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Abstract: In two recent papers (Maccone 2013, 2014) as well as in the book (Maccone 2012), this author
described the Evolution of life on Earth over the last 3.5 billion years as a lognormal stochastic process in the
increasing number of living Species. In (Maccone 2012, 2013), the process used was ‘Geometric Brownian
Motion’ (GBM), largely used in Financial Mathematics (Black-Sholes models). The GBMmean value, also
called ‘the trend’, always is an exponential in time and this fact corresponds to the so-called ‘Malthusian
growth’ typical of population genetics. In (Maccone 2014), the author made an important generalization
of his theory by extending it to lognormal stochastic processes having an arbitrary trend mL(t), rather
than just a simple exponential trend as the GBM have.
The author named ‘Evo-SETI’ (Evolution and SETI) his theory inasmuch as it may be used not only to

describe the full evolution of life on Earth from RNA to modern human societies, but also the possible evo-
lution of life on exoplanets, thus leading to SETI, the current Search for ExtraTerrestrial Intelligence. In the
Evo-SETI Theory, the life of a living being (let it be a cell or an animal or a human or a Civilization of
humans or even an ET Civilization) is represented by a b-lognormal, i.e. a lognormal probability density
function starting at a precise instant b (‘birth’) then increasing up to a peak-time p, then decreasing to a sen-
ility-time s (the descending inflexion point) and then continuing as a straight line down to the death-time
d (‘finite b-lognormal’).

(1) Having so said, the present paper describes the further mathematical advances made by this author in
2014–2015, and is divided in two halves: Part One, devoted to new mathematical results about the
History of Civilizations as b-lognormals, and

(2) Part Two, about the applications of the Evo-SETI Theory to the Molecular Clock, well known to evo-
lutionary geneticists since 50 years: the idea is that our EvoEntropy grows linearly in time just as the
molecular clock.
(a) Summarizing the new results contained in this paper: In Part One, we start from the History Formulae

already given in (Maccone 2012, 2013) and improve themby showing that it is possible to determine the
b-lognormal not only by assigning its birth, senility and death, but rather by assigning birth, peak and
death (BPDTheorem: no assigned senility). This is precisely what usually happens inHistory, when the
life of a VIP is summarized by giving birth time, death time, and the date of the peak of activity in
between them, from which the senility may then be calculated (approximately only, not exactly).
One might even conceive a b-scalene (triangle) probability density just centred on these three points
(b, p, d) and we derive the relevant equations. As for the uniform distribution between birth
and death only, that is clearly the minimal description of someone’s life, we compare it with both
the b-lognormal and the b-scalene by comparing the Shannon Entropy of each, which is the measure
of how much information each of them conveys. Finally we prove that the Central Limit Theorem
(CLT) of Statistics becomes a new ‘E-Pluribus-Unum’ Theorem of the Evo-SETI Theory, giving for-
mulae by which it is possible to find the b-lognormal of the History of a CivilizationC if the lives of its
CitizensCi are known, even if only in the form of birth and death for the vast majority of the Citizens.

(b) In Part Two, we firstly prove the crucial Peak-Locus Theorem for any given trendmL(t) and not just
for the GBM exponential. Then we show that the resulting Evo-Entropy grows exactly linearly in
time if the trend is the exponential GMB trend.

(c) In addition, three Appendixes (online) with all the relevant mathematical proofs are attached to this
paper. They arewritten in theMaxima language, andMaxima is a symbolic manipulator that may be
downloaded for free from the web.

In conclusion, this paper further increases the huge mathematical spectrum of applications of the Evo-SETI
Theory to prepare Humans for the first Contact with an Extra-Terrestrial Civilization.
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PART 1: NEW RESULTS ABOUT CIVILIZATIONS
IN EVO-SETI THEORY

Introduction

Two mathematical papers were published by this author in
2013 and 2014, respectively:
(1) ‘SETI, Evolution and Human History Merged into a

Mathematical Model’, International Journal of
Astrobiology, vol. 12, issue (3), pp. 218–245 (2013) (this
will be called (Maccone 2013) in the sequel of the current
paper) and

(2) ‘Evolution and Mass Extinctions as Lognormal
Stochastic Processes’, International Journal of
Astrobiology, vol. 13, issue (4), p. 290–309 (2014) (this
will be called (Maccone 2014) in the sequel of the current
paper).

They provide the mathematical formulation of the ‘Evo-SETI
Theory’, standing for ‘a unified mathematical Theory of
Evolution and SETI’.
Hoverer, the calculations required to prove all Evo-SETI re-

sults are lengthy, and this circumstance may unfortunately
‘scare’ potential readers that would love to understand Evo-
SETI, but do not want to face all the calculations. To get
around this obstacle, the three Appendixes at the end of this
paper are a printout of all the analytical calculations that
this author conducted by the Maxima symbolic manipulator,
especially to prove the Peak-Locus Theorem described in
Section ‘Peak-Locus Theorem’. It is interesting to point out
that the Macsyma symbolic manipulator or ‘computer algebra
code’ (of which Maxima is a large subset) was created by
NASA at the Artificial Intelligence Laboratory of MIT in
the 1960s to check the equations of Celestial Mechanics that
had been worked out by hand by a host of mathematicians
in the previous 250 years (1700–1950). Actually, those equa-
tions might have contained errors that could have jeopardized
the Moon landings of the Apollo Program, and so NASA
needed to check them by computers, andMacsyma (nowadays
Maxima) did a wonderful job. Today, everyone may down-
load Maxima for free from the website http://maxima.source
forge.net/. The Appendixes of this paper are written in
Maxima language and the conventions apply of denoting
the input instructions by (%i [equation number]) and the out-
put results by (%o[equation number]), as we shall see in a
moment.
In conclusion, in order to allow non-mathematically trained

readers to appreciate this unified vision of how life developed
on Earth over the last 3.5 billion years, a ‘not-too mathe-
matical’ summary of the content of these two papers is now
provided, also enabling readers to grasp the wide spectrum of
Evo-SETI applications.

A simple proof of the b-lognormal’s pdf

This paper is based on the notion of a b-lognormal, just as are
(Maccone 2013, 2014). To let this paper be self-contained in
this regard, we now provide an easy proof of the b-lognormal

equation as a probability density function (pdf). Just start from
the well-known Gaussian or normal pdf

Gaussian or normal x ;m,s
( ) = e−(x−m)2/ 2s2( )����

2p
√

s
. (1)

This pdf has two parameters:
(1) μ turns out to be the mean value of the Gaussian and the

abscissa of its peak. Since the independent variable x may
take up any value between−1 and +1, i.e. it is a real vari-
able, so μ must be real too.

(2) σ turns out to be the standard deviation of the Gaussian
and so it must be a positive variable.

(3) Since the Gaussian is a pdf, it must fulfil the normalization
condition

∫1
−1

e−(x−m)2/ 2s2( )����
2p

√
s

dx = 1 (2)

and this is the equation we need in order to ‘discover’ the
b-lognormal. Justperform in the integral (2) the substitutionx= lnt
(where ln is the natural log). Then (2) is turned into the new integral∫1

0

e−(ln t−m)2/ 2s2( )����
2p

√
st

dt = 1. (3)

But this (3) may be regarded as the normalization condition of
another random variable, ranging ‘just’ between zero and +1,
and this new random variable we call ‘lognormal’ since it
‘looks like’ a normal one except that x is now replaced by ln t
and t now also appears at the denominator of the fraction. In
other words, the lognormal pdf is

lognormal t ;m,s
( ) = e−(ln(t)−m)2/ 2s2( )����

2p
√

s · t ,

holding for 0 ≤ t , 1,−1 , m , 1,s ≥ 0.

⎧⎨
⎩ (4)

Just one more step is required to jump from the ‘ordinary
lognormal’ (4) (i.e. the lognormal starting at t= 0) to the
b-lognormal, that is the lognormal starting at any positive in-
stant b> 0 (‘b’ stands for ‘birth’). Since this simply is a shifting
along the time axis from 0 to the new time origin b> 0, inmath-
ematical terms it means that we have to replace t by (t− b)
everywhere in the pdf (4). Thus, the b-lognormal pdf must
have the equation

b lognormal t ;m,s, b
( ) = e−(ln(t−b)−m)2/ 2s2( )����

2p
√

s · (t− b)
holding for t ≥ b and up to t = 1.

⎧⎨
⎩ (5)

The b-lognormal (5) is called ‘three-parameter lognormal’
by statisticians, but we prefer to call it b-lognormal to stress
its biological meaning described in the next section.

Defining ‘life’ in the Evo-SETI Theory

The first novelty brought by our Evo-SETI Theory is our def-
inition of life as a ‘finite b-lognormal in time’, extending from
the time of birth (b) to the time of death (d) of the living
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creature, let it be a cell, an animal, a human, a civilization of
humans or even an Extra-Terrestrial (ET) civilization.
Figure 1 shows what we call a ‘finite b-lognormal’.
On the horizontal axis is the time t ranging between b and d.

But the curve on the vertical axis is actually made up by two
curves:
(1) Between b and the ‘senility’ time s (i.e. the descending in-

flexion point of the curve) on the vertical axis are the posi-
tive numerical values taken up by the pdf (5), that we prefer
to call ‘infinite b-lognormal’ to distinguish it from the ‘fi-
nite b-lognormal’ shown in Fig. 1.

(2) Between s and d the curve is just a straight line having the
same tangent at s as the b-lognormal (5). We are not going
to derive its equation since that would take too long, but its
meaning is obvious: since nobody lives for an infinite
amount of time, it was necessary to ‘cut’ the infinite
b-lognormal (5) at the junction point s and continue it
with a simple straight line finally intercepting the time
axis at the death instant d. As easy as that.

History formulae

Having so defined ‘life’ as a finite b-lognormal, this author was
able to show that, given one’s birth b, death d and (somewhere
in between) one’s senility s, then the two parameters μ (a real
number) and σ (a positive number) of the b-lognormal (5) are
given by the two equations

s = d − s�������
d − b

√ ������
s− b

√ ,

m = ln s− b( ) + (d − s)(b+ d − 2s)
(d − b)(s− b) .

⎧⎪⎪⎨
⎪⎪⎩ (6)

These were called ‘History Formulae’ by this author for
their use in Mathematical History, as shown in the next sec-
tion. The mathematical proof of (6) is found in (Maccone
2013, p. 227–231) and follows directly from the definition
of s (as descending inflexion point) and d (as interception be-
tween the descending tangent straight line at s and the time
axis). In previous versions of his Evo-SETI Theory, the au-
thor gave an apparently different version of the History
Formulae (6) reading

s = d − s�������
d − b

√ ������
s− b

√ ,

m = ln s− b( ) + 2s2 − (3d + b)s+ d2 + b d
(d − b)s− b d + b2

.

⎧⎪⎪⎨
⎪⎪⎩ (7)

This simply was because he had not yet factorized the frac-
tion of the second equation (with apologies).

Death formula

Onemore interesting result discovered by this author, and first-
ly published by him in 2012 (Maccone 2012, Chapter 6, equa-
tion (6.30), p. 163) is the following ‘Death Formula’ (its proof
is obtained by inserting theHistory Formulae (6) into the equa-
tion for the peak abscissa, p= b+ eμ−σ2):

d = s+ b · ln(( p− b)/(s− b))
ln(( p− b)/(s− b)) + 1

. (8)

This formula allows one to compute the death time d if the
birth time b, the peak time p and the senility time s are known.
The difficulty is that, while b and p are usually well known, s is
not so, thus jeopardizing the practical usefulness of the Death
Formula (8).

Fig. 1. ‘Life’ in the Evo-SETI Theory is a ‘finite b-lognormal’made up by a lognormal pdf between birth b and senility (descending inflexion point)
s, plus the straight tangent line at s leading to death d.
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Birth–Peak–Death (BPD) theorem

This difficulty of estimating s for any b-lognormal led the au-
thor to discover the following BPD theorem that he only ob-
tained on April 4, 2015, and presented here for the first time.
Ask the question: can a given b-lognormal be entirely char-

acterized by the knowledge of its birth, peak and death only?
Yes is the answer, but no exact formula exists yielding s in
terms of (b, p, d) only.
Proof. Start from the exact Death Formula (8) and expand it

into a Taylor series with respect to s around p and, say, to order
2. The result given by Maxima is

d = p+ 2 s− p
( )− 3(s− p)2

2(b− p) + · · · . (9)

Equation (9) is quadratic equation in s that, once solved for s,
yields the second-order approximation for s in terms of (b, p, d)

s =
��
2

√ ���������������������������������
−p2 + (3d − b)p− 3bd + 2b2

√
+ p+ 2b

3
. (10)

In the practice, equation (10) is a ‘reasonable’ numeric ap-
proximation yielding s as a function of (b, p, d), and is certainly
much better that the corresponding first-order approximation
given by the linear equation

d = p+ 2 s− p
( )+ · · · (11)

whose solution simply is

s = p+ d
2

, (12)

i.e., s (to first approximation) simply is the middle point be-
tween p and d, as geometrically obvious.
However, if one really wants a better approximation than

the quadratic one (10), it is possible to expand the Death
Formula (8) into a Taylor series with respect to s around p to
third order, finding

d = p+ 2 s− p
( )+ 3(s− p)2

2(p− b) +
5(s− p)3
6(p− b)2 + · · · (13)

Equation (13) is a cubic (i.e. third-degree polynomial) in s
that may be solved for s by virtue of the well-known Cardan
(Girolamo Cardano 1501–1576) formulae that we will not re-
peat here since they are exact but too lengthy to be reproduced
in this paper.
As a matter of fact, it might even be possible to expand the

Death Formula (8) to fourth order in s around p that would
lead to the fourth-degree algebraic equation (a quartic) in s

d = p+ 2 s− p
( )+ 3(s− p)2

2(p− b) +
5(s− p)3
6(p− b)2

+ (s− p)4
2(p− b)3 + · · ·

(14)

and then solve equation (14) for s by virtue of the exact four
formulae of Lodovico Ferrari (1522–1565) (he was Cardan’s
pupil) that are huge and occupy a whole page each one.
However, this game may not go on forever: the fifth-degree

algebraic equation is not solvable by virtue of radicals and
so we must stop with degree 4.
Then there is the problem of finding which one, out of the

three (Cardan) or four (Ferrari) roots numerically is ‘the right
one’. This author thus wrote a Maxima code given here as #1
Appendix to this paper where he solved several cases of finding
s from (b, p, d) related to the important Fig. 2 of this paper.
In other words, the inputs to Table 1 of this paper were

(b, p, d) and not (b, s, d), as the author had always done previ-
ously, for instance in deriving the whole of Chapter 7 of
(Maccone 2012) back in 2012. This improvement is remark-
able since it allowed a fine-tuning of Table 1 with respect to
all similar previous material. In other words still, ‘it is easier
to assign birth, peak and death rather than birth, senility and
death’. That’s why the Theorem described in this section
was called BPD Theorem.
The reader is invited to ponder over Appendix 1 as the key to

all further, future developments in Mathematical History.

Mathematical history of nine key civilizations since
3100 BC

The author called (6) the ‘History Formulae’ since in (Maccone
2013, p. 231–235), equations (6), with the numerical values
provided there, allowed him to draw the b-lognormals of
eight leading civilizations in Western History: Greece, Rome,
Renaissance Italy, and the Portuguese, Spanish, French,
British and American (USA) Empires.
Please notice that:

(1) The data in Table 1 and the resulting b-lognormals in Fig. 2
are experimental results, meaning that we just took what
described in History textbooks (with a lot of words) and
translated that into the simple b-lognormals shown in
Fig. 2. In other words, a new branch of knowledge was
forged: we love to call it ‘Mathematical History’. More
about this in future papers.

(2) The envelope of all the above b-lognormals ‘looks like’ a
simple exponential curve. In Fig. 2, two such exponential
envelopes were drawn: the one going from the peak of
Ancient Greece (the Pericles age in Athens, cradle of
Democracy) to the peak of the British Empire (Victorian
age, the age of Darwin and Maxwell) and to the peak of
the USA Empire (Moon landings in 1969–1972). This no-
tion of b-lognormal envelope will later be precisely quanti-
fied in our ‘Peak-Locus Theorem’.

(3) It is now high time to introduce a ‘measure of evolution’
namely a function of the three parameters μ, σ and b ac-
counting for the fact that ‘the experimental Fig. 2 clearly
shows that, the more the time elapses, the more highly
peaked, and narrower and narrower, the b-lognormals
are’. In (Maccone 2013, p. 238–243), this author showed
that the requested measure of evolution is the (Shannon)
entropy, namely the entropy of each infinite b-lognormal
that fortunately has the simple equation

Hinfinite b−lognormal m,s
( ) = ln

����
2p

√
s

( )
+ m+ 1

2
. (15)
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Table 1. Birth, peak, decline and death times of nine HistoricWestern Civilizations (3100 BC - 2035 AD), plus the relevant peak heights. They are shown in Fig. 2 as nine b-lognormal
pdfs.

b= birth time p= peak time s= decline = senility time d= death time
P= peak
ordinate

Ancient Egypt 3100 BC
Lower and Upper Egypt unified.
First Dynasty.

1154 BC
Luxor and Karnak temples edified by
Ramses II by 1260 BC.

689 BC
Assyrians invade Egypt in 671 BC, leave
669 BC.

30 BC
Cleopatra dies: last
Hellenistic queen.

8.313 × 10−4

Ancient
Greece

776 BC
First Olympic Games, from which Greeks
compute years.

438 BC
Pericles’ Age.
Democracy peak.
Arts and Science peak. Aristotle.

293 BC
Alexander the Great dies in 323.
Hellenism starts in Near East.

30 BC
Cleopatra dies: last
Hellenistic queen.

2.488 × 10−3

Ancient Rome 753 BC
Rome founded.
Italy seized by Romans by 270 BC,
Carthage and Greece by 146 BC, Egypt by
30 BC. Christ born around the year 0.

117 AD
Rome at peak: Trajan in
Mesopotamia.
Christianity preached in Rome by
Saints Peter and Paul against slavery
by 69 AD.

273 AD
Aurelian builds new walls around Rome
after Military Anarchy, 235–270 AD.

476 AD
Western Roman Empire ends.
Dark Ages start in West.
Not in East.

2.193 × 10−3

Renaissance
Italy

1250
Frederick II dies.
Middle Ages end.
Free Italian towns start Renaissance.

1497
Renaissance art and architecture.
Birth of Science.
Copernican revolution (1543).

1562
Council of Trent ends in 1563.
Catholic and Spanish rule.

1660
Cimento Academy ended.
Bruno burned at stake in 1600.
Galileo dies in 1642.

5.749 × 10−3

Portuguese
Empire

1419
Madeira island discovered.
African coastline explored by 1498.

1716
Black slave trade to Brazil at its peak.
Millions of blacks enslaved or killed.

1822
Brazil independent, other colonies
retained.

1999
Last colony, Macau, lost to
Republic of China.

3.431 ×10−3

Spanish
Empire

1402
Canary islands are conquered by 1496.
Columbus discovers America in 1492.

1798
Largest extent of Spanish colonies in
America: California settled since
1769.

1844
Spanish fleet lost at Trafalgar in 1805.

1898
Last colonies lost to the USA:
Philippines, Cuba and Puerto
Rico.

5.938 × 10−3

French
Empire

1524
Verrazano first in New York bay.
Cartier in Canada, 1534.

1812
Napoleon I dominates continental
Europe and reaches Moscow.

1870
Napoleon III defeated.
Third Republic starts.
World Wars One and Two.

1962
Algeria lost as most colonies.
Fifth Republic starts in 1958.

4.279 × 10−3

British Empire 1588
Spanish Armada Defeated.
British Empire’s expansion starts.

1904
British Empire peak.
Top British Science: Faraday,
Maxwell, Darwin, Rutherford.

1947
After World Wars One and Two, India
gets independent.

1974
Britain joins the EEC and loses
most of her colonies.

8.447 × 10−3

USA Empire 1898
Philippines, Cuba, Puerto Rico seized from
Spain.

1972
Moon Landings, 1969–72: America
leads the world.

2001
9/11 terrorist attacks: decline.
Obama 2009.

2035
Singularity: computers ruling?
Will the USA yield to China?

0.013
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The proof of this result was given in (Maccone 2013,
p. 238–239). If measured in bits, as customary in Shannon’s
Information Theory, equation (15) becomes

Hinfinite b−lognormal in bits m,s
( ) = ln( ����

2p
√

s) + m+ 1/2
ln 2

. (16)

This is the b-lognormal entropy definition that was used in
(Maccone 2013, 2014) and we are going to use in this paper
also. In reality, Shannon’s entropy is a measure of the disor-
ganization of an assigned pdf fX(x), rather than a measure of
its organization. To change it into a measure of organization,
we should just drop the minus sign appearing in front of the
Shannon definition of entropy for any assigned pdf fX(x):

H = −
∫1
−1

fX x( ) · lnfX x( ) dx (17)

Wewill do so to measure Evolution of life on Earth over the
last 3.5 billion years.
The final goal of all these mathematical studies is of course to

‘prepare’ the future of Humankind in SETI, when wewill have to
face otherAlienCivilizationswhose pastmay be the future for us.

b-Scalene (triangular) probability density

Having recognized that BPD (and not birth–senility–death)
are the three fundamental instants in the lifetime of any living

creature, we are tempted to introduce a new pdf called
b-scalene, or, more completely, b-scalene triangular pdf.
The idea is easy:

(1) The horizontal axis is the time axis, denoted by t.
(2) The vertical axis is denoted by y.
(3) The b-scalene pdf starts at the instant b ‘birth’.
(4) The b-scalene pdf ends at the instant d ‘death’.
(5) Somewhere in between is located the pdf peak, having the

coordinates (p, P).
(6) The pdf between (b, 0) and (p, P) is a straight line, hereafter

called ‘first b-scalene’ (line).
(7) The pdf between (p, P) and (d, 0) is a straight line, hereafter

called ‘second b-scalene’ (line).
Let us now work out the equations of the b-scalene. First of all
its normalization condition implies that the sum of the areas of
the two triangles equals 1:

( p− b)P
2

+ (d − p)P
2

= 1. (18)

Solving equation (18) for P we get

P = 2
d − b

. (19)

Then, the equations of the two straight lines making up the
b-scalene pdf are found to be, respectively:

y = 2(t− b)
(d − b)( p− b) , for b ≤ t ≤ p (20)

Fig. 2. The b-lognormals of nineHistoricWestern Civilizations computed thanks to theHistory Formulae (6) with the three numeric inputs for b, p
and d of each Civilization given by the corresponding line in Table 1. The corresponding s is derived from b, p and d by virtue of the second-order
approximation (10) provided by the solution of the quadratic equation in the BPD theorem.
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and

y = 2(t− d)
(d − b)( p− d) , for p ≤ t ≤ d. (21)

Proof. The proofs of equations (20) and (21), as well as of all
subsequent formulae about the b-scalene, are given in #2
Appendix to the present paper. We will simply refer to them
with the numbers of the resulting equations in the Maxima
code. Thus, equation (20) corresponds to (%o15) and equation
(21) to (%o20). Also, it is possible to compute all moments
(i.e. the kth moment) of the b-scalene immediately. In fact,
Maxima yields ((%o27) and (%o28))

kb scalenekl= 2[(d− b)pk+2+(bk+2−dk+2)p+ bdk+2− bk+2d]
(d− b)(k+ 1)(k+ 2)(p− b)(p− d) .

(22)
Setting k= 0 into equation (22) yields of course the normal-

ization condition (%o29)

kb scalene0l = 1. (23)
Setting k = 1 into equation (22) yields themean value (%o30)

kb scalenel = b+ p+ d
3

. (24)

Setting k= 2 into equation (22) yields the mean value of the
square (%o32)

kb scalene2l = b2 + p2 + d2 + b p+ d p+ b d
6

. (25)

Then, subtracting the square of equation (24) into (25), one
gets the b-scalene variance (%o34)

s2
b scalene =

(d − b)2
24

. (26)

The square root of equation (26) is the b-scalene standard de-
viation (%o36)

sb scalene = d − b

2
3
2

��
3

√ . (27)

We could go on to find more descriptive statistical prop-
erties of the b-scalene, but we prefer to stop at this point.
Much more important, in fact, is to compute the Shannon
Entropy of the b-scalene. Equations (%i37) through
(%o41) show that the Shannon Entropy of the b-scalene is
given by

b scalene Shannon ENTROPY in bits

= 1+ ln((d − b)2/4)
2 ln 2

. (28)

This is a simple and important result. Since p does not ap-
pear in equation (28), the Shannon Entropy of the b-scalene
is actually independent of where its peak is!
Also, one is tempted to make a comparison between the

Entropy of the b-scalene and the Entropy of the UNIFORM
distribution over the same interval (d− b) This will be done
in the next section.

Uniform distribution between birth and death

In the Evo-SETITheory, themeaning of a uniformdistribution
over the time interval (d− b) simply is ‘we know nothing about
that living being except when he/she/it was born (at instant b)
and when he/she/it died (at instant d)’. No idea even about
when the ‘peak’ p of his/her/its activity occurred. Thus, the uni-
form distribution is the minimal amount of information about
the lifetime of someone that one might possibly have.
The pdf of the uniform distribution over the time interval

(d− b) is obviously given by the constant in time (%o43)

funiform b d t( ) = 1
d − b

, for b ≤ t ≤ d. (29)

It is immediately possible to compute all moments of the uni-
form distribution (%o44)∫d

b

tk

d − b
dt = dk+1 − bk+1

(d − b)(k + 1) . (30)

The normalization condition of equation (30) is obviously
found upon letting k= 0.
The mean value is found by letting k= 1 into equation

(30), (%o53), and is just the middle point between birth
and death

kuniform b dl = b+ d
2

. (31)

The mean value of the square is found by letting k= 2 into
equation (30) and reads (%o54)

kuniform b d2l = b2 + b d + d2

3
. (32)

Subtracting the square of equation (31) into (32), we get the
uniform distribution variance (%o58)

s2
uniform b d = (d − b)2

12
. (33)

Finally, the uniform distribution standard deviation is the
square root of (33) (%o59)

suniform in b d = d − b

2
��
3

√ . (34)

We stop the derivation of the descriptive statistics of the
uniform distribution at this point, since it is easy to find all
other formulae in textbooks. Rather, we prefer to concentrate
on the Shannon Entropy of the uniform distribution, that
upon inserting the pdf (29) into the entropy definition (17),
yields (%o62)

Uniform distribution ENTROPY in bits = ln(d − b)
ln 2

. (35)

Entropy difference between uniform and b-scalene
distributions

We are now in a position to find out the ‘Entropy Difference’
between the uniform and the b-scalene distributions.
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Subtracting equation (28) into (35) one gets (%o71)

ln(d − b)
ln 2

− 1+ ln((d − b)2/4)
2 ln 2

= ln(d − b)
ln 2

− 1
2 ln 2

− 2[ln(d − b) − ln 2]
2 ln 2

= 1− 1
2 ln 2

= 0.27865247955552.

(36)

One may say that in passing from just knowing birth and
death to knowing birth, peak and death, one has reduced the
uncertainty by 0.27865247955552 bits, or, if you prefer, the
Shannon Entropy has been reduced by an amount of
0.27865247955552 bits. Again in a colourful language, if you
just know that Napoleon was born in 1769 and died in 1821,
and then add that the peak occurred in 1812 (or at any other
date), than you have added 0.27865247955552 bits of informa-
tion about his life.
Readers might now wish to ponder over statements like the

last one about Napoleon in order build up a Mathematical
Theory of History, simply called Mathematical History.
We stop here now, but some young talent might wish to de-

velop these ideasmuchmore in depth, disregarding all criticism
and just being bold, bold, bold,. . ..

‘Equivalence’ between uniform and b-lognormal
distributions

Onemore ‘crazy idea’ suggested by the Evo-SETI Theory is the
‘equivalence’ between uniform and lognormal distributions, as
described in #2 Appendix.
The starting point is to equate the two mean values and the

two standard deviations of these two distributions and then. . .
see what comes out!

So, just equate the two mean values first, i.e. just equate
equation (31) and the well-known mean value formula for
the lognormal distribution (see Table 2, fourth line) (%o2)

b+ d
2

= e(s
2/2)+m. (37)

Similarly, we equate the uniform standard deviation (34)
and the lognormal standard deviation (see Table 2, sixth
line) and get (%o3)

d − b

2
��
3

√ = e(s
2/2)+m

������
es2−1

√
. (38)

A glance to equations (37) and (38) shows that we may elim-
inate μ upon dividing equation (38) by (37), and that yields the
resolving equation in σ (%o4)

d − b��
3

√ (b+ d) =
������
es2−1

√
. (39)

After a few steps, equation (39) may be solved for the expo-
nential, yielding (%05)

es
2 = 4(b2 + bd + d2)

3(b+ d)2 (40)

and finally, taking logs

s2 = ln
4(b2 + b d + d2)

3(b+ d)2
[ ]

. (41)

Taking the square root, equation (41) becomes

s =
�����������������������
ln

4(b2 + bd + d2)
3(b+ d)2

[ ]√
. (42)

Table 2. Summary of the properties of the b-lognormal distribution that applies to the random variable C =History in time of a certain
Civilization. This set of results we like to call ‘E-Pluribus-Unum Theorem’ of the Evo-SETI Theory.

Random variable C=History in time of a certain civilization

Probability distribution b-lognormal with parameters μ, σ and b

Probability density function fC t( ) = e−[ln(t−b)−m]2/ 2s2( )����
2p

√
s(t− b) with t ≥ b = min bi

Mean value 〈C〉 = b + eμ+(σ
2)/2

Variance s2
C = e2mes

2
es

2 − 1
( )

Standard deviation sC = emes
2/2

��������
es2 − 1

√

Mode (= abscissa of the b-lognormal peak) tmode = tpeak = p= b+ eμ−σ2

Value of the Mode Peak fC tmode( ) = fC tpeak
( ) = P = e(s

2/2)−m����
2p

√
s

Median (= fifty-fifty probability value for C) median of C = b+ em

Skewness
K3

K3/2
2

=
��������
es2 − 1

√
es

2 + 2
( )

Kurtosis
K4

K2
2

= e4s
2 + 2e3s

2 + 3e2s
2 − 6

Expression of μ in terms of the birth instants bi and death instants di
of the uniform input random variables Ci

m =∑N
i=1

kYil =
∑N
i=1

di ln(di) − bi ln(bi)
di − bi

− 1
( )

Expression of σ2 in terms of the birth instants bi and death instants di
of the uniform input random variables Ci

s2 =∑N
i=1

s2
Yi

=∑N
i=1

1− bidi ln(di) − ln(bi)[ ]2
(di − bi)2

( )
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Then, inserting equation (41) into (38) and solving the result-
ing equation for μ, one finds for μ (%o10)

m = ln

��
3

√ (b+ d)2
4
���������������
b2 + b d + d2

√
[ ]

. (43)

In conclusion, we have proven that, if we are given just the
birth and death times of the life of anyone, this uniform distri-
bution between birth and death may be converted into the
‘equivalent’ lognormal distribution starting at the same birth
instant and having the two parameters μ and σ given by, re-
spectively

m = ln

��
3

√ (b+ d)2
4
���������������
b2 + bd + d2

√
[ ]

,

s =
�����������������������
ln

4(b2 + b d + d2)
3(b+ d)2

[ ]√
.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(44)

One may also invert the system of two simultaneous equa-
tions (44). In fact, multiplying equation (37) by 2 and equation
(38) by 2

��
3

√
and then summing, b disappears and one is left

with the d expression (%o13)

d = e(s
2/2)+m 1+

��
3

√ ������
es2−1

√( )
. (45)

Similarly, multiplying equation (37) by 2 and equation (38)
by 2

��
3

√
and then subtracting, d disappears and one is left with

the b expression (%o14)

b = e(s
2/2)+m 1−

��
3

√ ������
es2−1

√( )
. (46)

In conclusion, the inverse formulae of equation (44) are

b = e(s
2/2)+m 1− ��

3
√ ������

es2−1
√( )

d = e(s
2/2)+m 1+ ��

3
√ ������

es2−1
√( )

.

⎧⎨
⎩ (47)

Let us now find how much the Shannon Entropy changes
when we replace the lognormal distribution to the uniform dis-
tribution between birth and death. We already know that the
uniform distribution entropy is the largest possible entropy,
and is given by equation (35). Then, we only need to know
that the lognormal entropy is given by the expression (%o16)
(for the proof, see, for instance, (Maccone 2012), Chapter 30,
p. 685–687)

lognormal entropy in bits = ln( ����
2p

√
s) + m+ 1/2
ln 2

(48)

Inserting equations (44) into (48) a complicated expression
would be found (%o17) that we will not re-write here. Also
the uniform entropy (35) may be rewritten in terms of μ and
σ by inserting equation (44) into it, and the result is (%o20).
At this point wemay subtract the lognormal entropy to the uni-
form entropy and so find out how much information we ‘arbi-
trarily inject into the system’ if we replace the uniform pdf by

the lognormal pdf. The result is given by (%o22) and reads

uniform pdf ENTROPY− lognormal pdf ENTROPY

=
ln 12(es2 − 1)
[ ]

+ 2m+ s2

2 ln 2
− ln( ����

2p
√

s) + m+ 1/2
ln 2

=
ln 6(es2 − 1)/ps2
[ ]

+ s2 + 1.

2 ln 2
.

(49)

Notice that, rather unexpectedly, equation (49) is independ-
ent of μ. Numerically, we may get an idea about equation (49)
in the limit case when σ? 0, then finding

lim
s�0

ln 6(es2 − 1)/ps2
[ ]

+ s2 + 1

2 ln 2
= ln(6/p) + 1

2 ln 2
= −0.254 bits. (50)

Not too a big numeric error, apparently.

b-lognormal of a civilization’s history as CLT of the
lives of its citizens

This and the following sections of Part 1 are most important
since they face mathematically the finding of the b-lognormal
of a certain Civilization in time, like any of the Civilizations
shown in Fig. 2. We claim that the b-lognormal of a
Civilization History is obtained by applying the CLT of
Statistics to the lifetimes of the millions of Citizens that make
and made up for that Civilization in time.
Though this statementmay appear rather obvious, themath-

ematics is not so, and we are going to explain it from scratch
right now.
Then:

(1) Denote by C the random variable (in time) yielding the
History of that Civilization in time. In the end, the pdf of
Cwill prove to be a b-lognormal and wewill derive this fact
as a consequence of the CLT of Statistics.

(2) Denote by Ci the random variable (in time) denoting the
lifetime of the ith Citizen belonging to that Civilization.
We do not care about the actual pdf of the random vari-
able Ci: it could be just uniform between birth and death
(in this case, Ci is the lifetime of a totally anonymous
guy, as the vast majority of Humans are, and certainly
cells are too, and so forth for other applications). Or,
on the contrary, it could be a b-scalene, as in the ex-
ample about Napoleon, born 1769, died 1821, with
peak in 1812, or this pdf could be anything else: no
problem since the CLT allows for arbitrary input pdfs.

(3) Denote by N the total number of individuals that made up
and aremaking up and will make up for the History of that
Civilization over its total existence in time, let this time be
years or centuries or millions or even billions of years (for
ET Civilizations, we suppose!). In general, this positive in-
teger numberN is going to be very large: thousands or mil-
lions or even billions, like that fact that Humans nowadays
number about 7.3 billion people. In the practice, we may
well suppose that N approaches infinity, i.e. N?1,
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which is precisely the mathematical condition requested to
apply the CLT of Statistics, as we shall see in a moment.

(4) Then consider the statistical equation

C =
∏N
i=1

Ci. (51)

This we shall call ‘the Statistical Equation of each
Civilization’ (abbreviated SEC).
What is the meaning of this equation?
Well, if we suppose that all the random variablesCi are ‘stat-
istically independent of each other’, then equation (51) is the
‘Law of Compound Probability’, well known even to begin-
ners in statistical courses. And the lifespans of Citizens Ci

almost certainly are independent of each other in time:
dead guys may hardly influence the life of alive guys!

(5) Now take the logs of equation (51). The product is con-
verted into a sum and the new form of our SEC is

lnC =
∑N
i=1

lnCi. (52)

(6) To this equation (52) we now apply the CLT. In loose
terms, the CLT states that ‘if you have a sum of a number
of independent random variables, and let the number of
terms in the sum approach infinity, then, regardless of
the actual probability distribution of each term in the
sum, the overall sum approaches the normal (i.e.
Gaussian) distribution’.

(7) And the mean value of this Gaussian equals the sum of the
mean values of the ln Ci, while the variance equals the sum
of the variances of the ln Ci. In equations, one has

lnC = normally distributed random variable (53)
with mean value given by

m = klnCl =
∑N
i=1

klnCil (54)

and variance given by

s2
lnC =

∑N
i=1

s2
lnCi

. (55)

(8) Let us now ‘invert’ equation (53), namely solve it for C.
To do so, we must recall an important theorem that is
proved in probability courses, but, unfortunately, does
not seem to have a specific name. It is the transformation
law (so we shall call it, see for instance (Papoulis & Pillai
2002, p. 130–131)) allowing us to compute the pdf of a
certain new random variable Y that is a known function
Y = g(X) of another random variable X having a known
pdf. In other words, if the pdf fX(x) of a certain random
variable X is known, then the pdf fY(y) of the new ran-
dom variable Y, related to X by the functional relation-
ship

Y = g X( ) (56)
can be calculated according to the following rules:

(a) First, invert the corresponding non-probabilistic equation
y= g(x) and denote by xi(y) the various real roots resulting
from this inversion.

(b) Second, take notice whether these real roots may be either
finitely- or infinitely-many, according to the nature of the
function y= g(x).

(c) Third, the pdf of Y is then given by the (finite or infinite)
sum

fY y
( ) =∑

i

fX (xi(y))
g′(xi(y))
∣∣ ∣∣, (57)

where the summation extends to all roots xi(y) and |g′(xi (y))| is
the absolute value of the first derivative of g(x) where the ith
root xi(y) has been replaced instead of x.
Going now back to (53), in order to invert it, i.e. in order to

find the pdf ofC, wemust apply the general transformation law
(57) to the particular transformation

y = g(x) = ex. (58)
That, upon inversion, yields the single root

x1 y
( ) = x y

( ) = ln y. (59)
On the other hand, differentiating equation (58) one gets

g′ x( ) = ex (60)
and

g′ x1 y
( )( ) = eln y = y, (61)

where equation (60) was already used in the last step. So, the
general transformation law (57) finally yields just the log-
normal pdf in y for the random variable C, the time History
of that Civilization:

fC y
( ) =∑

i

fx(xi(y))
g′(xi(y)
∣∣ ∣∣ = 1

y
∣∣ ∣∣ fY ln y

( )( )

= 1����
2p

√
sy

e−(ln(y)−m)2/ 2s2( ), for y . 0.

(62)

with μ given by equation (54) and σ given by equation (55).
This is a very important result to understand the History of
Civilizations mathematically: we now see why, for instance,
all Civilizations shown in Fig. 2 are b-lognormals in their
Historic development!
The pdf (62) actually is a b-lognormal, rather than just an

ordinary lognormal starting at zero. In fact, the instant b at
with it starts may not be smaller than the birth instant of the
first (Historically!) individual of the population. Thus, the
true b-lognormal pdf of the C Civilization is

fC t( ) = e−[ln t−b( )−m2]/ 2s2( )����
2p

√
s (t− b) with t ≥ b = min bi. (63)

The very important special case of Ci uniform
random variables: E-Pluribus-Unum Theorem

This author has discovered new, important and rather simple
equations for the particular case where the input variables Ci
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are uniformly distributed between birth and death, namely, the
pdf of each Ci is

fCi t( ) =
1

di − bi
, for bi ≤ t ≤ di. (64)

In equation (64) bi is the instant when he/she/it was born, and
di is the instant when he/she/it died. We may not know them at
all: just think of the millions of Unknown Soldiers died in
World War One and in all wars (billions?). But that will not
prevent us from doing the mathematics of equation (64).
Our primary goal now is to find the pdf of the random vari-

able Yi= ln Ci as requested by equation (52). To this end, we
must apply again the transformation law (57), this time applied
to the transformation

y = g x( ) = ln x( ). (65)
Upon inversion, equation (65) yields the single root

x1 y
( ) = x y

( ) = ey. (66)

On the other hand, differentiating equation (65) yields

g′ x( ) = 1
x

(67)

and

g′ x1 y
( )( ) = 1

x1(y) =
1
ey
, (68)

where equation (66) was already used in the last step. Then, by
virtue of the uniform pdf (64), the general transformation law
(57) finally yields

fYi y
( ) =∑

i

fx(xi(y))
g′(xi(y))
∣∣ ∣∣ = 1

di − bi
· 1
1/ey
∣∣ ∣∣

= ey

di − bi
.

(69)

In other words, the requested pdf of Yi = lnCi is

fYi y
( ) = ey

di − bi
, for ln bi ≤ y ≤ ln di. (70)

These are the probability density functions of the natural logs
of all the uniformly distributed Ci random variables. Namely, in
the colourful language of the applications of the Evo-SETI
Theory, equation (70) is the pdf of all UNKNOWN FORMS
OF LIFE, about which we only known when each of them was
born and when it died.
Let us now check that the pdf (70) fulfils indeed its normal-

ization condition

∫ln di
ln bi

fYi y
( )

dy =
∫ln di
ln bi

ey

di − bi
dy

= eln di − eln bi

di − bi
= di − bi

di − bi
= 1.

(71)

Next we want to find the mean value and standard deviation
of each Yi, since they play a crucial role for future develop-
ments. The mean value of the pdf (70) is given by either of

the following alternative forms:

kYil =
∫ln(di)
ln(bi)

y · fYi y
( )

dy =
∫ln(di)
ln(bi)

y · ey
di − bi

dy

= di[ln(di) − 1] − bi[ln(bi) − 1]
di − bi

= di ln(di) − bi ln(bi)
di − bi

− 1

= ln[(di)di/(bi)bi ]
di − bi

− 1

= ln
(di)di/ di−bi( )

(bi)bi/ di−bi( )

[ ]
− 1.

(72)

This is thus the mean value of the natural log of all the
uniformly distributed random variables Ci (just to use a few of
the above equivalent forms). Thus, the whole Civilization is a
b-lognormal with the following parameters:

m =
∑N
i=1

kYil =
∑N
i=1

di ln(di) − bi ln(bi)
di − bi

− 1
( )

=
∑N
i=1

ln
(di)di/ di−bi( )

(bi)bi/ di−bi( )

[ ]
− 1

( )

=
∑N
i=1

ln
(di)di/ di−bi( )

(bi)bi/ di−bi( )

[ ]
−N

= ln
∏N
i=1

(di)di/ di−bi( )

(bi)bi/ di−bi( )

[ ]
−N.

(73)

The last form of μ shows that the exponential of μ is

em = e−N
∏N
i=1

(di)di/ di−b( )

(bi)bi/ di−bi( ). (74)

In order to find the variance also, we must first compute the
mean value of the square of Yi, that is

kY 2
i l=

∫ln di( )

ln bi( )
y2 · fYi y

( )
dy=

∫ln di( )

ln bi( )

y2 ·ey
di−bi

dy

=di ln2 di( )−2 ln di( )+2
[ ]−bi ln2 bi( )−2 ln bi( )+2

[ ]
di−bi

.

(75)

The variance of Yi= ln(Ci) is now given by equation (75)
minus the square of equation (73), that, using the first form
of equation (73) and after a few reductions, yields:

s2
Yi

= s2
ln(Ci) =1− bi di ln(di/bi)[ ]2

(di − bi)2

=1− ln
di
bi

( ) ���
bi di

√
di−bi

⎧⎨
⎩

⎫⎬
⎭

⎡
⎣

⎤
⎦

2

.

(76)

Whence, using the first form of equation (76) and taking the
square root, yields the standard deviation of Yi

sYi = sln(Di) =
���������������������������
1− bi di[ln(di) − ln(bi)]2

(di − bi)2

√
. (77)
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Like the μ given by equation (73), equation (76) also may be
rewritten in a few alternative forms. For instance

s2
Y =

∑N
i=1

s2
Yi

=
∑N
i=1

s2
ln Ci( )

=
∑N
i=1

1− bi di[ln(di/bi)]2
(di − bi)2

( )

=N −
∑N
i=1

ln
di
bi

( ) ���
bi di

√
di−bi

⎧⎨
⎩

⎫⎬
⎭

⎡
⎣

⎤
⎦

2

.

(78)

We stop at this point, for we feel we have really proven a new
theorem, yielding the b-lognormal in time of the History of any
Civilization. This new theorem deserves a new name. We pro-
pose to call it by the Latin name of ‘E-Pluribus-Unum’Theorem.
Indeed, ‘E-Pluribus-Unum’ stands for ‘Out of Many, just

One’, and this was the official motto of the USA from 1782
to 1956, when replaced by ‘In God we trust’ (probably in op-
position to atheists views then supported by the Soviet Union).
In this author’s view, ‘E-Pluribus-Unum’ adapts well to what
we have described mathematically in the first part of this
paper about Civilizations in Evo-SETI Theory.

PART 2: NEW RESULTS ABOUT MOLECULAR
CLOCK IN EVO-SETI THEORY

Darwinian evolution as a Geometric Brownian
Motion (GBM)

In (Maccone 2013, p. 220–227), this author ‘dared’ to re-define
Darwinian Evolution as ‘just one particular realization of the
stochastic process called GBM in the increasing number of
Species living on Earth over the last 3.5 billion years’.
Now, the GBM mean value is the simple exponential func-

tion of the time

mGBM t( ) = A eBt (79)
with A and B being the positive constants. Thus, A equals
mGBM(0), the number of Species living on Earth right now, and

mGBM ts( ) = 1 (80)
represents the first ‘living Species’ (call it RNA ?) that started
life on Earth at the ‘initial instant’ ts (‘time of start’). In
(Maccone 2013, 2014) we assumed that life started on Earth
3.5 billion years ago, that is

ts = −3.5× 109 years (81)
and that the number of Species living on Earth nowadays is 50
million

A = 50× 106. (82)
Consequently, the two constants A and B in equation (79)

may be exactly determined as follows:

A = 50× 106

B = − ln(A)
ts

= 1.605× 10−16 s−1.

{
(83)

Please note that these two numbers are to be regarded as
experimental constants (valid for Earth only), just like the accel-
eration of gravity g= 9.8 m s−2, the solar constant, and other
Earthly constants.
Also, some paleontologists claim that life on Earth started

earlier, say 3.8 billion years ago. In this case, equations (83)
is to be replaced by the slightly different

A = 50× 106

B = − ln(A)
ts

= 1.478× 10−16 s−1.

{
(84)

but B did not change much, and so we will keep equations
(83) as the right values as it was done in (Maccone 2013, 2014).
Figure 3 shows two realizations of GBM revealing ‘at a

glance’ the exponential increasing mean value of this log-
normal stochastic process (see (Maccone 2013, p. 222–223)
for more details, and (Maccone 2014, p. 291–294) for a full
mathematical treatment).
Assuming GBM as the ‘curve’ (a fluctuating one!) represent-

ing the increasing number of Species over the last 3.5 billion
years has several advantages:
(1) It puts on a firm mathematical ground the intuitive notion

of a ‘Malthusian’ exponential growth.
(2) It allows for Mass Extinctions to have occurred in the past

history of life on Earth, as indeed it was the case. Mass
Extinctions in the Evo-SETI Theory are just times when
the number of living Species ‘decreased very much’ from its
exponential mean value, for instance going down by 70% just
250 million years ago, but not going down to zero, otherwise
we would not be living now. In (Maccone 2014) this author
did more modelling about Mass Extinctions.

(3) After what we just said, the two curves called ‘upper’ and
‘lower standard deviation curve’ are clearly playing a
major role in Evo-SETI Theory. They represent the aver-
age departure of the actual number of living Species from
their exponential mean value, as shown in Figure 4. In
(Maccone 2014, p. 292–293), the author proved that the
upper (plus sign) and lower (minus sign) standard devi-
ation curves of GBM (above and below the mean value ex-
ponential (79), respectively), are given by the equations

upper & lower std curves of GBM t( )
= mGBM t( ) · 1+

���������������
es

2
GBM(t−ts) − 1

√[ ]
. (85)

The new constant σGBM appearing in equation (85) (not to
be confused with the simple σ of the b-lognormal (5)) is pro-
vided by the final conditions affecting the GBM at the final in-
stant of its motion, namely zero (=now) in our conventions.
Denoting by A the current number of Species on Earth, as
we did in equations (79) and (82), and by δA the standard de-
viation around A nowadays (for instance, we assumed A to be
equal to 50 million but we might add an uncertainty of,
say, ±10 million Species around that value), then the σGBM

in equation (85) is given by

sGBM =
������������������
ln[1+ (dA/A)2]

√
����−ts

√ . (86)
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A leap forward: for any assigned mean valuemL(t) we
construct its lognormal stochastic process

A profound message was contained in (Maccone 2014) for
all future applications of lognormal stochastic processes
(both GBM and other than GBM): for any assigned at will
mean value function of the time mL(t), namely for any trend,
we are able to find the equations of the lognormal process
that has exactly that mean value, i.e. that trend !
This author was so amazed by this discovery (that he made

between September 2013 and January 2014) that he could not
give a complete account of it when he published (Maccone
2014) available in Open Access since October 2014. Thus,
the present new paper is a completion of (Maccone 2014),
but also is a leap forward in another unexpected direction:
the proof that the Molecular Clock, well-known to geneticists
for more than 50 years, may be derived mathematically as a
consequence of the Evo-SETI Theory.

Completing (Maccone 2014): letting ML(t) there be
replaced everywhere by mL(t), the assigned trend

In (Maccone 2014) this author started by considering the gen-
eral lognormal process L(t) whose pdf is the lognormal

L t( ) pdf n ;ML t( ),sL, t( ) = e− ln(n)−ML(t)[ ]2/ 2s2
L(t−ts)( )����

2p
√

sL
������
t− ts

√
n

with
n ≥ 0,

t ≥ ts,

{
and

sL ≥ 0,

ML t( ) = arbitrary function of t.

{ (87)

Equation (87) also is the starting point of all subsequent cal-
culations in the #3 Appendix, where it has the number (%o6).
Notice that the positive parameter σL in the pdf (87) is denoted
sL in the #3 Appendix, simply because Maxima did not allow

us to denote it σL for Maxima-language reasons too long to
explain! Also, mL(t) is more simply denoted m(t) in the #3
Appendix, and ML(t) is more simply denoted M(t).
The mean value, i.e. the trend, of the process L(t) is an arbi-

trary (and continuous) function of the time denoted bymL(t) in
the sequel. In equations, that is, one has, by definition

mL(t) = kL t( )l. (88)
In other words, we analytically compute the following inte-

gral, yielding the mean value of the pdf (87), getting (for the
proof, see (%o5) and (%o6) in the #3 Appendix)

mL t( ) ;
∫1
0
n · e

−[ln(n)−ML(t)]2/ 2s2
L(t−ts)( )����

2p
√

sL
������
t− ts

√
n

dn

= eML t( )e(s
2
L/2)(t−ts). (89)

This is (%o8) in the #3 Appendix, and from now on, we will
drop the usual sentence ‘in the #3Appendix’ and just report the
#3 Appendix equation numbers corresponding to the equation
numbers in this paper.
We have thus discovered the following crucial mean value

formula, holding good for the general lognormal process L(t)
inasmuch as the function ML(t) is arbitrary, and so is the
trend mL(t) (%o9)

mL t( ) = eML(t) e(s
2
L/2)(t−ts). (90)

This was done by the author in (Maccone 2014) already,
p. 292, equation (3). But at that time this author failed to invert
(90), i.e. to solve it for ML(t), with the result (%o10):

ML t( ) = ln mL t( )[ ] − s2
L

2
t− ts( ). (91)

Equation (91) shows that it is always possible to get rid of
ML(t) by substituting equation (91) into any equation

Fig. 3. Two realizations (i.e. actual instances) of Geometric Brownian Motion taken from the GBM Wikipedia site http://en.wikipedia.org/wiki/
Geometric_Brownian_motion . Please keep in mind that the name ‘Brownian Motion’ is incorrect and misleading: in fact, physicists and
mathematicians mean by ‘BrownianMotion’ a stochastic process whose pdf is Gaussian, i.e. normal. But this is not the case with GBM, whose pdf
is lognormal instead. This incorrect denomination seems to go back to the Wall Street financial users of the GBM.
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containing ML(t) and appearing in (Maccone 2014). In other
words, one may re-express all results of Maccone 2014) in
terms of the trend function mL(t) only, justifying the idea
‘you give me the trend mL(t) and I’ll give you all the equations
of the lognormal process L(t) for which m(t) is the trend’.
An immediate consequence of (91) is found by letting t= ts

((%o11) and (%o12)):

ML ts( ) = ln mL ts( )[ ], i.e. mL ts( ) = eML(ts). (92)

For instance, equation (8) on p. 292 of (Maccone 2014)
yields the σL in terms of both the initial input data (ts, Ns)
and final input data (te, Ne, δNe):

sL =
���������������������������������������������
ln[e2ML(ts) + (dNe)2(Ns/Ne)2] − 2ML(ts)

√
��������
te− ts

√ (93)

Well, this equation simplifies dramatically once equation
(92) and the initial condition (equation (5) on p. 292 of
Maccone (2014)) (%o13)

mL ts( ) = Ns (94)

are taken into account. In fact, a few steps starting from equa-
tion (93) show that, by virtue of equations (92) and (94), it

reduces to (%o31)

sL =
���������������������
ln[1+ (dNe/Ne)2]

√
��������
te− ts

√ (95)

Of course, the corresponding GBM special case of equation
(95) is (86), obtainedby letting (te= 0,Ne=A) into equation (95).
Also, equation (95) may be formally rewritten as follows:

s2
L = ln

[
1+ (dNe/Ne)2]

(te− ts) = ln 1+ dNe
Ne

( )2
[ ]1/(te−ts)⎧⎨
⎩

⎫⎬
⎭. (96)

Taking the exponential of equation (96), one thus gets a yet
unpublished equation that we shall use in a moment

es
2
L(t−ts) = 1+ dNe

Ne

( )2
[ ](t−ts)/(te−ts)

. (97)

Going back to the general lognormal process L(t), in
(Maccone 2014), Tables 1–3, we also proved that the moment
of order k (with k= 0, 1, 2, . . .) of the L(t) process is given by

k L t( )[ ]kl = mL t( )[ ]kek(k−1)s2
L(t−ts)/2 (98)

The mathematical proof of this key result by virtue Maxima
is given in the #3 Appendix, equations (%i16) through (%o21).

Fig. 4. Darwinian evolution as the increasing number of living Species on Earth between 3.5 billion years ago and now. The red solid curve is the
mean value of the GBM stochastic process, given by equation (79), while the blue dot–dot curves above and below the mean value are the two
standard deviation upper and lower curves, given by equation (105). The ‘Cambrian Explosion’ of life that started around 542 million years ago,
approximately marks in the above plot ‘the epoch of departure from the time axis for all the three curves, after which they start climbing upmore
and more’. Notice also that the starting value of living Species 3.5 billion years ago is ONE by definition, but it ‘looks like’ zero in this plot since
the vertical scale (which is the true scale here, not a log scale) does not show it. Notice finally that nowadays (i.e. at time t = 0) the two standard
deviation curves have exactly the same distance from the middle mean value curve, i.e. 30 million living Species above or below the mean value
of 50 million Species. These are assumed values that we used just to exemplify the GBM mathematics: biologists might assume other numeric
values.
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A new discovery, presented in this paper for the first time, is
that, by virtue of equation (97), equation (98) may be directly
rewritten in terms of the boundary conditions (ts, te, Ne, δNe):

k L t( )[ ]kl = mL t( )[ ]k 1+ dNe
Ne

( )2
[ ]k(k−1) (t−ts)/(2 (te−ts))

. (99)

For k= 0, both equations (98) and (99) yield the normaliza-
tion condition of L(t):

k L t( )[ ]0l = 1. (100)

For k= 1 both equations (98) and (99) yield the mean value
again

k L t( )[ ]1l = kL t( )l = mL t( ). (101)

But for k= 2 (the mean value of the square of L(t)) the nov-
elties start. In fact, equation (99) yields

k L t( )[ ]2l = mL t( )[ ]2 1+ dNe
Ne

( )2
[ ](t−ts)/(te−ts)

. (102)

Since the variance of L(t) is given by the mean value of its
square minus the square of its mean value, subtracting the
square of equation (101) into (102) yields

Variance of L t( )= mL t( )[ ]2 1+ dNe
Ne

( )2[ ](t−ts)/(te−ts)
−1

⎧⎨
⎩

⎫⎬
⎭. (103)

Table 3. Summary of the most important mathematical properties of the lognormal stochastic process L(t).

Lognormal stochastic process
L(t)

In terms of mL(t) and σL(t): In terms of mL(t) and of:
(1) the two initial inputs (ts, Ns).
(2) plus the three final inputs (te, Ne, δNe) :

b-lognormal pdf starting at ts
(%o6) L t( ) pdf n;ML t( ),sL, t( ) = e−[ln(n)−ML(t)]2/ 2s2

L(t−ts)( )����
2p

√
sL

������
t− ts

√
n

with
n ≥ 0,

t ≥ ts,

{
and

sL ≥ 0,

ML t( ) = arbitrary function of t.

{ sL =
���������������������
ln[1+ (dNe/Ne)2]

√
��������
te− ts

√ that is (%o31)

Mean value 〈L(t)〉 also called
Trend

mL t( ) = eML(t)e(s
2
L/2)(t−ts) mL(t) (arbitrarily assigned, i.e. known)

Variance mL t( )[ ]2 es
2
L(t−ts) − 1

[ ]
that is (%o25) mL t( )[ ]2 1+ dNe

Ne

( )2
[ ](t−ts)/(te−ts)

−1

⎧⎨
⎩

⎫⎬
⎭

Standard Deviation mL t( )
�������������
es

2
L(t−ts) − 1

√
that is (%o27) mL t( )

��������������������������������
1+ dNe

Ne

( )2
[ ](t−ts)/(te−ts)

−1

√√√√
All moments, i.e. k-th
moment

kL t( )lk = mL t( )[ ]kek(k−1)s2
L(t−ts)/2 that is (%o20) kL t( )lk = mL t( )[ ]k 1+ dNe

Ne

( )2
[ ]k(k−1) (t−ts)/(2(te−ts))

Upper Standard Deviation
Curve

mL t( ) 1+
�������������
es

2
L(t−ts) − 1

√[ ]
that is (%o34) mL t( ) 1+

��������������������������������
1+ dNe

Ne

( )2
[ ](t−ts)/(te−ts)

−1

√√√√
⎧⎨
⎩

⎫⎬
⎭

Lower Standard Deviation
Curve

mL t( ) 1−
�������������
es

2
L(t−ts) − 1

√[ ]
that is (%o42) mL t( ) 1−

��������������������������������
1+ dNe

Ne

( )2
[ ](t−ts)/(te−ts)

−1

√√√√
⎧⎨
⎩

⎫⎬
⎭

Mode (= peak abscissa) nmode = npeak = mL(t)
e(3/2)s

2
L(t−ts) that is (%o61) nmode = npeak = mL(t)

[1+ (dNe/Ne)2]3(t−ts)/(2(te−ts))

Ordinate of the peak =Mode
ordinate

fL(t) nmode( ) = 1

mL(t)
����
2p

√
sL

������
t− ts

√
es

2
L(t−ts) that is

(%o65)

fL(t) nmode( ) = 1

mL(t)
����
2p

√
sL

������
t− ts

√ [1+ (dNe/Ne)2](t−ts)/(te−ts)

Median (= fifty-fifty
probability)

mL(t)���������
es

2
L(t−ts)

√ that is (%o57)
mL(t)������������������������������

[1+ dNe/Ne
( )2](t−ts)/(te−ts)

√

Skewness
K3

(K2)3/2
= es

2(t−ts) + 2
[ ] �������������

es2(t−ts) − 1
√

1+ dNe
Ne

( )2
[ ](t−ts)/(te−ts)

+2

⎧⎨
⎩

⎫⎬
⎭

��������������������������������
1+ dNe

Ne

( )2
[ ](t−ts)/(te−ts)

−1

√√√√

Kurtosis
K4

(K2)2
= e4s

2(t−ts) + 2e3s
2(t−ts) + 3e2s

2(t−ts) − 6 Same with es
2
L(t−ts) = 1+ dNe

Ne

( )2
[ ](t−ts)/(te−ts)
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The square root of equation (103) is of course the standard
deviation of L(t):

Standard Deviation of L t( )

=mL t( ) ·

��������������������������������
1+ dNe

Ne

( )2
[ ](t−ts)/(te−ts)

−1

√√√√
.

(104)
This is a quite important formula for all future applications

of our general lognormal processL(t) to the Evo-SETI Theory.
Evenmore important for all future graphical representations

of the general lognormal process L(t) is the formula yielding
the upper (plus sign) and lower (minus sign) standard deviation
curves as two functions of t. It follows immediately from the
mean value mL(t) plus or minus the standard deviation (104):

Two Standard Deviation CURVES of L t( )

= mL t( ) · 1+

��������������������������������
1+ dNe

Ne

( )2
[ ](t−ts)/(te−ts)

−1

√√√√
⎧⎨
⎩

⎫⎬
⎭. (105)

Just to check that our results are correct, from (105) one may
immediately verify that:
(1) Letting t= ts in (105) yields mL(ts) as the value of

both curves. But this is the same value as the mean value
at t= ts also. Thus, at t= ts the process L(t) starts with
probability one, since all three curves are at the just the
same point.

(2) Letting t= te in (105) yields

Two Standard Deviation CURVES at te

= mL te( ) · 1+
dNe
Ne

{ }
= Ne+ dNe (106)

where mL(te) =Ne was used in the last step. This result is
correct inasmuch as the two curves intercept the vertical
line at t= te exactly at those two ordinates.

(3) Letting δNe= 0 in (105) makes the two curves coincide
with the mean value mL(t), and that is correct.

(4) As a matter of terminology, we add that the factor

�������������
es

2
L(t−ts) − 1

√
=

��������������������������������
1+ dNe

Ne

( )2
[ ](t−ts)/(te−ts)

−1

√√√√ (107)

is called ‘coefficient of variation’ by statisticians since it is
the ratio between the standard deviation and the mean
value for all time values of the L(t) process, and in particu-
lar at the end time t= te, when it equals δNe/Ne.

(5) Finally, we have summarized the content of this important
set of mathematical results in Table 3.

Peak-Locus Theorem

The Peak-Locus Theorem is a new mathematical discovery of
ours playing a central role in the Evo-SETI theory. In its most
general formulation, it holds good for any lognormal process
L(t) and any arbitrary mean value mL(t), as we show in this
section.

In words, and utilizing the simple example of the
Peak-Locus Theorem applied to GBMs, the Peak-Locus
Theorem states what shown in the Fig. 5: the family of all
b-lognormals ‘trapped’ between the time axis and the growing
exponential of the GBMs (where all the b-lognormal peaks lie)
can be exactly (i.e. without any numerical approximation)
described by three equations yielding the three parameters
μ(p), σ(p) and b(p) as three functions of the peak abscissa,
p, only.
In equations, the Peak-Locus Theorem states that the family

of b-lognormals having each its peak exactly located on the
mean value curve (88), is given by the following three equa-
tions, specifying the parameters μ(p), σ(p) and b(p), appearing
in the b-lognormal (5) as three functions of the single ‘inde-
pendent variable’ p, i.e. the abscissa (i.e. the time) of the
b-lognormal’s peak:

m p
( ) = es

2
L·p

4p[mL( p)]2
− p

s2
L

2

s p
( ) = e s2

L/2( )·p����
2p

√
mL( p)

b p
( ) = p− em( p)−[s( p)]2 .

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(108)

This general form of the Peak-Locus Theorem is proven in
the Appendix by equations (%i66) through (%o82). The re-
markable point about all this seems to be the exact separability
of all the equations involved in the derivation of equations
(108), a fact that was unexpected to this author when he discov-
ered it around December 2013. And the consequences of this
new result are in the applications:
(1) For instance in the ‘parabola model’ for Mass Extinctions

that was studied in Section 10 of (Maccone 2014).
(2) For instance to the Markov–Korotayev Cubic that was

studied in Section 12 of (Maccone 2014; Markov &
Korotayev 2007, 2008).

(3) And finally in the many stochastic processes having each a
Cubic mean value that are just the natural extension into
statistics of the deterministic Cubics studied by this author
in Chapter 10 of his book ‘Mathematical SETI’ (Maccone
2012). But the study of the Entropy of all these Cubic
Lognormal Processes has to be differed to a future research
paper.

Notice now that, in the particular case of the GBMs having
mean value eμGBM(t−ts) with μGBM=B, and starting at ts= 0
with N0 =Ns=Ne=A, the Peak-Locus Theorem (108) boils
down to the simpler set of equations

m p
( ) = 1

4pA2 − Bp

s = 1����
2p

√
A

b p
( ) = p− em( p)−s2

.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(109)

In this simpler form, the Peak-Locus Theorem was already
published by the author in Maccone (2012), while its most
general form (108) is now proven in detail.
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Proof. Let us firstly call ‘Running b-lognormal’ (abbreviated
‘RbL’) the generic b-lognormal of the family, starting at b, hav-
ing peak at p and having the variable parameters μ(p) and σ(p).
Then the starting equation of the Peak-Locus Theorem (108) is
the #3 Appendix equation (%o73) expressing the fact that the
peak of the RbL equals the mean value (90), where, however,
the old independent variable t must be replaced by the new in-
dependent variable p of the RbL, that is

es
2/2−m����
2p

√
s

= eML( p)e s2
L/2( )( p−ts). (110)

This equation may ‘surprisingly’ be separated into the fol-
lowing two simultaneous equations (%o74)

e(s
2/2)−m = e(s

2
L/2)p

1����
2p

√
s
= eML( p)e−(s2

L/2)ts.

⎧⎨
⎩ (111)

There are two advantages brought in by this separation of
variables: in the upper equation (111) the exponentials ‘dis-
appear’ yielding (%o79)

s2

2
− m = s2

L

2
p (112)

while the lower equation (111) is in σ only, and thus it may be
solved for σ immediately (%o76)

s = e s2
L/2( )tse−ML( p)����

2p
√ . (113)

Wemay now get rid ofM(p) in equation (113) by replacing it
by virtue of (91), getting, after a few steps and rewriting p in-
stead of t, (%o78)

s = e s2
L/2( )p����

2p
√

mL(p)
. (114)

which is just the middle equation (108).

Finally, equation (112) may be solved for μ (%o79).

m = s2

2
− s2

L

2
p (115)

so that, inserting equation (114) into (115), the final expression
of μ is found also (%o80)

m = es
2
Lp

4p[mL(p)]2
− s2

L

2
p. (116)

Our general Peak-Locus Theorem (108) has thus been pro-
ven completely.

tsGBM and GBM sub-cases of the Peak-Locus
Theorem

The general Peak-Locus Theorem proved in the previous sec-
tion includes, as sub-cases, many particular forms of the arbi-
trary mean-value functionmL(t). In particular, we nowwant to
consider two of them:
(1) The tsGBM, i.e. the GBM starting at any given time ts, like

the origin of life on Earth, that started at ts=−3.5 billion
years ago.

(2) The ‘ordinary’ GBM, used in the Mathematics of
Finances, starting at ts= 0. Clearly, the ordinary GBM
is, in its turn, a sub-subcase of the tsGBM.

Then, the tsGBM is characterized by the equation

mtsGBM p
( ) = mtsGBM ts( )eB( p−ts) (117)

having set in agreement with equations (79) and (90), (%o84)

B = s2
tsGBM

2
. (118)

One may determine the numeric constant B in terms of both
the initial and final conditions of the tsGBM by replacing into
equation (117) p by te (the end-time, i.e. the time of the final
condition) and then solving equation (117) for B (%o88)

B = ln(mtsGBM(te)/mtsGBM(ts))
te− ts

. (119)

Fig. 5. GBM exponential as the geometric LOCUS OF THE PEAKS of b-lognormals. Each b-lognormal is a lognormal starting at a time
(b= birth time) larger than zero and represents a different SPECIES that originated at time b of Evolution. That is CLADISTICS in our Evo-SETI
Model. It is evident that, the more the generic ‘Running b-lognormal’ moves to the right, its peak becomes higher and higher and narrower and
narrower, since the area under the b-lognormal always equals 1 (normalization condition). Then, the (Shannon) ENTROPY of the running
b-lognormal is the DEGREEOF EVOLUTION reached by the corresponding SPECIES (or living being, or civilization, or ET civilization) in the
course of Evolution.
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In the Evo-SETI Theory we assume ts to be the time of
the ‘beginning of life’, when there was only one living Species
(the first one, probably RNA, at 3.5 billion year ago on
Earth, but we do not know at what time on exoplanets) and
so we have

mtsGBM ts( ) = 1. (120)
Then equation (117) reduces to

mtsGBM p
( ) = eB( p−ts) (121)

and equation (119) reduces to

B = ln(mtsGBM(te))
te− ts

. (122)

Aswe already did in the section ‘Death Formula’, we assume
the number of living Species on Earth nowadays (i.e. at te= 0)
to be equal to 50 million, namely m(te) = 50 million. Then
equation (122) reduces to equation (83), as it must be.
Finally, the ordinary GBM subcase of tsGBM and sub-

subcase of L(t) is characterized by equation (118) and by

mGBM t( ) = AeBt. (123)
Then, inserting both equations (118) and (123) into the general
Peak-Locus Theorem (108), the latter yields equation (109) as
shown by (%o95). This is the ‘old’ Peak-Locus Theorem, firstly
discovered by this author in late 2011 and already published by
him in Chapter 8 of his 2012 book ‘Mathematical SETI’ of
2012, p. 218–219.
For more applications of the Peak-Locus Theorem to poly-

nomial mean values, see Maccone (2014) (p. 294–308).

Shannon entropy of the running b-lognormal

The Shannon Entropy of the Running b-lognormal is the key to
measure the ‘disorganization’ of what that running b-lognormal
represents, let it be a Species (in Evolution) or a Civilization (in
Human History) or even an Alien Civilization (in SETI).
As it is well known, the Shannon Entropy (17) (measured in

bits) of the Running b-lognormal having its peak at time p and
the three parameters μ, σ, b is given by (%o96) (for the proof of
this key mathematical result, please see Chapter 30 of the
author’s book ‘Mathematical SETI’, p. 685–687, the idea be-
hind the proof is to expand the log of the Shannon Entropy
of the b-lognormal, so that the calculation is split into three in-
tegrals, each of which may actually be computed exactly):

H = ln( ����
2p

√
s) + m+ 1/2
ln 2

. (124)

Having so said, the next obvious step is to insert the μ and σ
given by the Peak-Locus Theorem (108) into (124). After a few
steps, we thus obtain the Shannon Entropy of the Running
b-lognormal (see (%o97) and (%o98)):

H p,mL p
( )( ) = es

2
L·p

4p ln 2 · [mL( p)]2
− ln(mL( p))

ln 2

+ 1
2 ln 2

. (125)

This is the fundamental Shannon EntropyH of the Running
b-lognormal for any given mean valuemL(t). Notice thatH is a
function of the peak abscissa p in two ways:
(1) Directly, as in the term es

2
L·p, and

(2) Through the assigned mean value mL(p).

Introducing our. . . Evo-Entropy(p) measuring how
much a life form has evolved

The Shannon Entropy was introduced by Claude Shannon
(1916–2001) in 1948 in his seminal work about Information
Theory, dealing of course with telecommunications, channel
capacities and computers. But. . . we need something else to
measure ‘how evolved’ a life form is: we need a positive function
of the time starting at zero at the time ts of the origin of life on a
certain planet, and then increasing (rather than decreasing).
Thisnew function is easily found: it is just theShannonEntropy

(17)WITHOUTTHEMINUS SIGN INFRONTOF IT (so as
to make it an increasing function, rather than a decreasing
function) and WITH THE NUMERIC VALUE −H(ts)
SUBTRACTED, so as it starts at zero at the initial instant ts.
This new function of p we call EVO-ENTROPY

(Evolution Entropy) and its mathematical definition is thus
simply (see (%o101) and (%o102)):

EvoEntropy p,mL p
( )( )

= −H p,mL p
( )( )+H ts,mL ts( )( ). (126)

In some previous papers by this author about Evo-SETI
Theory, the Evo-Entropy (126) was called ‘Evo-Index’ (Index
of Evolution) or with other similar names, but we now prefer to
call it Evo-Entropy to make it clear that it is just the Shannon
Entropy with the sign reversed and with value zero at the origin
of life.
Next we compute the actual expression of Evo-Entropy as a

function of the only variable p, the Running b-lognormal peak.
To this end, we must first get the expression of (125) at the ini-
tial time ts. It is (%o99)

H ts,mL ts( )( ) = e p·ts

4p ln 2 · [mL(ts)]2
− ln(mL(ts))

ln 2

+ 1
2 ln 2

. (127)

Subtracting equation (127) into (125) with the minus sign re-
versed, we get the for the final (126) form of our Evo-Entropy
(%o100)

EvoEntropy p,mL p
( )( )= 1

4p ln2
es

2
L·ts

[mL(ts)]2
− es

2
L·p

[mL(p)]2
{ }

+ ln(mL(p)/mL(ts))
ln2

. (128)

The Evo-Entropy (128) is thus made up by two terms:
(1) The term

1
4p ln 2

es
2
L·ts

[mL(ts)]2
− es

2
L·p

[mL( p)]2
{ }

(129)
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we shall call the NON-LINEAR PART of the
Evo-Entropy (128), while

(2) The term

ln(mL( p)/mL(ts))
ln 2

(130)

we shall call the LINEAR PART of the Evo-Entropy
(128), as we explain in the next section.

The Evo-Entropy(p) of tsGBM increases exactly
linearly in time

Consider again the tsGBM defined by equation (117) with
(118). If we insert equation (117) into the EvoEntropy (128),
then two dramatic simplifications occur:
(1) The non-linear term (129) vanishes, inasmuch as it reduces to

1

4p ln 2[mL(ts)]2
es

2
L·ts − es

2
L·p

es
2
L·p · e−s2

L·ts

{ }
= 0. (131)

(2) The linear term (130) simplifies, yielding (%o104)

ln(mL( p)/mL(ts))
ln 2

= ln(mL(ts)eB( p−ts)/mL(ts))
ln 2

= B
ln 2

p− ts
( )

. (132)

In other words, the Evo-Entropy of tsGBM simply is the
LINEAR function of the Running b-lognormal peak p

EvoEntropytsGBM p
( ) = B

ln 2
p− ts
( )

. (133)

This is a great result! And it was already envisioned back in
2012 in Chapter 30 of the author’s book ‘Mathematical SETI’
when he found that the Evo-Entropy difference between two
Civilizations ‘with quite different levels of technological devel-
opment’ (like the Aztecs and the Spaniards in 1519) is given by
the equation

EvoEntropytsGBM p2 − p1
( ) = B

ln 2
p2 − p1
( )

. (134)

(see equation (30.29) on p. 693 of that book, where the old
minus sign in front of the Shannon Entropy still ruled because
this author had not yet ‘dared’ to get rid of it, as he did now in
the new definition (126) of EvoEntropy.
But what is the graph of this famous linear increase of

Evo-Entropy ? It is given by Fig. 6.
So, we have discovered that the tsGBM Entropy in our

Evo-SETI model and the Molecular Clock (see Nei (2013)
and Nei & Kumar (2000)) are the same linear time function,
apart for multiplicative constants (depending on the adopted
units, such as bits, seconds, etc.). This conclusion appears to
be of key importance to understand ‘where a newly discovered
exoplanet stands on its way to develop LIFE’.

Fig. 6. EvoEntropy (in bits per individual) of the latest species appeared on Earth during the last 3.5 billion years. This shows that a Man (i.e. the
leading Species nowadays) is 25.575 bits more evolved than the first form of life (call it RNA?) 3.5 billion years ago.
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Conclusions

More andmore exoplanets are now being discovered by astron-
omers either by observations from the ground or by virtue of
space missions, like ‘CoRot’, ‘Kepler’, ‘Gaia’ and other future
space missions.
As a consequence, a recent estimate sets at 40 billion the num-

ber of Earth-sized planets orbiting in the habitable zones of
Sun-like stars and red dwarf stars within theMilkyWayGalaxy.
With such huge numbers of ‘possible Earths’ in sight,

Astrobiology and SETI are becoming research fields more
and more attractive to a number of scientists.
Mathematically innovative papers like this one, revealing an

unsuspected relationship between theMolecular Clock and the
Entropy of b-lognormals in Evo-SETI Theory, should thus be
welcome.
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