
J. Aust. Math. Soc. 100 (2016), 241–251
doi:10.1017/S1446788715000464

RELATIVE ELEMENTARY ABELIAN GROUPS AND A
CLASS OF EDGE-TRANSITIVE CAYLEY GRAPHS

CAI HENG LI and LEI WANG�

(Received 10 December 2014; accepted 4 August 2015; first published online 20 November 2015)

Communicated by B. Alspach

Abstract

Motivated by a problem of characterising a family of Cayley graphs, we study a class of finite groups
G which behave similarly to elementary abelian p-groups with p prime, that is, there exists a subgroup
N such that all elements of G\N are conjugate or inverse-conjugate under Aut(G). It is shown that such
groups correspond to complete multipartite graphs which are normal edge-transitive Cayley graphs.

2010 Mathematics subject classification: primary 20B25; secondary 05C25, 05E18.

Keywords and phrases: Cayley graph, complete graph, REA group, Frobenius group.

1. Introduction

Two elements a, b of a group G are called fused or inverse-fused if a is conjugate
under Aut(G) to b or b−1, respectively. A finite group is an elementary abelian p-group
if and only if any two nonidentity elements are fused or inverse-fused because all
nonidentity elements of this group have equal order, and the center is nonidentity and
is a characteristic subgroup.

Definition 1.1. A group G is called a relative elementary abelian group, or simply
called an REA group for short, if there exists a subgroup N < G such that any two
elements of G\N are fused or inverse-fused. To emphasise the subgroup N, we
sometimes call it an REA group relative to N.

A group G is called a Camina group if all elements of gG′ with g <G′ are conjugate
to g (refer to [2, 3, 10, 11, 13]). The concept of REA group is in some sense a
generalisation of Camina group.

Theorem 1.2. Let G be an REA group relative to N. Then the following statements
hold:
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(i) all elements in G\N are of order pe, where p is a prime, and centralise no
element of G of order coprime to p;

(ii) N is a normal subgroup of G, but not necessarily a characteristic subgroup;
(iii) the quotient group G/N � Cd

p is elementary abelian.

Our principal motivation of studying REA groups is to study a problem regarding
a type of edge-transitive Cayley graph, defined below, and covered in more detail in
Section 3.

Definition 1.3. A graph Γ is called a normal edge-transitive Cayley graph if Γ is a
Cayley graph of some group G and the normaliser NAut Γ(G) is transitive on the set of
edges of Γ.

Edge-transitive Cayley graphs are not necessarily normal edge-transitive.
Praeger [14] proposed to characterise normal edge-transitive Cayley graphs (also refer
to [15]).

For positive integers m and b, we denote by Km[b] a complete multipartite graph
which has m parts of equal cardinality b. Then Km[b] is an edge-transitive Cayley graph,
and we are interested in the question under what condition it is normal edge-transitive.

Problem A. Determine the pairs of integers m, b such that Km[b] is a normal edge-
transitive Cayley graph.

Recently, this problem was solved in [5] for the so-called normal 2-geodesic-
transitive Cayley graphs, which form a special subclass of normal edge-transitive
Cayley graphs. The following theorem reduces Problem A to the problem of studying
finite REA groups.

Theorem 1.4. If a complete multipartite graph Km[b] is a normal edge-transitive
Cayley graph of a group G, then G is an REA group relative to a normal subgroup
N of order b such that |G/N| = m.

We can determine the values for a single parameter m or b, although we cannot
determine the pairs (m, b) (see Corollaries 4.3 and 3.7).

Corollary 1.5.

(1) For any prime power m, there exists an integer b such that Km[b] is a normal
edge-transitive Cayley graph.

(2) For each positive integer b, there exists an integer m such that Km[b] is a normal
edge-transitive Cayley graph.

From the known examples, we are inclined to guess that m ≤ b in general; the only
known counterexamples to this are (m, b) = (m, 1) or (p2, p).

Theorem 1.4 leads us to addressing the following classification problem.

Problem B. Classify finite REA groups.
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The examples of REA groups include abelian p-groups, the groups of order p3,
certain Camina groups and some Frobenius groups.

Theorem 1.6. Let G = V : Q8 be a Frobenius group with a Frobenius complement Q8.
Then:

(i) V = C2
pe1

1
× · · · × C2

pet
t

, where pi are primes and ei ≥ 1; and

(ii) each C2
pei

i
: Q8 is a Frobenius group; and

(iii) G is an REA group relative to V : C2 and V : C4.

In subsequent work, a classification will be given of Frobenius REA groups.

2. Proof of Theorem 1.2

Let G be a finite REA group relative to a subgroup N.

Lemma 2.1. There exists an integer pe, where p is a prime and e ≥ 1, such that all
elements of G\N are of order pe. Each element of G\N centralises no p′-element of G
(if any).

Proof. Let x be an element of G\N of order n. For any prime divisor r of n, the
element xr has order n/r and thus x and xr are not conjugate under Aut(G). Hence,
xr ∈ N. If n = n1n2 is such that n1 and n2 are relatively prime, then xn1 , xn2 ∈ N. Thus,
〈xn1 , xn2〉 ≤ N and it implies that x ∈ N, which is a contradiction. So, n is a power of a
prime, namely, n = pe, where p is a prime. �

The next lemma shows that the class of REA groups is closed under taking quotients
with respect to characteristic subgroups.

Lemma 2.2. If M is a characteristic subgroup of G which is contained in N, then the
factor group G/M is an REA group relative to N/M.

Proof. Let x, y be two elements of (G/M)\(N/M). Let x and y be the preimages of
x and y, respectively, under G→ G/M. Then x, y ∈ G\N. Since G is an REA group
relative to N, there exists an automorphism σ ∈ Aut(G) such that xσ = y or y−1. Since
M is characteristic, we have Mσ = M and hence (xM)σ = yM or y−1M. Therefore,
G/M is an REA group relative to N/M. �

The next example shows that a group may be an REA group relative to different
subgroups.

Example 2.3. Let G = Q8, the quaternion group, and let G = 〈x, y〉 and z = xy. Then
Aut(G) � S4 and hence there exist σ, τ ∈ Aut(G) with 〈σ, τ | στ = σ−1〉 � S3 such that
xσ = y, yσ = z and zσ = x, and τ fixes 〈z〉 and interchanges x and y.

Let N1 = 〈x2〉 � C2. Then G\N1 consists of all elements of order 4, and Aut(G) is
transitive on G\N1. So, G = Q8 is an REA group relative to N1.

Let N2 = 〈z〉 � C4. Then N2 is normal but not characteristic in G, and G\N2 =

{x, x−1, y, y−1}. Now τ maps x to y and x−1 to y−1. So, G = Q8 is an REA group relative
to N2. �

https://doi.org/10.1017/S1446788715000464 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000464


244 C. H. Li and L. Wang [4]

Lemma 2.4. The subgroup N is a normal subgroup of G. However, N is not necessarily
a characteristic subgroup.

Proof. Suppose that G is a minimal counterexample to the statement. Then, in
particular, N is not a normal subgroup of G.

By Lemma 2.1, the elements of G\N are of order pe, where p is a prime. Let T be
the set of all elements of G of order divisible by a prime r , p (if any). Then T ⊂ N
and T generates a characteristic subgroup of G. Let M = 〈T 〉. Since N is a group, M
is a subgroup of N. Since T contains all p′-elements of G, the factor group G/M is a
p-group, and is an REA group relative to N/M by Lemma 2.2.

If G/M is abelian, then N/M is a normal subgroup of G/M and so N is a normal
subgroup of G, which is a contradiction. Thus, G/M is nonabelian.

If (G\N) ∩ Z(G) , ∅, then G\N ⊂ Z(G) as Z(G) is a characteristic subgroup of G
and all elements of G\N are fused or inverse-fused. Noticing that G = N ∪ (G\N), we
have G = N ∪ Z(G), which contradicts the fact that a group is not equal to the union
of two proper subgroups. Hence, (G\N) ∩ Z(G) = ∅.

Since G = N ∪ (G\N), we have Z(G) ≤ N. By Lemma 2.2, the factor group G/Z(G)
is an REA group relative to N/Z(G). By the minimality of G, N/Z(G) is normal in
G/Z(G). It implies that N is normal in G, which is again a contradiction.

We therefore conclude that N is a normal subgroup of G. By Example 2.3, N is not
necessarily a characteristic subgroup of G. This completes the proof of the lemma. �

Lemma 2.5. The factor group G/N � Cd
p, where p is a prime.

Proof. By Lemma 2.1, the elements of G\N have order pe, where p is a prime. Since
all elements of G\N are fused or inverse-fused, each nonidentity element of G/N is of
order p.

Assume first that G is a p-group. Then the commutator subgroup G′ is nontrivial,
and G/G′ is abelian. We claim that G′ ≤ N. Suppose, to the contrary, that G′ � N.
Then (G\N) ∩G′ , ∅. Since G′ is a characteristic subgroup of G and all elements of
G\N are fused or inverse-fused, every element of G\N lies in G′, namely, G\N ⊂ G′.
Thus, G = N ∪ (G\N) = N ∪G′, which contradicts the fact that a group is not equal
to the union of two proper subgroups. Hence, G′ ≤ N, and G/N is abelian. Therefore,
G/N � Cd

p for some positive integer d.
Suppose now that G is not a p-group. Since the elements in G\N have the same

order pe, each element of G of order not equal to pe lies in the normal subgroup N.
Thus, the set

T = {g ∈ G | o(g) , pe}

is a subset of the subgroup N, and M := 〈T 〉 ≤ N. Clearly, any automorphism σ ∈
Aut(G) fixes T setwise, namely, Tσ = T . It implies that T generates a characteristic
subgroup of G. By Lemma 2.2, G/M is an REA group relative to N/M. Since T
contains all p′-elements of G, so does N ≥ M. So, the factor group G/N is a p-group.
Therefore, the factor group (G/M)/(N/M) is an elementary abelian p-group by the
previous paragraph. So is G/N, because G/N � (G/M)/(N/M) is elementary abelian,
completing the proof. �
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Proof of Theorem 1.2. Let G be a finite REA group relative to a subgroup N. By
Lemma 2.1, there exists a prime p such that all elements of G\N are of order pe, as in
part (i) of Theorem 1.2. Then Lemma 2.4 shows that the subgroup N is normal but not
necessarily characteristic in G, as in part (ii). Finally, by Lemma 2.5, the factor group
G/N is an elementary abelian p-group, as in part (iii). So, Theorem 1.2 holds. �

3. Normal edge-transitive Cayley graphs

For a group G and a self-inverse subset S of G (namely, an element x ∈ S if and
only if the inverse x−1 ∈ S ), a Cayley graph Cay(G, S ) is the graph with vertex set G
such that two vertices x, y ∈ G are adjacent if and only if yx−1 ∈ S .

For a Cayley graph Γ = Cay(G, S ), the right multiplication of elements of G on G
forms a subgroup Ĝ of Aut Γ, which is regular on the vertex set G. There is a criterion
to decide whether a graph Γ = (V, E) is a Cayley graph.

Lemma 3.1 (See [1, Proposition 16.3]). A graph Γ is a Cayley graph if and only if the
automorphism group Aut Γ has a subgroup which is vertex-regular.

Let Γ = Cay(G, S ), and let

Aut(G, S ) = {σ ∈ Aut(G) | S σ = S },

which is a subgroup of the automorphism group Aut(G) and fixes the subset S setwise.
Each element of Aut(G, S ) induces an automorphism of the Cayley graph Γ and
fixes the vertex corresponding to the identity of G. An important property (by [9,
Lemma 2.1]) for this subgroup is

NAut Γ(Ĝ) = Ĝ : Aut(G, S ),

the normaliser of the regular subgroup Ĝ in the full automorphism group Aut Γ. In
general, the subgroup NAut Γ(Ĝ) is not necessarily edge-transitive on Γ.

Let Γ = Cay(G, S ) be a Cayley graph. If Γ is disconnected, then the component that
contains the identity is a subgroup of G, and other components are the cosets of this
subgroup. Suppose that, for any elements s, t ∈ S , there exists σ ∈ Aut(G, S ) such that
sτ = t or t−1. Then the edges {x, sx} and {y, ty} are equivalent under Ĝ : Aut(G, S ) for,
if sτ = t, then {x, sx}x̂

−1τŷ = {1, s}τŷ = {1, t}ŷ = {y, ty} and, if sτ = t−1, then {x, sx}x̂
−1τt̂y =

{1, s}τt̂y = {1, t−1}t̂y = {ty, y}. We thus have the following simple conclusion.

Lemma 3.2. A Cayley graph Γ = Cay(G, S ) is a normal edge-transitive Cayley graph if
and only if any two elements of S are conjugate or inverse-conjugate under Aut(G, S ).

A graph may be not a Cayley graph even if it is vertex-transitive, for example,
the Petersen graph. A Cayley graph may be expressed as a Cayley graph of different
groups.

Example 3.3. The complete graph Γ = K8 is a Cayley graph of any group G of order 8.
However, it is not a normal edge-transitive Cayley graph of G unless G is elementary
abelian.
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This example tells us that the normal edge-transitivity of a Cayley graph is an
algebraic property, but not a combinatorial property.

It is clear that any two vertices of Km[b] are equivalent under automorphisms,
and so are any two edges. Hence, Km[b] is vertex-transitive and edge-transitive. The
automorphism group of Km[b] is Sb o Sm, the wreath product of Sb by Sm. A natural
question is to describe the edge-transitive subgroups.

Problem C. Determine the subgroups of Sb o Sm which are edge-transitive on Km[b].

We remark that edge-transitive automorphism groups of complete multipartite
graphs include some important classes of groups, such as imprimitive permutation
groups of rank 3 (refer to [4]). See [7, 8] for the study of Problem C for some special
cases.

Next we prove Theorem 1.4, beginning with treating complete graphs.

Lemma 3.4. A complete graph Kn is a normal edge-transitive Cayley graph if and only
if n is a prime power.

Proof. Let Γ = Kn, where n ≥ 2. Then, for any group G of order n, we have Γ =

Cay(G, S ), where S = G\{1}, the set of nonidentity elements.
Assume that Γ is a normal edge-transitive Cayley graph of G. Then all nonidentity

elements of G are of the same order, and it follows that all nonidentity elements of G
are of order p for some prime p, namely, G is a p-group. Thus, the center Z(G) , 1.
Since any two nonidentity elements of G are fused or inverse-fused, Z(G) = G, and
G = Cd

p is an elementary abelian p-group. In particular, the order n is a power of a
prime.

Conversely, let n = pd with p prime, and let G = Cd
p. Let N = {1} and S = G\{1}.

Then Aut(G) = Aut(G, S ) � GL(d, p) is transitive on S , and so Γ is a normal edge-
transitive Cayley graph of G = Cd

p. �

The next lemma deals with the general case, which proves Theorem 1.4.

Lemma 3.5. If Km[b] is a normal edge-transitive Cayley graph of a group G, then G is
an REA group relative to a subgroup N of order b.

Proof. Let Γ = (V, E) = Km[b] be a normal edge-transitive Cayley graph of G. Then
Γ = Cay(G, S ) is such that any two elements of S are fused or inverse-fused under
Aut(G, S ).

Let ∆1,∆2, . . . ,∆m be the m parts of Γ. Then V = ∆1 ∪ ∆2 ∪ · · · ∪ ∆m and |∆1| =

· · · = |∆m| = b. Let ∆1 contain the vertex α corresponding to the identity 1 of G. The
complement of Γ is disconnected and all components are isomorphic to the complete
graph Kb. By Lemma 3.1, the component on ∆1 is a subgroup of G. Let N be this
subgroup. Then |N| = b, and S = G\N. Since Γ is a normal edge-transitive Cayley
graph, all elements of G\N are fused or inverse-fused by Lemma 3.2, and so G is an
REA group relative to N. �

We end this section with treating complete bipartite graphs.

https://doi.org/10.1017/S1446788715000464 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000464


[7] Relative abelian groups and complete multipartite Cayley graphs 247

Lemma 3.6. A complete bipartite graph Kn,n with n odd is a normal edge-transitive
Cayley graph of a group G if and only if G = N : C2 is a Frobenius group and N is
abelian.

Proof. Let Γ = Kn,n be a Cayley graph Cay(G, S ). Then the order |G| = 2n and
S = G\N, where N is a subgroup of G of index 2. In particular, N CG, and G = 〈N, g〉
is such that g2 ∈ N. For any odd integer m, we have gm ∈ S .

Suppose that Γ = Cay(G,S ) is a normal edge-transitive Cayley graph. Then any two
elements of S = G\N are fused or inverse-fused under Aut(G,S ) ≤ Aut(G). Hence, G is
an REA group relative to the normal subgroup N, and all elements of S are involutions.

Since n is odd, the order |N| is odd. Thus, CN(g) = 1, that is, g acts on N by
conjugation and is fixed-point-free. Let g ∈ S . Then, for any h ∈ N, the product hg < N,
and so hg ∈ S is of order 2. Hence, g−1hg = ghg = h−1, namely, g inverts all nonidentity
elements of N. For any two elements h1, h2 ∈ N,

h−1
2 h−1

1 = (h1h2)−1 = (h1h2)g = hg
1hg

2 = h−1
1 h−1

2 ,

and thus N is abelian. It implies that G is a Frobenius group. �

Corollary 3.7. For any integer n ≥ 2, the complete bipartite graph Kn,n is a normal
edge-transitive Cayley graph.

Proof. Let n = 2em with m odd, and let M be a cyclic group of order m. Let

G = M : 〈z〉 = Cm : C2e+1

be such that z inverts every nonidentity element of M, namely, for any x ∈ M,

xz = x−1.

For any odd integer λ, there is an automorphism σ ∈ Aut(G) such that

xσ = x, zσ = zλ, where x ∈ M.

It implies that all elements of G of order 2e+1 are conjugate under Aut(G). Thus, G is
an REA group relative to C2em, and Kn,n is a normal edge-transitive Cayley graph of
the group G. �

4. Several families of REA groups
In this section, we present some examples of REA groups.

4.1. Nilpotent groups. We first consider nilpotent REA groups.

Lemma 4.1. A nilpotent REA group is a p-group, where p is a prime.

Proof. Let G be a nilpotent REA group relative to a subgroup N. By Lemma 2.1, all
elements of G\N are of order pe, where p is a prime. Let g be an element of G\N. If G
contains an element x of order q, where q , p is a prime, then x ∈ N and xg is of order
peq, which is a contradiction, for g and xg should be fused or inverse-fused. Thus, G
is a p-group. �

Moreover, for abelian groups, we have the following result.
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Proposition 4.2. An abelian group is an REA group if and only if it is a p-group, where
p is a prime.

Proof. By Lemma 4.1, we only need to prove that each abelian p-group is an REA
group.

Let G be an abelian p-group. Let pe be the exponent of G. Let N be the subgroup of
G generated by elements of G of order at most pe−1. Then G\N consists of all elements
of G of order pe. Since G is abelian, it is easily shown that any two elements of order
pe are conjugate under Aut(G). So, G is an REA group relative to N. �

For an abelian REA group G, if |G| = pk and |N| = p`, then either ` = 0 and G is
elementary abelian, or ` ≥ k/2. Thus, b = p`, and m = pk−` ≤ p`.

Corollary 4.3. For any prime p and integers n 6 `, the complete multipartite graph
Kpn[p`] is a normal edge-transitive Cayley graph.

Next we consider nonabelian p-groups which are REA groups.

Proposition 4.4. All groups of order p3 are REA groups, where p is a prime.

Proof. Let G be a group of order p3. If G is abelian, then, by Proposition 4.2, we are
done.

Assume that G = 〈a〉 : 〈b〉 = Cp2 : Cp, where ab = a1+p. For any element x ∈ G of
order p2, we have x = aib j, where gcd(i, p) = 1, and G = 〈x〉 : 〈b〉 such that xb = x1+p.
It follows that there exists σ ∈ Aut(G) such that aσ = x. Therefore, all elements of G
of order p2 are conjugate in Aut(G). Let S consist of elements of G of order p2, and
N be the subgroup of G generated by elements of order p. Then N = C2

p, S = G\N
has cardinality p3 − p2 = p2(p − 1) and G is an REA group relative to N. In this case,
Cay(G, S ) � Kp[p2] is normal edge-transitive, and Aut(G, S ) = Aut(G).

Suppose now that G is nonabelian and of exponent p. Let N = Z(G) = Cp. Then
S = G\N consists of p3 − p = p(p2 − 1) elements of order p. The automorphism group
Aut(G) is isomorphic to C2

p : GL(2, p) (refer to [12, Lemma 2.3]), and is transitive on
the set S . Thus, G is an REA group relative to N, and Cay(G, S ) = Kp2[p] is a normal
edge-transitive Cayley graph. �

4.2. Frobenius groups. We study a family of Frobenius groups which are REA
groups. A Frobenius group G has the form G = F : H such that each nonidentity
element of H centralises no nonidentity element of F, that is, xy , yx for any x ∈ F\{1}
and y ∈ H\{1} (refer to [6]). In this case, the normal subgroup F is called the Frobenius
kernel, and the subgroup H is called a Frobenius complement of G.

We consider Frobenius groups with a Frobenius complement Q8.

Lemma 4.5. Let p be an odd prime, and let G = C2
pe : Q8 be a Frobenius group. Then

the following hold:

(i) Aut(G) = C2
pe · (Cpe−1(p−1) ◦ GL(2, 3));

(ii) G is an REA group relative to C2
pe : C2 and C2

pe : C4.
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Proof. Let V = Cpe ×Cpe , and let G2 be a Sylow 2-subgroup of G. Then G2 = 〈x1, x2〉 �
Q8, and 〈x1〉, 〈x2〉 and 〈x1x2〉 are the subgroups of G2 of order 4. Let x3 = x1x2.

It is known that Aut(V) = P · GL(2, p), where P is a p-group (refer to [7]). Noting
that V is a characteristic subgroup of G, it follows that each automorphism of G
induces a nontrivial automorphism of V . Since G = V : H is a Frobenius group, we
have V char G � Inn(G) C Aut(G). Thus,

Q8 � G/V C Aut(G)/V 6 Aut(V).

It implies Aut(G)/V � NAut(V)(Q8), and

Aut(G) = V · NAut(V)(Q8) = V · (Cpe−1(p−1) ◦ GL(2, 3)).

Noticing that GL(2, 3) � Q8 : S3, there exist automorphisms σ, τ ∈ Aut(G) such that
〈σ, τ | στ = σ−1〉 � S3, and

〈x1〉
σ = 〈x2〉, 〈x2〉

σ = 〈x3〉 and 〈x3〉
σ = 〈x1〉,

〈x1〉
τ = 〈x2〉, 〈x2〉

τ = 〈x1〉 and 〈x3〉
τ = 〈x3〉.

Let N1 = C2
pe : 〈x2

1〉 = C2
pe : C2 C G. Then G\N1 consists of all elements of G of

order 4. Let a, b ∈ G\N1 be such that b , a or a−1. By Sylow’s theorem, we may
assume that a, b ∈ G2. Without loss of generality, let a = x1. Then 〈b〉 = 〈x2〉 or 〈x3〉.
For the former, 〈a〉σ = 〈x1〉

σ = 〈x2〉 = 〈b〉, and hence aσ = b or b−1, and, for the latter,
〈a〉σ

−1
= 〈x1〉

σ−1
= 〈x3〉 = 〈b〉, and so it follows that aσ

−1
= b or b−1. So, G is an REA

group relative to N1.
Let N2 = C2

pe : 〈x3〉 = C2
pe : C4 CG. Then x1, x2 < N2. Let a, b be distinct elements

of G\N2 such that b , a−1. By Sylow’s theorem, we may suppose that a, b ∈ G2.
Without loss of generality, we may assume that 〈a〉 = 〈x1〉. Then 〈b〉 = 〈x2〉. Thus,
〈a〉τ = 〈x1〉

τ = 〈x2〉 = 〈b〉, and aτ = b or b−1. Therefore, G is an REA group relative
to N2. �

We remark that in the above proof the full automorphism group Aut(G) acts on
G\N1. However, since σ does not normalise N2, the subgroup 〈σ〉 � C3 does not act
on G\N2. It implies that N2 is not a characteristic subgroup of G.

Finally, we verify that all Frobenius groups with Frobenius complements Q8 are
indeed REA groups.

Proof of Theorem 1.6. Let G = V : Q8 be a Frobenius group. Let H = Q8 be a
Frobenius complement of G. Then the involution g of H fixes no nonidentity element
of the Frobenius kernel V . It implies that g inverts every nonidentity element of V , and
then V is abelian. By Maschke’s theorem, V can be decomposed as

V = V1 × V2 × · · · × Vt

such that H normalises each Vi, and Vi is indecomposable with respect to the action
of H. Since G is a Frobenius group, H acts faithfully on Vi, and thus H acts on Vi/Φ(Vi)
irreducibly and faithfully, where Φ(Vi) is the Frattini subgroup of Vi. It is known that
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a faithful irreducible representation of Q8 is of dimension 2. Thus, Vi = Cpei
i
× Cpei

i
for

some prime power pei
i , as in Theorem 1.6(i).

Let Wi be the factor group of G modulo
∏

j,i V j, where 1 ≤ i ≤ t. Then Wi = Vi : Hi,
where Hi � H = Q8, and it implies that Wi = C2

pei
i

: Q8 is a Frobenius group, as in
Theorem 1.6(ii).

Let Hi = 〈xi, yi〉, and zi = xiyi, where 1 ≤ i ≤ t. By Lemma 4.5, there are
automorphisms σi, τi ∈ Aut(Wi) such that 〈σi, τi〉 � S3, where o(σi) = 3 and o(τi) = 2,
and

〈xi〉
σi = 〈yi〉, 〈yi〉

σi = 〈zi〉 and 〈zi〉
σi = 〈xi〉,

〈xi〉
τi = 〈yi〉, 〈yi〉

τi = 〈xi〉 and 〈zi〉
τi = 〈zi〉.

The group G = (V1 × V2 × · · · × Vt) : H can be embedded in

(V1 : H1) × · · · × (Vt : Ht),

as a subgroup such that H = 〈x, y〉, where x = x1 · · · xt and y = y1 · · · yt. Let

σ = σ1 · · ·σt and τ = τ1 · · · τt.

Then σ, τ are automorphisms of G such that

〈x〉σ = 〈y〉, 〈y〉σ = 〈xy〉, 〈x〉τ = 〈y〉 and 〈y〉τ = 〈x〉.

Let N1 = V : 〈x2〉 = V : C2. Then all elements of G\N1 are of order 4. The subgroup
〈σ〉 � C3 is transitive on the three subgroups of H = Q8 of order 4, and, by Sylow’s
theorem, all subgroups of G of order 4 are fused. For any two elements a, b ∈ G\N1,
the subgroups 〈a〉 and 〈b〉 are of order 4 and fused, and so 〈a〉ρ = 〈b〉 for some
ρ ∈ Aut(G). Therefore, aρ = b or b−1, and so G is an REA group relative to N1, as
in Theorem 1.6(iii).

Let N2 = V : 〈xy〉 = V : C4. Let a, b ∈ G\N2 be such that b , a or a−1. Then a and
b are of order 4. By Sylow’s theorem, we may assume that a, b belong to the same
Sylow 2-subgroup H = 〈x, y〉. Without loss of generality, assume that 〈a〉 = 〈x〉. Then
〈b〉 = 〈y〉. Thus, the automorphism τ of G mentioned above is such that

〈a〉τ = 〈x〉τ = 〈y〉 = 〈b〉,

and so aτ = b or b−1. Therefore, G is an REA group relative to N2, as in part (iv). �

This has an immediate consequence regarding the parameters m and b.

Corollary 4.6. For any odd integer m, the complete 4-partite graph K4[2m2] is a
normal edge-transitive Cayley graph.

Proof. By Theorem 1.6, there exists an REA group G = C2
m : Q8 relative to N =

C2
m : C2. Thus, K4[2m2] is a normal edge-transitive Cayley graph of G. �
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