THE DUAL PAIR PGL₃ $\times G_2$

BENEDICT H. GROSS AND GORDAN SAVIN

ABSTRACT. Let *H* be the split, adjoint group of type E_6 over a *p*-adic field. In this paper we study the restriction of the minimal representation of *H* to the closed subgroup PGL₃ × G_2 .

1. **Introduction.** Let *k* be a *p*-adic field, and G_2 the exceptional simple group of type G_2 over *k*. Then the product

(1.1)
$$PGL_3 \times G_2$$

is a dual pair in the split, adjoint group H of type E_6 over k [7]. We want to determine the restriction of the minimal representation [9] of H to this pair.

Let *D* be a division algebra of rank 3 over *k*, and PD^{\times} the inner form of PGL₃ over *k* associated to *D*. This group has rank 0, and is independent of the choice of *D* (as the two division algebras are opposite algebras). The product

$$(1.2) PD^{\times} \times G_2$$

is the dual pair in the inner form H_D of H, which has rank 2 over k and is associated to D. We want to determine the restriction of the minimal representation of H_D to this pair.

In this paper we give a conjectural description of these restrictions (Conjecture 3.1), and work out two special cases (Proposition 4.17 and 4.18). As a consequence we reprove a result of Shahidi [10] on generalized principal series of G_2 (Corollary 5.5).

2. **Parameters.** The dual group of PGL₃ and PD^{\times} is SL₃(\mathbb{C}). Irreducible, admissible representations π of PGL₃(k) are parametrized by homomorphisms

(2.1)
$$\varphi: W(k) \times SL_2(\mathbb{C}) \longrightarrow SL_3(\mathbb{C})$$

satisfying the usual conditions [3]. The component group A_{φ} of the centralizer of φ is either trivial, or equal to μ_3 = the center of SL₃(\mathbb{C}). The latter occurs when the resulting 3-dimensional representation of $W(k) \times SL_2(\mathbb{C})$ is irreducible.

Irreducible, admissible representations π_D of $PD^{\times}(k) = D^{\times}/k^{\times}$ are finite dimensional, and parametrized by the homomorphisms (2.1) with $A_{\varphi} = \mu_3$. For example, the

376

Received by the editors March 21, 1996.

AMS subject classification: Primary: 22E35 and 50; Secondary: 11F70.

[©] Canadian Mathematical Society 1997.

Steinberg representation St of PGL₃ has parameter φ trivial on W(k) and giving the principal SL₂(\mathbb{C}) \rightarrow SL₃(\mathbb{C}). This has $A_{\varphi} = \mu_3$, and corresponds to the trivial (= Steinberg) representation of PD^{\times} .

Let \mathbb{O} be the Q-algebra of Cayley's octonions. Then $G_2(k) = \operatorname{Aut}(\mathbb{O} \otimes k)$ is the exceptional group of type G_2 [5]. The dual group of G_2 is $G_2(\mathbb{C})$. Conjecturally, irreducible representations π' of $G_2(k)$ are parametrized by pairs (φ', χ') where

(2.2)
$$\varphi': W(k) \times \operatorname{SL}_2(\mathbb{C}) \longrightarrow G_2(\mathbb{C})$$

and χ' is an irreducible representation of the component group $A_{\varphi'}$ of the centralizer of φ' .

Let ξ be a 3-rd root of unity in \mathbb{O} . Then the map

$$g(x) = \xi x \xi^{-1}$$

gives an automorphism of order 3 of \mathbb{O} , hence an element of order 3 in $G_2(\mathbb{C})$. The centralizer of g in $G_2(\mathbb{C})$ is isomorphic to $SL_3(\mathbb{C})$. We fix an embedding

$$(2.4) f: SL_3(\mathbb{C}) \to G_2(\mathbb{C})$$

The normalizer of g in $G_2(\mathbb{C})$ contains $SL_3(\mathbb{C})$ with index 2, and induces the outer automorphism

(2.5)
$$i(A) = {}^{t}A^{-1}$$

of $SL_3(\mathbb{C})$.

If φ is a parameter for PGL₃ or PD[×] as in (2.1), then the composition $\varphi' = f \circ \varphi$ is a parameter for G_2 as in (2.2). The map f induces a homomorphism

$$(2.6) f_*: A_{\varphi} \to A_{\varphi'}$$

PROPOSITION 2.7. The map f_* is injective, and has image a normal subgroup of index 1 or 2.

PROOF. This is proved by direct computation, using [4]. The case $A_{\varphi'} = S_3$ occurs precisely when Im(φ), the image of $W(k) \times SL_2(\mathbb{C})$ under φ , acts irreducibly on \mathbb{C}^3 and is contained in $SO_3(\mathbb{C})$. The case $A_{\varphi'} = \mu_2$ occurs when Im(φ) stabilizes a unique line and is contained in $S(O_1(\mathbb{C}) \times O_2(\mathbb{C})) = O_2(\mathbb{C})$, or when the image is $S(O_1(\mathbb{C})^3) = \mu_2^2$.

3. **Conjectures.** Let π be an irreducible representation of PGL₃(k). We define $\Theta(\pi)$ as the set of irreducible representations of π' of $G_2(k)$ such that $\pi \otimes \pi'$ is a quotient of the minimal representation of H. Let π_D be an irreducible representation of D^{\times}/k^{\times} . We define $\Theta(\pi_D)$ as the set of irreducible representations of π' of $G_2(k)$ such that $\pi_D \otimes \pi'$ is a quotient of the minimal representation of H_D .

CONJECTURE 3.1. Let φ : $W(k) \times SL_2(\mathbb{C}) \longrightarrow SL_3(\mathbb{C})$ be a parameter of π or π_D . Then

- (1) $\Theta(\pi)$ is the set of π' whose parameters (φ', χ') satisfy: $\varphi' = f \circ \varphi$ and $\chi' \circ f_* = 1$.
- (2) $\Theta(\pi_D) \cup \Theta(\pi_D^{\vee})$ is the set of π' whose parameters (φ', χ') satisfy: $\varphi' = f \circ \varphi$ and $\chi' \circ f_* \neq 1$.

A simple consequence of this would be that a representation π' of $G_2(k)$ occurs as a quotient of one of the minimal representations if and only its Langlands parameter φ' is lifted from SL₃. It then occurs in precisely one of the sets $\Theta(\pi)$ or $\Theta(\pi_D) \cup \Theta(\pi_D^{\vee})$, depending on the restriction of χ' to the subgroup $f_*(A_{\varphi})$ of $A_{\varphi'}$.

Since the minimal representation of H extends to Aut(H), and the outer automorphism of H fixes G_2 and induces the outer automorphism of PGL₃, we have

$$\Theta(\pi) = \Theta(\pi^{\vee}).$$

This is compatible with Conjecture 3.1, for if φ is the parameter of π , then $i \circ \varphi$ is the parameter of π^{\vee} . Furthermore, the two lifted parameters $f \circ \varphi$ and $f \circ i \circ \varphi = i \circ f \circ \varphi$ are equivalent in $G_2(\mathbb{C})$.

4. Some examples. We now give some examples of Conjecture 3.1. Recall that for each semi-simple conjugacy class *s* in SL₃(\mathbb{C}), there is an unramified representation $\pi(s)$ of PGL₃(*k*) with Satake parameter *s*. Similarly, if *s'* is a semi-simple conjugacy class in $G_2(\mathbb{C})$, there is an unramified representation $\pi(s')$ of $G_2(k)$ with Satake parameter *s'*. The parameter φ of $\pi(s)$ is trivial on SL₂(\mathbb{C}) and on the inertia subgroup of *W*(*k*), and $s = \varphi(Fr)$. Let s' = f(s). Then Conjecture 3.1 predicts that

(4.1)
$$\Theta(\pi(s)) = \{\pi(s')\}.$$

This statement has been checked for tempered $\pi(s)$ in [7]. Recall that $\pi(s)$ is tempered if *s* is contained in a compact subgroup of SL₃(\mathbb{C}).

Let St be the Steinberg representation of PGL₃(k), and 1_D the trivial (=Steinberg) representation of D^{\times}/k^{\times} . These have parameter φ trivial on W(k) and giving the embedding of the principal SL₂(\mathbb{C}) \rightarrow SL₃(\mathbb{C}). The parameter $\varphi' = f \circ \varphi$ gives the sub-regular SL₂(\mathbb{C}) in $G_2(\mathbb{C})$, with $A_{\varphi'} = S_3$. The corresponding *L*-packet on $G_2(k)$ has 3 members [8], p. 482

(4.2)
$$\{\pi'_{gen}, \pi'_{I}, \pi'_{sc}[1]\}$$

where π'_{gen} is the unique element with a Whittaker model, and with a 3-dimensional space of Iwahori invariants and was studied by Lusztig [6]. The representation π'_I has a 1-dimensional space of Iwahori invariants; it is square integrable and was studied by Borel [2]. Finally, π'_{sc} [1] is unipotent super-cuspidal, and induced from the unipotent cuspidal representation of $G_2(O_k)$ (pulled back from $G_2(q)$) of dimension $q(q-1)^2(q^3+1)/6(q+1)$. We predict that:

(4.3)
$$\begin{cases} \Theta(\mathsf{St}) = \{\pi'_{gen}, \pi'_{sc}[1]\}\\ \Theta(1_D) = \{\pi'_I\}. \end{cases}$$

Now let χ be an unramified cubic character of k^{\times} . We have the twisted representations St $\otimes \chi$ and $\chi_D = 1_D \otimes \chi$. The corresponding parameter has $A_{\varphi} = A_{\varphi'} = \mu_3$, and the lifted *L*-packet on $G_2(k)$ has 3 members [8], p. 482

(4.4)
$$\{\pi'_{gen}, \pi'_{sc}[\xi], \pi'_{sc}[\xi^2]\}$$

where π'_{gen} is the unique element with a Whittaker model, and $\pi'_{sc}[\xi^a]$ are unipotent supercuspidal representations of $G_2(O_k)$ (pulled back from $G_2(q)$) of dimension $q(q^2 - 1)^2/3$. We predict that:

(4.5)
$$\begin{cases} \Theta(\operatorname{St}\otimes\chi) = \Theta(\operatorname{St}\otimes\chi^2) = \{\pi'_{gen}\}\\ \Theta(\chi_D) \cup \Theta(\chi_D^2) = \{\pi'_{sc}[\xi], \pi'_{sc}[\xi^2]\}. \end{cases}$$

These predictions are consistent with the following. Let *K* be the special maximal compact subgroup of H_D with reduction $D_4^3(q)$. Then the minimal *K*-type of the minimal representation of H_D should be the reflection representation of $D_4^3(q)$, of dimension $q^5 - q^3 + q$. This representation, restricted to $G_2(q)$, is a sum of 3 representations, 2 of which are the unipotent cuspidal of dimension $q(q^2 - 1)^2/3$.

Let \tilde{Q}_1 and \tilde{Q}_2 be the two non-conjugated maximal parabolic subgroups of $GL_3(k) = GL(W_3)$ stabilizing 1-dimensional space W_1 and 2-dimensional space W_2 in W_3 , respectively. We fix $W_1 \subset W_2$. Their Levi factors are $GL(W_1) \times GL(W_1^{\perp})$ and $GL(W_2) \times GL(W_2^{\perp})$ respectively, where W_1^{\perp} and W_2^{\perp} are annihilators of W_1 and W_2 in W_3^* . The corresponding maximal parabolic subgroups in PGL₃ will be denoted by $Q_1 = L_1U_1$ and $Q_2 = L_2U_2$. We have isomorphisms

(4.6)
$$\begin{cases} L_1 \cong \operatorname{GL}(W_1^{\perp}) \\ L_2 \cong \operatorname{GL}(W_2). \end{cases}$$

The modular characters of L_1 and L_2 are

(4.7)
$$\rho_1(g) = |\det g|^{1/2} \text{ and } \rho_2(g) = |\det g|^{1/2}.$$

Let τ be a self-contragredient, super-cuspidal representation of $GL(W_2)$. Let $\tau_s = \tau \otimes |\det|^s$. Then the generalized principal series of $PGL_3(k)$

(4.8)
$$\begin{cases} \pi_1(s) = \operatorname{Ind}_{Q_1}^{\operatorname{PGL}_3}(\tau_s) \\ \pi_2(s) = \operatorname{Ind}_{Q_2}^{\operatorname{PGL}_3}(\tau_s) \end{cases}$$

are irreducible, and we have isomorphisms

(4.9)
$$\begin{cases} \pi_1^{\vee}(s) = \pi_2(s) \\ \pi_2^{\vee}(s) = \pi_1(s). \end{cases}$$

The parameter φ of $\pi(0) = \pi_1(0) = \pi_2(0)$ is trivial on SL₂(\mathbb{C}), and factorizes through

(4.10)
$$\varphi: W(k) \to \operatorname{GL}_2(\mathbb{C}) \to \operatorname{SL}_3(\mathbb{C}),$$

where $W(k) \to \operatorname{GL}_2(\mathbb{C})$ is the parameter of τ , and $\operatorname{GL}_2(\mathbb{C})$, is a Levi factor of a maximal parabolic subgroup of $\operatorname{SL}_3(\mathbb{C})$, stabilizing a line in \mathbb{C}^3 . Let χ_{τ} be the central character of τ . Note that $\chi_{\tau}^2 = 1$, since $\tau \cong \tau^{\vee}$. The image of φ is contained in

(4.11)
$$\begin{cases} \operatorname{SL}_2(\mathbb{C}) \text{ if } \chi_{\tau} = 1\\ O_2(\mathbb{C}) \text{ if } \chi_{\tau} \neq 1. \end{cases}$$

Maximal parabolic subgroups of $G_2(k)$ can be defined as stabilizers of non-trivial nil subalgebras of $0 \otimes k$. A nil subalgebra is a subspace consisting of traceless elements with trivial multiplication (*i.e.* the product of any two elements is 0). The possible dimensions are 1 and 2. Fix $V_1 \subset V_2$, a pair of nil-subalgebras. Then $P_1 = M_1N_1$ and $P_2 = M_2N_2$, the stabilizers of V_1 and V_2 , are two non-conjugated maximal parabolic subgroups of G_2 , with $P_1 \cap P_2$ a Borel subgroup. Let

(4.12)
$$V_3 = \{x \in \mathbb{O} \otimes k \mid \bar{x} = -x, \text{ and } x \cdot V_1 = 0\}$$

We have isomorphisms

(4.13)
$$\begin{cases} M_1 \cong \operatorname{GL}(V_3/V_1) \\ M_2 \cong \operatorname{GL}(V_2). \end{cases}$$

The action of the Levi factor of P_1 on V_1 is given by det, and the modular characters are

(4.14)
$$\rho_1'(g) = |\det(g)|^{5/2} \text{ and } \rho_2'(g) = |\det(g)|^{3/2}$$

Let τ be as above, and define a generalized principal series by

(4.15)
$$I_2(s) = \operatorname{Ind}_{P_2}^{G_2}(\tau_s).$$

If s > 0, then $I_2(s)$ has unique (Langlands') quotient $\pi'_2(s)$; equivalently, $\pi'_2(s)$ is unique submodule of $I_2(-s)$. The parameter φ' of $\pi'_2(s)$ is $f \circ \varphi$, where φ is the parameter of $\pi_1(s)$ or $\pi_2(s)$. Also, using (4.11), it is easy to see that the centralizer $A_{\varphi'}$ of the parameter φ' of $I_2(0)$ is

(4.16)
$$\begin{cases} 1 \text{ if } \chi_{\tau} = 1 \\ \mu_2 \text{ if } \chi_{\tau} \neq 1 \end{cases}$$

Therefore, $I_2(0)$ should be irreducible unless $\chi_{\tau} \neq 1$, in which case $I_2(0) = \pi'_2 + \pi'_{2,gen}$, where $\pi'_{2,gen}$ is unique generic summand. This was shown by Shahidi [10]. Hence Conjecture 3.1 predicts the following.

PROPOSITION 4.17. If s > 0, then

$$\Theta(\pi_1(s)) = \Theta(\pi_2(s)) = \{\pi'_2(s)\}.$$

Also,

$$\Theta(\pi(0)) = \begin{cases} \{I_2(0)\} \text{ if } \chi_\tau = 1\\ \{\pi'_2, \pi'_{2,gen}\} \text{ if } \chi_\tau \neq 1. \end{cases}$$

PROOF. In the next section.

Let π' be an irreducible representation of $G_2(k)$. We define $\Theta_H(\pi')$ as the set of irreducible representations of π of PGL₃(k) such that $\pi \otimes \pi'$ is a quotient of the minimal representation of *H*. Conjecture 3.1 predicts the following.

PROPOSITION 4.18. If s > 0,

$$\Theta_H(\pi'_2(s)) = \{\pi_1(s), \pi_2(s)\}.$$

Also, if $\chi_{\tau} \neq 1$,

$$\Theta_H(\pi'_2) = \Theta_H(\pi'_{2,gen}) = \{\pi(0)\}.$$

PROOF. In the next section.

Finally, let $\pi'_1(s)$, (s > 0), be the Langlands' quotient of the other generalized principal series $I_1(s) = \text{Ind}_{P_1}^{G_2}(\tau_s)$. Conjecture 3.1 predicts that $\pi'_1(s)$ does not appear in the restriction of the minimal representations of H and H_D . In particular,

(4.19)
$$\Theta_H(\pi'_1(s)) = \emptyset.$$

5. Some calculations. We now proceed to show Proposition 4.17. Assume that $s \ge 0$, and let π' be in $\Theta(\pi_1(s))$. Since $\pi_1(s) = \pi_2(-s)$, by Frobenius reciprocity,

(5.1)
$$\operatorname{Hom}_{\operatorname{PGL}_3(k)\times G_2(k)}(\Pi, \pi_2(-s)\otimes \pi') = \operatorname{Hom}_{L_2(k)\times G_2(k)}(\Pi_{U_2}, \tau_{-s+\frac{1}{2}}\otimes \pi')$$

where $\frac{1}{2}$ enters through the normalization of parabolic induction. Hence we need to find out for which π' , $\tau_{-s+\frac{1}{2}} \otimes \pi'$ is a quotient of Π_{U_2} .

The structure of the $L_2(k) \times G_2(k)$ -module Π_{U_2} , is given by [7; Theorem 4.3]. To describe the needed result, we need some additional notation. There exists (see [7]) a maximal parabolic $\Omega_2 = \Omega_2 \mathfrak{U}_2$ in *H* whose Levi factor Ω_2 is of type D_5 , and such that

(5.2)
$$\begin{cases} (\operatorname{PGL}_3 \times G_2) \cap \mathfrak{L}_2 = L_2 \times G_2 \\ \operatorname{PGL}_3 \cap \mathfrak{ll}_2 = U_2. \end{cases}$$

Let *B* be a Borel subgroup of $GL(W_2)$, stabilizing the line W_1 .

PROPOSITION 5.3 [7; THEOREM 4.3]. Let $GL_2(k) = GL(W_2)$ be the Levi factor of Q_2 . Then the $GL_2(k) \times G_2(k)$ -module Π_{U_2} has a filtration

$$0 = \Pi_0 \subset \Pi_1 \subset \Pi_2 \subset \Pi_3 = \Pi_{U_2}$$

such that

(1) $\Pi_1/\Pi_0 \cong |\det|^2 \otimes \operatorname{ind}_{\operatorname{GL}_2 \times P_2}^{\operatorname{GL}_2 \times G_2} \left(C_c^{\infty}(\operatorname{GL}_2) \right)$ (2) $\Pi_2/\Pi_1 \cong |\det|^2 \otimes \operatorname{ind}_{B \times P_1}^{\operatorname{GL}_2 \times G_2} \left(C_c^{\infty}(\operatorname{GL}_1) \right)$ (3) $\Pi_3/\Pi_2 = \Pi_{ll_2} \cong |\det| \otimes \Pi(\mathfrak{L}_2) + |\det|^2 \otimes 1$

Here det is the usual determinant on $GL(W_2)$, and the induction ind is not normalized. In (1), $C_c^{\infty}(GL_2)$ is the regular representation of

$$GL(W_2) \times GL(V_2).$$

In (2), $C_c^{\infty}(GL_1)$ is the regular representation of

$$GL(W_1) \times GL(V_1).$$

In (3), $\Pi(\mathfrak{L}_2)$ is the minimal representation of \mathfrak{L}_2 . The center of \mathfrak{L}_2 , which coincides with the center of $GL(W_2)$, acts trivially on $\Pi(\mathfrak{L}_2)$.

Next, we need the following

LEMMA 5.4. If $\chi_{\tau} \neq 1$ or $s \neq -1/2$, then $\tau_{-s+\frac{1}{2}} \otimes \pi'$ is a quotient of Π_{U_2} if and only if it is a quotient of Π_1 .

PROOF. The center of $GL(W_2)$ acts on $\tau_{-s+\frac{1}{2}}$ by $\chi_{\tau} \cdot |\cdot|^{1-2s}$, and on $|\det| \otimes \Pi(\mathfrak{L}_2)$ by $|\cdot|^2$. If $\chi_{\tau} \neq 1$ or $s \neq -1/2$, then these two central characters are different, hence $\tau_{-s+\frac{1}{2}} \otimes \pi'$ is a quotient of Π_{U_2} if and only if it is a quotient of Π_2 . Since τ is a supercuspidal representation, $\tau_{-s+\frac{1}{2}} \otimes \pi'$ is a quotient of Π_2 if and only if it is a quotient of Π_1 . This proves the lemma.

By the Peter-Weyl, $|\det|^2 \otimes C_c^{\infty}(\mathrm{GL}_2)$ has

 $\tau_{-s+\frac{1}{2}}\otimes\tau_{s+\frac{3}{2}}$

as unique $\operatorname{GL}_2(k) \times \operatorname{GL}_2(k)$ -invariant quotient transforming as $\tau_{-s+\frac{1}{2}}$ under the first factor. Hence $\tau_{-s+\frac{1}{2}} \otimes \pi'$ is a quotient of Π_1 , if and only if π' is a quotient of $I_2(s)$. Hence we obtain $\Theta(\pi_1(s)) = {\pi'_2(s)}$ if s > 0, and the second statement of Proposition 4.17. The statement $\Theta(\pi_2(s)) = {\pi'_2(s)}$ follows from (3.2) and (4.9).

COROLLARY 5.5. (Shahidi). Assume that $s \neq 0$. If $\chi_{\tau} \neq 1$, or $\chi_{\tau} = 1$ and $s \neq \pm 1/2$, then $I_2(s)$ is irreducible.

PROOF. Assume that s > 0. By (4.17) we know that $\pi_1(s) \otimes \pi'_2(s)$ is a quotient of Π . By Frobenius reciprocity, $\tau_{s+\frac{1}{2}} \otimes \pi'_2(s)$ is a quotient of Π_{U_2} , and if $\chi_{\tau} \neq 1$ or $s \neq \frac{1}{2}$, then it must be a quotient of Π_1 , as in Lemma 5.4. Hence $\pi'_2(s)$ is a quotient of $I_2(-s)$. However, $\pi'_2(s)$ is unique submodule of I'(-s). Both are possible only if $I_2(-s)$ is irreducible. Since $I_2(s) \cong I_2(-s)^{\vee}$, the corollary follows.

We now check Proposition 4.18. Let $s \ge 0$, and let π' be a submodule of $I_2(-s)$. Then, by Proposition 4.17,

(5.6)
$$\{\pi_1(s), \pi_2(s)\} \subseteq \Theta_H(\pi').$$

Let π be in $\Theta_H(\pi')$. By Frobenius reciprocity,

(5.7)
$$\operatorname{Hom}_{\operatorname{PGL}_{3}(k)\times G_{2}(k)}\left(\Pi,\pi\otimes I_{2}(-s)\right) = \operatorname{Hom}_{\operatorname{PGL}_{3}(k)\times M_{2}(k)}(\Pi_{N_{2}},\pi\otimes \tau_{-s+\frac{3}{2}})$$

where $\frac{3}{2}$ enters through the normalization of parabolic induction. We need to find out for which π , $\pi \otimes \tau_{-s+\frac{3}{2}}$ is a quotient of Π_{N_2} .

The structure of the PGL₃(k) × $M_2(k)$ -module Π_{N_2} , is given by [7; Theorem 7.6]. To describe the needed result, we need some additional notation. There exists (see [7]) a maximal parabolic $\mathfrak{P}_2 = \mathfrak{M}_2 \mathfrak{N}_2$ in H whose Levi factor \mathfrak{M}_2 is of type A_5 , and such that

(5.8)
$$\begin{cases} (\operatorname{PGL}_3 \times G_2) \cap \mathfrak{M}_2 = M_2 \times \operatorname{PGL}_3 \\ G_2 \cap \mathfrak{N}_2 = N_2. \end{cases}$$

Let *B* be the Borel subgroup of $GL(V_2)$, stabilizing the line V_1 , and $Q = Q_1 \cap Q_2$ the Borel subgroup of PGL₃ stabilizing the line $W_1 \otimes W_2^{\perp}$.

PROPOSITION 5.9 [7; THEOREM 7.6]. Let $GL_2(k) = GL(W_2)$ be the Levi factor of P_2 . Then the $PGL_3(k) \times GL_2(k)$ -module Π_{N_2} has a filtration

$$0 = \Pi_0 \subset \Pi_1 \subset \Pi_2 \subset \Pi_3 = \Pi_{N_2}$$

such that

(1) $\Pi_1/\Pi_0 \cong \operatorname{ind}_{Q_1 \times \operatorname{GL}_2}^{\operatorname{PGL}_3 \times \operatorname{GL}_2} \left(C_c^{\infty}(\operatorname{GL}_2) \right) \otimes |\det|^2 + \operatorname{ind}_{Q_2 \times \operatorname{GL}_2}^{\operatorname{PGL}_3 \times \operatorname{GL}_2} \left(C_c^{\infty}(\operatorname{GL}_2) \right) \otimes |\det|^2$ (2) $\Pi_2/\Pi_1 \cong \operatorname{ind}_{Q \times B}^{\operatorname{PGL}_3 \times \operatorname{GL}_2} \left(C_c^{\infty}(\operatorname{GL}_1) \right) \otimes |\det|^2$ (3) $\Pi_3/\Pi_2 = \Pi_{\mathfrak{R}_2} \cong \Pi(\mathfrak{M}_2) \otimes |\det|^{\frac{3}{2}} + 1 \otimes |\det|^2.$

Here det is the usual determinant on $GL(V_2)$, and the induction ind is not normalized. In (1), $C_c^{\infty}(GL_2)$ is the regular representation of

$$GL(W_1^{\perp}) \times GL(V_2)$$
 and $GL(W_2) \times GL(V_2)$

respectively. In (2), $C_c^{\infty}(GL_1)$ is the regular representation of

$$GL(W_1 \otimes W_2^{\perp}) \times GL(V_1).$$

In (3), $\Pi(\mathfrak{M}_2)$ is the minimal representation of \mathfrak{M}_2 . The center of \mathfrak{M}_2 , which coincides with the center of $GL(V_2)$, acts trivially on $\Pi(\mathfrak{M}_2)$.

Similar to Lemma 5.4, one proves:

LEMMA 5.10. If $\chi_{\tau} \neq 1$ or $s \neq 0$, then $\pi \otimes \tau_{-s+\frac{3}{2}}$ is a quotient of Π_{N_2} if and only if it is a quotient of Π_1 .

By the Peter-Weyl, $C_c^{\infty}(\text{GL}_2) \otimes |\det|^2$ has

 $\tau_{s+\frac{1}{2}}\otimes\tau_{-s+\frac{3}{2}}$

as unique $\operatorname{GL}_2(k) \times \operatorname{GL}_2(k)$ -invariant quotient transforming as $\tau_{-s+\frac{3}{2}}$ under the second factor. Hence $\pi \otimes \tau_{-s+\frac{3}{2}}$ is a quotient of Π_1 , if and only if π is a quotient of (hence isomorphic to) $\pi_1(s)$, or $\pi_2(s)$. Therefore $\Theta_H(\pi') \subseteq {\pi_1(s), \pi_2(s)}$, and Proposition 4.18 follows from (5.6).

REFERENCES

- 1. M. Aschbacher, The 27-dimensional module for E₆. I, Invent. Math. 89(1987), 159-196.
- A. Borel, Admissible representations of semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math. 35(1976), 233–259.
- **3.** B. H. Gross and D. Prasad, On the decomposition of a representation of SO_n when restricted to SO_{n-1} , Can. J. Math. **44**(1992), 974–1002.
- 4. B. H. Gross and G. Savin, Motives with Galois group G2, (1996), preprint.
- 5. N. Jacobson, Automorphisms of composition algebras, Rend. Palermo, 1958.
- G. Lusztig, Some examples of square integrable representations of semisimple p-adic groups, Tran. Am. Math. Soc. 277(1983), 623–653.
- 7. K. Magaard and G. Savin, Exceptional Θ -correspondences, Compositio, to appear.
- 8. M. Reeder, Iwahori spherical discrete series, Annales ENS 27(1994), 463-491.

BENEDICT H. GROSS AND GORDAN SAVIN

- **9.** G. Savin, Dual pair $G_J \times PGL_2$; G_J is the automorphism group of the Jordan algebra J, Invent. Math. **118**(1994), 141–160.
- **10.** F. Shahidi, *Langlands' conjecture on Plancherel measures for p-adic groups*. In: Harmonic Analysis on Reductive Groups, Bowdoin College, Birkhauser, 1991.

Department of Mathematics Harvard University Cambridge, MA USA 02138 e-mail: gross@math.harvard.edu Department of Mathematics University of Utah Salt Lake City, UT USA 84112 e-mail: savin@math.utah.edu

384