 499-512.

L. P. D. VAN DEN DRIES and ANGUS MACINTYRE YALE UNIVERSITY NEW HAVEN, CONNECTICUT, U.S.A.

A. M. W. GLASS BOWLING GREEN STATE UNIVERSITY BOWLING GREEN, OHIO, U.S.A.

Alan H. Mekler University of Western Ontario London, Ontario, Canada

John Poland Carleton University Ottawa, Ontario, Canada

Current addresses: John Poland Simon Fraser University Burnaby 2 British Columbia, Canada

L. P. D. VAN DEN DRIES STANFORD UNIVERSITY PALO ALTO, CALIFORNIA U.S.A.