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Abstract

The main ideas of Hopf bifurcation theory and its relevance to the development of
periodic motions of an autonomous system depending on a parameter are presented, and
an algorithm for the computation of the orbits is described. It is then shown that a model
system for the motion of a wheelset can be cast in the form amenable to Hopf bifurcation
theory. Numerical results for the period and amplitudes of the lateral and yaw motions
are obtained in terms of the forward speed of the wheelset, and the wheel-rail profile
parameters

It is found that the period of oscillation decreases while the lateral and yaw motion
amplitudes increase as the forward speed increases, for any given rail and wheel profile.
While the effect of wheel curvature on the lateral motions seems to be non-existent, its
effect on the yaw motion amplitude and the period is to increase them very slightly as the
wheel profile changes from a conical to a curved profile. On the other hand, the effect of
rail curvature on the lateral amplitude, for instance, is significant; the larger the curvature
the smaller the amplitude for a given forward speed.

1. Introduction

About 60 years ago, Carter laid the foundations of the subject of hunting
instabilities in trains; a full list of his works is given in the survey article by Law
and Cooperrider [24]. Although much work has been done, especially in the last
twenty five years, a comprehensive knowledge of the dynamic behaviour of trains
and even that of the wheelset—the simplest component—eludes us still. The
main reason is that the equations which govern the motions of the above are
nonlinear. The nonlinearities are of two kinds: those that are analytic functions of
the lateral displacements, the rolling, yawing and pitching motions and the wheel
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and rail profiles and their interacting forces; and, secondly, those that are
nonanalytic functions, such as flange-rail contact forces which are akin to
Heaviside functions. Usually, a compromise between the two sets of nonlinearities
is arrived at when a mathematical model of the motion of a train or a wheelset is
derived. Using this latter approach, De Pater [10] Brann [3], Cooperrider [9], Law
and Brand [23], Wickens [32,33] and others have obtained numerical and analyti-
cal solutions to the problems of a single wheelset or a truck. For a survey up to
1974, see [24], and for more recent work, see De Pater [11].

In the present paper, we wish to explore the utility of a method which is
different from that used so far. The method relies on using the forward speed V as
a parameter, because once the design parameters are fixed, the forward speed V is
the only variable (parameter) in the equations of motion. The latter being
nonlinear, the solution to the equations may be periodic, quasi-periodic or
aperiodic functions of time depending on V as a parameter.

The simplest solution of the three is the case of self-sustained oscillations, i.e.,
periodic motions. It is our aim in this paper to examine this matter thoroughly for
a simple model, which is an extension of that of Brann [3]. The extension lies in
our ability to permit nonlinearities in both the wheel and rail profiles and in the
inclusion of spin creep terms. Using this model, we study oscillations through a
sophisticated tool, viz., the theory of Hopf bifurcation [15, 18, 21, 25, 28], for it
can deal with such nonlinearities with ease. Consequently, we are able to extend,
numerically, the analytical results derived earlier [20], by using the algorithm due
to Weber [31]. This algorithm is such that we are able to make quantitative
decisions concerning the stability of the oscillatory solutions of the linearized
problem before the numerical scheme is begun. The quantitative decision con-
cerns the initial value of the solution, and the wheel and rail parameters and
results in a considerable saving of the labor expended in computing for we
compute stable orbits and not unstable ones.

Lastly, we would like to comment briefly on other methods available to
compute periodic solutions of autonomous systems (depending on a parameter).
The Galerkin method, due to Urabe [29, 30], seeks a periodic solution to the
autonomous system and then finds neighboring orbits by turning the autonomous
equations into time-dependent, periodic ones and applying an approximation
scheme to calculate these orbits. The describing function method [19, 27] replaces
the nonlinear terms by equivalent linear terms; the latter are chosen so that the
mean square error between the actual output of a nonlinear term and its
corresponding linear part is minimized, and it is not always successful [19] in
finding the orbits. The averaging method [2, 8] consists in finding a co-ordinate
transformation so that after averaging, the equations become much less com-
plicated and are therefore easily integrated. We note that recently, the above
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techniques have been employed in [3, 9, 10, 23] and in [13, 16, 26] to determine
the limit cycle of wheelsets and trucks.

We have followed the Hopf bifurcation technique for it concentrates heavily on
the effects induced by the parameter, viz., the speed of the wheelset. Failure to be
particular about it could result in two or more orbits, rather than a unique one, as
the solution to the motion of the system—for an example, see equation (15)
below. Secondly, the methods of solving the given problem by using the Hopf
bifurcation technique lead directly to the period and phase plane portrait of an
orbit as a function of a second parameter e, with the first parameter appearing in
the equations (viz., the speed) depending on this new parameter. Thirdly, apart
from the common restrictions of analyticity, Hopf bifurcation is not subject to the
requirements of small nonlinearities. As an illustration of this, see the examples
3.1 and 3.2 due to Doedel [12]. In sum, we believe that the Hopf bifurcation
theory is versatile, simpler to employ (as will be seen below) and that the
algorithm we apply gives a total picture of the system more easily than other
approaches available in the literature.

With these remarks, we now turn to a brief description of the way Langford
[22] has turned the (local) Hopf bifurcation problem into a two point boundary
value problem. For other approaches, see [15, 18, 21, 25, 28]. Although global
Hopf bifurcation is not relevant to the axle problem and not discussed here,
theorems guaranteeing such phenomena exist and are mentioned in [25], for
example.

2. Hopf bifurcation: Langford's approach

Suppose one considers the first order system of differential equations:

dx/dt = x = 1(x,T), (1)

depending on a real parameter F. Here, x is an ^-dimensional (column) vector.
Suppose further that

f(o, r) = o (2)
for all F; that is, the zero solution (= equilibrium position) is a solution for all
values of F.

Hopf bifurcation [15, 18, 21, 25, 28] deals with the situation when a periodic
solution of period T, i.e., x(0) = x(T), bifurcates from this zero solution as F is
changed. The period T is, in general, not constant and has to be found from the
analysis of the equation (1), subject to the periodicity condition.

Hopf [18] established that a periodic solution bifurcates at F = Fo, if two
(sufficient) conditions are satisfied. To describe them, let T = 2nt/T be the
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non-dimensional time. Then equation (1) can be expressed in terms of r and a
new parameter n = T — To as:

=X'=£i(x,p), f(O,JLt)=O, (3)

where f(x, T) = f(x, /x), and the periodicity condition becomes

x(0) = x ( 2 * ) . (4)

We shall assume that in terms of the new variables (x, ju), T = 7(ju) and that

f(x,ju) = A°x + juA'x + C(x) + R(x, /x), (5)

where A0, A1 are the matrices:

The term C(x) is the cubic term:

6C,(x) = x xkxm\ -z—r—'-— , (8)

and R is the remainder term, which is small in the following sense:

||R(x,, /t,) - R(x 2 , M2)ll < A-(||(x,, / i ,) | | 2 + | |(x2, iu2)||2)

X | | ( x 1 ) M l ) - ( x 2 , M 2 ) | | . (9)

where ||(x, n)\\ is the Euclidean norm:

||(x,,x)||=[||x||2 + /x
2]1/2, (10)

and K > 0 is a constant. We now return to equation (5) and comment on the
expansion. Because f(0, /x) = 0, no terms in ju alone can appear. Next, the axle
problem has forced us to omit the quadratic terms in x, although they are
important in other areas [21, 31]. Again, the axle problem has forced us to omit
two cubic terms of order JUZX and /xxx. However, these various nonlinearities do
not affect the initiation of the bifurcating solution as will be seen next.

For, Hopf s first condition is that:
(i) A0 has a pair of imaginary conjugate eigenvalues ± i/5, /I > 0. A0 has no

eigenvalues of the form nifi, n £ { 0 , 2 , 3 , . . . } , i.e., i/2 is an algebraically simple
eigenvalue of A0.

Next, let A(0, /t) denote the matrix:

L=o' A(0,0)=A°, (11)
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and let 8 — 8(n) denote the differentiable simple eigenvalue of A(0, p.) near /i = 0
which coincides with the eigenvalue /'/? of A0 at p. — 0. Define

a' = Re[5'(0)], /?' = Im[S'(0)]. (12)

That is, near ju = 0, 8(n) is of the form

8(fi) — a'fi + z(/J + fi'fi) + o(fi). (13)

Given this equation (13). Hopf s second condition is that:

(ii) a'#0. (14)

This condition is usually expressed as saying that the eigenvalue 8(fi) crosses the
imaginary axis, at JU = 0, with a non-zero (eigenvalue) speed.

To illustrate that the condition (ii) is important, we consider the following
2 X 2 system in polar co-ordinates, due to Chefee [7]:

r = r(r — /i) (2ju — r ) , I

Rewrite equation (15) in terms of x — r cos 0, y = r sin 6:

[ . \ — L + (nonlinear terms). (16)

y 1 [ 1 2/J.
 3 JL-̂  J

The matrix A(0, /x) of the system (16) is

[A(0, JU)] = M ~ (17)

1 2/x3

and its eigenvalue 5(/x), which coincides with / at fi = 0, is:

8(n) — 2p? + i. (18)
Thus, the system given by equation (16) violates HopFs condition (ii), since
a' = 0 for the equation (18). A glance at equation (15) shows that if ju > 0, there
are two distinct periodic orbits given by r = /i, r = 2/x. respectively. Thus, if one
wishes to discuss the behaviour of a system leading to a single periodic orbit for
the variable x when ju ^ 0, HopFs conditions (i) and (ii) are both absolutely vital.
Though Freedman [14] has found a different sufficient condition for a single
periodic orbit to bifurcate from the equilibrium position at F = Fo when HopFs
condition (ii) fails, Freedman's condition is not relevant to our problem for the
axle system obeys HopFs conditions (i) and (ii) as will be seen later.

We now return to the equations (3)-(5). To proceed to further analysis of the
system given by equations (3)-(5), consider the linearization of these equations
about (x, /i) = (0,0). Thus we have to solve

•v' = — -̂A°x T — T(0) x(fl) = vf?irl (]Q~\
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Let A0 satisfy Hopfs first condition and let c = a + /b be the right complex
eigenvector corresponding to the eigenvalue //?, i.e., A°c = //?c. Then equation
(19) has the solution

x(T) = ce'T, ro = 2V|8. (20)

A real basis for the solution space of the equation (19) is given by [22]

<£,(T) = a c o s T - bsinT = Re[ce'T], (21)

<J>2(T) = asinr + bcosT = Im[ce'T]. (22)

We normalize c through

ara + brb = 2, (23)

where the superscript T denotes the transpose. If e G R" is any non-zero vector
with a non-zero projection on the plane spanned by {a, b}, we obtain a uniquely
determined (except for sign) solution «HT) [22] of equation (19) with (<j>,<f>)= 1,
and

er$(0) = 0. (24)

Here, for any two vectors, the inner product is:

. ( T ) \ ( T W T , | |U | | 2= (U,U>. (25)

Therefore the equations (3) and (4) can be written as:

x' = ^ f ( x , M ) , (26)

BOX(0) + B2^(2TT) = 0, (27)

for all fi, where Bo and B ^ are (n + 1) X n matrices:

[Bo]= ! (28)

and / is the n X n unit matrix. Note-that in equation (27), the periodicity
condition (4) is incorporated. Moreover, the condition erx(0) = 0 [18, 22] also
appears in equation (27) in order that one may remove the time-shift in the
autonomous system (26).

Now, we note that <£(0) is a linear combination of <>|(0) and <£>2(0). Thus,
4>(0) = a,a + &,b, and ||4»(0)|| = 1. Since e = a2a + b2b + e1- where ex is orthog-
onal to {a, b} and, at least, a2 or b2 is non-zero, we get from equation (24) that

2b]b2 + {axa2 - btb2)a
Ta + (a]b2 + a2bx)&

Tb = 0, (29)

where ara + brb = 2 has been used. Hence, given any initial condition #(0) =
a,a + 6,b, we can find a vector e to satisfy equation (24).
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3. Weber's algorithm

After Langford [22] had constructed an algorithm for finding the periodic
solutions to equations (26)-(27), Weber [31] discovered two more. We present a
summary of one of his methods below, omitting the proofs.

Firstly, the unique solution to x' = (T/2w)f(x, JU) generates a dynamical sys-
tem. For such a system, a motion is periodic with a period 2w if x(0) = x(2w),
(see [1]). Therefore, if one can find an initial value x(0) = s of the above system
such that x(2w) = s, the motion of this system is 2w-periodic in T for all T.
Weber's method consists in finding this initial value as a function of a parameter
e; his algorithm delivers fi = ju(e) and T = T(e) as well so that one can read off
F(e) = Fo + ju(e) and the period T(e) in t of the original system in equation (1).
In addition, in finding these quantities s, fx. and T, one has to solve a set of initial
value problems so that the periodic solution of the system itself is found. Thus
Weber's method gives a complete picture of all the information that is required.

Now, by x = X(T; JU, T, S), let us denote the unique solution to the initial value
problem:

x' = £f(x,M), 0<r<2ir,

x ( 0 ) = s .

Define a vector valued mapping F: R" X R2 -> Rn+I through

; M , 7 \ S ) . (31)

Then, the periodic solution x(0) = X(2TT-) to the equation (30) is equivalent to
finding the solution of the finite dimensional, algebraic system

F(s,M,r) = 0. (32)

To see this, recall that if x(2w; n, T, s) = s, then X(T; JU, T,S) is 27T-periodic.
Clearly, F(s, fi, T) = 0 ensures this; the converse is trivial to verify. Now it is easy
to see that F(0, /*, T) = 0 and therefore we can expand F(s, n, T) about (0,0, To)
as

+ (T- T0)M3s + h.o.t., (33)

where h.o.t. stands for 'higher order terms' and

Fl(0,0,ro) =

FS(1(O,O,ro) =

Fsr(0,0,ro) =

(34)
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Here the M(, / = 1,2,3, are all ( n t l ) X n matrices because F is an (n + 1)-
vector. These matrices can be determined in the following fashion [31]. Let <D(T)
denote the fundamental matrix:

*(0) = I,

(35)

where I is the n X n unit matrix. Then, using equations (31), (33)—(35), Weber [31]
shows that

M, = Bo

M3 =

(36)

Let us now introduce the notation p = a<J>(0), with <j>(0) being the initial value
appearing in equation (24) and a chosen so that prp = 1. Seek solutions to
F(s, n, T) = 0 of equation (33) in the form [31]

s(e) = ep + e3w(e),

/i(e) = e2
V(e), (37)

(38)

along with the orthogonality condition

pTw = 0.

Comparing equations (27) and (35) we see that

M,p = 0 (39)

because <>(2TT) = 4»(2w)<>(0) = <f>(0) and eTp — 0 from equation (24). Using
M,p = 0 in equation (33) leads to F(ep + e3((e), e27)we), r0 + e ^ e ) ) = 0 being
written as:

MlW(e) + T,(£)M2p + />(e)M3p

= -e-\(h.o.t.) + e57j(e)M2w(e) + e5/>(e)M3w(e)}. (40)

Adjoining equation (38) to this, we obtain

[M] 1,(6)

P(e)

M,

LPr 0 i 0

(41)
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where e~3{ • } denotes the right side of equation (40). Since M, i s ( n + 1 ) X « ,
M 2 p and M 3 p are (n + 1) X 1 each and p7 is 1 X n, the matrix M is (n + 2) X
(n + 2). Weber [31] has shown that this matrix M is non-singular if Hopf's two
conditions are satisfied. Using this fact, one can solve for {w, TJ, P) through an
iteration process for each fixed e. The iteration starts with

w(0)(e) = 0, 7,<°>(e) = 0, P<°>(e) = 0. (42)

{ • } = F - e 3 ( M , w + 7}M2p + / > M 3 p) , (43)

we define the iteration process through (y = 0,1,2, . . . ) :

-e-3F(ep

0

.(44)

As is obvious, the above system requires that at each step F( •, •, •) be evaluated.
Since F is defined through equation (31), we need to solve the initial value
problems

x'O) = ((r0 + e2j»o>(e))/2*)»(x<», £ 2 ^ ) ( e ) ) , |

x ^ U 0 = e p + £
3

W ^ > ( E ) , 7 = 0 , 1 , 2 J

to determine F. Therefore, in practice, the iteration works like this from e = 0:
(i) Choose e, say e = e,.
(ii) Since p is known, find x(0) from equation (45), by setting w<0)(ei) = 0,

(Hi) Compute x(0>(2w; 0, To), and hence F(e, p, 0, To).
(iv) Use these in equation (44) to find w(l)(£,), 7j(l)(e,), and
(v) Employ these in equation (45) to find x(l ) and go back to step (ii).
After the iterations have converged at e = e,, choose a new value e = e2 and go

back to step (ii).
In this way, by solving a set of n initial value problems at each step of the

iteration and solving the systems of equations (44) at each iteration step, we
generate the solution set (x(e), s(e), ju(e), T(e)}. Convergence of the scheme
occurs over a reasonable range of e, which depends on the original equation (3).
We do not list this in detail here—see [22, 31] for further information.

Lastly, since we begin with {w(0)(e), rf°\e), Pi0)(e)} = {0,0,0}, the first itera-
tion {w(1)(e), T)(l)(e), P°\e)} * {0,0,0} provided e-3F(ep,0, T0) ^ 0 in equation
(44). Now because of equation (39), F(ep,0, T0) is not linear in e and so we need
F(ep,0, TQ) to be non-zero in e3. This can be shown to be equivalent to demand-
ing that C(x) in equation (8) be non-zero. Of course, if C(x) is zero then we will
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have to seek solutions of the form {ep + e*w(e), e*~'Tj(e), To + ek~]P(e)} rather
than the assumed set in equation (37), with k > 4 depending on the first non-zero,
nonlinear term in the expansion of f(x, fi) in equation (5). On the other hand if
f(x, n) contains quadratic terms then the solution to be sought is of the form
{ep + e2w(e), er)(e), To + eP(e)} as is obvious.

We now turn to the axle system and cast it in a form amenable to the theory
developed so far.

4. The axle system

We model the axle following Brann [3], but with some modifications for we
take into account the axle load W, and spin creep coefficients following Burton
and Whitman [5,6] and Hobbs and Pearce [17]. The equations of motion are (see
the Nomenclature section at the end of the paper for definitions of the symbols):

my + fk{y/V-6) + 2/J/V + {W/2){tanS2 - tanS.) = 0,
(46)

ie + {2fb2/V)0-2f23(y/V-e)^(fbil/V)(r,-r2).

The lateral and longitudinal creep coefficients are assumed equal and are given by
/, and /23 is the spin/lateral creep coefficient. We can safely neglect the spin creep
coefficient /33 which is much smaller than fb2. The differences compared with
Brann's model [3] are the inclusions of the lateral/spin creep terms, the total
weight W, and we also allow for non-conical wheel profiles. We shall assume that

t a n S 2 - tanS, = eyy + e3y\\ .

+ 3 J

Using the variables

z-y/b, A=fk/mb, V = fk/mV,
2 = 2mb2/Ik, p=fn/fb,

s = {W/2m)esb
s+\ Ps = -{f/Ir)qsb

s+\
h{z) = hiz + h3z

3, p(z) = -pxz -

(48)

we turn the system of equations (46) into

z + Tz-A6 + Pr6 + h{z) = 0, 1
6:+ Tie + A2P6 - pZTz = p(z). J
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Let z = JC,, i = x2, 6 = x3, $ = x4, T = lirt/T. Then equation (49) becomes:

-h{xx) - (r0

xA

P(x\)

- p(r0 + n

3 - (To

0
hl

0

Pi

[A1

1

- ( r 0 -
0

P2(FO

] =

0
0
0
0

t- fl)

+ /0
0

_ J

0
p2

-

0
0
0
0

0
A

0
p2A

0 "
-P
0

- 2

0
-p(F 0

1

- ( r 0 H

, (50)

where we have put F = Fo + /*. Mence, equation (50) is of ihe form given by
equation (3). The matrices A(0, n) and A1 of equation (50) are:

LA(O,/x)]= . . . . (51)

(52)

Now, in equation (50), if we put x' = 0, we get that x2 = 0, x4 = 0 on the right
side. Moreover, p(xx) — A~Epxz = 0 and Ax3 — h(xt) = 0 as well. These equa-
tions have x, = 0 as the only (real) solution if and only if pS/i, +/?, and
p2/i3 + p3 are of the same sign. Hence, we assume that px + p2/i, > 0, p3 +
p2/j3 > 0 in what follows—note that Brann [3] has taken px > 0, with/?3 = 0 and
p = 0. With x, = 0, h(xx) = 0 trivially and hence x3 = 0. Thus, if

p,
(53)

the system (50) has the unique solution x = 0, if x' = 0, for all F (= Fo + ju).
Because x = 0 is the unique solution, there are no non-trivial equilibrium posi-
tions for the axle. Of course the converse, namely x = 0, is always a solution of
the system (50).

Now, we return to the matrix A(0, ft) in equation (51) and note that the matrix
A0 = A(0,0) has the eigenvalues:

±i/8, A , ± / X 2 >

where

2 + 1 j
A, = -Fo(2 + l ) /2 ,

(54)

( 5 5 )

(56)
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K }

We assume that ro obeys equation (57) from now on. The fact that To and ft must
be real imposes inequalities on the parameters px, hx, but these inequalities are
satisfied for the standard values assumed below. We choose /? > 0 and Fo > 0.

The eigenvalue o(fi) of A(0, /i) which coincides with //? at n — 0 is given by:

8(ii) = a'li+i(p + py), (58)

where o' is given by

i)(P
2

~ 1 2 + 1 p/7,
•- (59)

Thus a' T̂  0 and the system given by equation (50) obeys Hopfs conditions (i)
and (ii).

Taking [er] = [1,0,0,0], one can show from equations (20)-(23) that the
unique solution <KT) to the linearized problem x' = (T0/2TT)A°X, X(0) = x(27r),
of the system (50), is:

^>(T) = asinT + bcosT, (60)

where

[c] = [a] + i[b] = c,
hx-p + ipT0

A - ippT0

A - ippT0

(61)

and c, is determined from ara + brb = 2, or

c2(p2 + \){[A(hl - p2) - Pp2T2]2 +[A2 + p2p2T2]2

+ p2T2[A + p(hx-fi
2)]2}

= 2[A2 + pyr2]2. (62)

Note that era = c, ¥= 0 and, moreover,

p = = ab, prp = 1. (63)
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We now turn to the question of the orbital stability of <KT)-
If cL is the left eigenvector of A0 corresponding to //?, i.e. i{icL — cLA°, and if

we normalize cL with respect to c so that c^c, = 1, then it can be shown as in [20]
that the stability condition of Poore [28] reduces to a simple algebraic expression.
Indeed, if

Re{(/l3c2
/- + Jp3ci-)cfc1}>0, (64)

where Re denotes the real part, then <£(T) is orbitally stable. Here, c, is the
conjugate of c,, but the latter being real, c, = c,. So, we are left with a relation
connecting h^p^c^ and c%. A calculation using A0 — A(0,0) from equation (51)
shows that

APX p + ,7?ros
°2 ~c< x A - ipPr ' ( 6 5 )

and therefore c£ is known if c£ is, since the other constants in equation (65) are.
Next, using c/r, = 1, we determine c£ through equations (61), (62) and (65) as
follows:

{A - iPPT0)/c^ = (r0 +

A - if}PT0) -

- (I2 + ifiT0)/ (A - ipPT0). (66)

We can verify now from the inequality (64) whether the values of h3 and p3 used
there lead to periodically stable solutions. Only those values of /i3 and p3 leading
to orbital stability of <»(T) were used in our numerical scheme.

To answer the stability of larger amplitude oscillations, a theorem employing
Floquet theory is available [15, page 42]. In this paper, we have not explored the
stability of the large amplitude orbits, although this is being done for a more
complicated model under study.

Before moving on to the numerical values employed in the present work, it is
worth noting that the non-dimensional time used in Hopf bifurcation is not
defined by T = Vt/b as is commonly assumed in the literature on axle problems
[3]. This is because there is no a priori reason to believe T is inversely proportional
to V, which would be the case if one uses T = Vt/b. In contrast, by defining
T = 2-nt/T and finding V and T as a function of e, we permit a more general
relation to exist between V and T.
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5. Numerical values

For the axle system given by equation (50), the following constants were used
or calculated from Brann [3].

b = 71.12 cm, r = 45.72 cm, g = 981.456 cm/sec2, (67)

k = 2, I = mb2, 2 = 1 .

We also assume a total axle load of

W= 30,000 lb = 133,500 N,

and a wheelset mass

m = 907 kg.

The creep coefficients are discussed by Burton and Whitman [5,6] and are given
by

/ = /iW/2, f23 =fu = iiL6Wb/2, (68)

where /i, fiLe are the normalized creep coefficients with values

/x = 200, nL = 0.45.

We have taken nL6 from [6], with n from the Figure 3 of [4]. Now,

/ = 3 X 1 0 6 l b = 13.35 X 106JV,l , .
/23 = 15750 lb. ft = 21364.5JVm,J l ;

and

P = Mt»//i = 0.00225. (70)

Brann [3] chooses for ht, px the values /i, = 0.69 and /?, = 1.073. However we
choose values which are larger by the factors W/mg and fiW/mg respectively to
obtain

A, = 10.35, />, = 3219; (71)

and similarly A — 13.8, as chosen by Brann, is increased by the factor fiW/mg, so
we have

A = 41400. (72)

We calculate then

0 = 1 . 2 4 6 , r o = 9261.6, (73)

and the critical speed is Vo = 3.17 m/sec.
The parameters A, hx, px, (I2, To

2 have the dimension of sec"2; k and 2 are
dimensionless. Equation (62) yields for c, the value

c, = 0.852. (74)
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From equations (65)-(66) we obtain

(A - iPpT0)/c% = -5.76 X 104 + /2.14 X 108, (75)

which is used in the inequality (64), and we are led to choose h3 and p3 such that

/»3 < 311.01 A3. (76)

In Brann's work [3] it was assumed that/>3 = 0, but we take/?3 > 0 for/?, > 0 and
hz is fixed by annealing to the above inequality. In the numerical work we have
chosen

h3/hx = 0.5,1,5,"
= 0,0.2.

(77)

These values obey the restriction (76).
Employing the numerical values above and calculating the matrices M,, M2

and M3 for the axle system (50), we found the periodic motions for the yaw and
lateral displacements by using Weber's algorithm [31] as described earlier.

6. Numerical results and discussion

As pointed out in [3], if the wheels are conical and the rails flat, then in
equation (48) h(z) and p(z) are both linear in z. To allow for non-conical wheels
and non-flat rails, it has been assumed here that both h(z) and p(z) are cubic in
z. Now, because r, — r2 is expressed in terms of p(z), the parameters/?, and p3

1.0

Figure 1. The reciprocal of the speed T/ro ( = Vo/ V ) as a function of the parameter E.
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5.2

4.8

4.6

4.4

4.2

4.0

h3=0.5h, . p3 = 0.2p,
h3=h1 . p3 = 0
h3=5h, . p3=0

0.1 0.2 0.3

Figure 2. The period of oscillation T as a function of the parameter e.

have been identified with the wheel profile while the other two, viz., /i, and h3,
with the rails. However, it must be stressed that the geometry of the wheel-rail
contact is much too complex for the above simplistic identification of the
parameters with the wheel-rail profiles to be anything more than a suggestive one.

Turning now to the discussion of the figures, the first two give a picture of the
way the forward speed and the period of oscillation change with the computation
parameter e, for specified values of h3/hx and p3/pv To be specific, Figure 1 is
the plot of r / r o as a function of e, for the ratios h3/ht — 0.5,1,5 and p3/px = 0
and 0.2. We have T/To = VQ/ V from equation (48), where Vo is the critical speed
2f/mT0 ~ 3.17 m/s, and so Figure 1 shows a plot of the reciprocal of the speed
as a function of e. We see in general that V increases with e. In Figure 2, we have
a plot of the period T as a function of e over a range of wheel and rail parameters.
The period decreases as V (or e) increases and is strongly affected by changes in
h3, i.e. in the rail profile. In Figures 1 and 2 the plots for h3/hx = 1, p3 = 0 differ
only slightly from those for hi/hl = 1, p3/pt — 0.2 (not shown). It may, there-
fore, be claimed that for a given forward speed, the rail profile has a strong
influence on the period of oscillation, pushing the period down as the rail deviates
from a flat head.

Figures 3 and 4 yield the phase plane plots for the lateral motion (z, z) for
/i3//ii = 1,5 and p3 = 0. The symmetrical shape of the figures is preserved as h2

varies, but the oscillations become more pronounced for smaller h3. A similar
effect occurs for the yaw motion (6,0) plots, which are also symmetric (see
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Figure 3. Phase plane plot of the lateral motion, depending on the parameter c,

for a conical wheel with /i3 = h,.

Figure 4. Phase plane plot of the lateral motion, depending on the parameter e,

for a conical wheel with /i3 = 5Ai,.
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h3=h,

p3 = 0
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6

0 . 1 - •

-+- -+--0.07 \ -0.05 \ -0.03

- 0 . 1 - •

e = 0.1

£ = 0.2

£ = 0.3

0.03 0.05 0.07

4 0 1

Figure 5. Phase plane plot of the yaw motion, depending on the parameter E,

for a conical wheel h 3 = h t.

h3 = 5h,

p 3 = 0
0 . 1 -

£ = 0 . 1

£ = 0 . 2

£ = 0 . 3

\
- 0.06 -0.03 0.03 0.06

- 0 . 1 - -

Figure 6. Phase plane plot of the yaw motion, depending on the parameter e,

for a conical wheel with h 3 = 5h,.

Figures 5 and 6). There is very little variation for different values of p3; the plots
for h^/hf = 1, p3/Pi = 0.2 (not shown) are almost identical with those for
hJ/hl = 1, p3 — 0. In conclusion, both (z, i ) and (0,0) plots show that the
lateral and yaw motion amplitudes increase as the forward speed increases, for
any given rail and wheel profile. While the effect of wheel curvature on the lateral
motions seems to be non-existent, its effect on the yaw motion amplitude and the
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period is to increase them very slightly as the wheel profile changes from a conical
to a curved profile. On the other hand, the effect of rail curvature on the lateral
amplitude, for instance, is significant; the larger the curvature the smaller the
amplitude for a given forward speed.

0.5

0.4

0.3

0.2

0.1

0

h3 =

. - - - h a -

-

/

0.5h, , p3 = 0

h, . p3 = 0

Di l i , P3 —U

i i i •
10 12 13

Figure 7. Amplitude of the lateral motion i as a function of forward speed (expressed in ft/sec),
depending on the rail profile for a conical wheel.

In Figure 7, we have plotted the results for the amplitude z as a function of V
for the values h3/h\ = 0.5,1 and 5, for the case of a conical wheel (p3 = 0).
Evidently the amplitude decreases as the nonlinearity of the rail profile increases
i.e. the motion is more stable for nonlinear rail profiles. However, in each case,
since there are no restrictions due to a flange force the amplitude becomes large
even for small increases in speed. This situation arises in Brann's case [3] as well
—see Figure 6 of that paper.

Nomenclature

b
f
/23
/33

semi-gauge of track
lateral/longitudinal creep coefficient
spin/lateral creep coefficient
spin creep coefficient
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hx, h3 rail profile parameters
m mass of wheelset
/?,, p3 wheel profile parameters
r radius of contact of both wheels of undis-

placed axle
r,, r2 radii of contact of left and right (rear view)

wheels respectively of displaced wheelset
y lateral displacement
z non-dimensional lateral displacement
z rate of change of z
z amplitude of z
/ moment of inertia of wheelset about the

vertical axis through the center of mass
V forward speed along the track
W axle load
5,, 52 inclinations of the tangents at points of

contact of left and right wheels (rear view)
respectively to the horizontal plane

0 yaw angle
6 yaw angular velocity
fi angular velocity of wheelset = V/r
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