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Abstract
Numerical computation is traditionally performed using floating-point arithmetic and truncated forms
of infinite series, a methodology which allows for efficient computation at the cost of some accuracy. For
most applications, these errors are entirely acceptable and the numerical results are considered trustwor-
thy, but for some operations, we may want to have guarantees that the numerical results are correct, or
explicit bounds on the errors. To obtain rigorous calculations, floating-point arithmetic is usually replaced
by interval arithmetic and truncation errors are explicitly contained in the result. We may then ask the
question of which mathematical operations can be implemented in a way in which the exact result can
be approximated to arbitrary known accuracy by a numerical algorithm. This is the subject of computable
analysis and forms a theoretical underpinning of rigorous numerical computation. The aim of this article
is to provide a straightforward introduction to this subject that is powerful enough to answer questions
arising in dynamic system theory.
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1. Introduction
In this paper, we develop a theory of computation for continuous mathematics. The aim of this
paper is to give an exposition which is explicitly based on Turing machine model of computation,
is powerful enough to study real computational problems arising in practice (taken from the areas
of dynamical systems and control theory), yet is as straightforward and direct as possible, and uses
terminology which is natural in classical topology and analysis.

Themain idea is to consider whichmathematical operations are computable, by which wemean
that the result can be computed by a program running on a digital computer. Since we are deal-
ing with objects from continuous mathematics, we are typically dealing with uncountable sets of
objects (such as the real numbers), so we cannot specify an arbitrary object with a finite amount of
data. However, the objects we consider form topological or metric spaces and can be approximated
arbitrarily accurately with a finite amount of data. Hence, we describe an object by an infinite
stream of data, but in such a way that useful information can be obtained from a finite amount of
data. The inherent use of approximations means that there is a very close link between topology
and representations; indeed any representation of a set of objects induces a natural topology on
that set.

An operation is computable if a description of the result can be computed from a description of
the arguments. At any stage of computation, only a finite amount ofmemory can be used, butmost
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computations need an unbounded amount of internal memory to compute the complete output.
The input of a computation can in principle be an arbitrary valid sequence of characters; we do
not require that there be an effective procedure to determine whether a string is valid. In practice,
inputs will typically be taken from a countable set of computable sequences, that is, those which
can be computed by a Turing machine, or from a subset which can be described symbolically, for
example, the rational numbers. One of the fundamental results is that only continuous functions
can be computable; however, which operations are continuous depends on the topology, since this
affects the amount of information which is present in the input or required in the output.

The exact details as to how objects of a set are described is immaterial in determining which
operations are possible, as long as a description in one representation can be effectively converted
to a description in another representation. We therefore look at equivalence classes of represen-
tations as defining a type of object and consider the computable operations between types. In
general, there are inequivalent representations of a given topological space, but typically in prac-
tice, one of these is canonical. For example, there is a unique equivalence class of representations
of the real numbersR for which arithmetic is computable, strict comparison is verifiable, and lim-
its of strongly-convergent Cauchy sequences are computable. Hence, there is a canonical type R
of the real numbers. From this type, we can canonically build up other types, such as Euclidean
space Rn, continuous functions C(Rn;Rm), and open sets O(Rn).

A canonical way of describing an element of a countably based topological space is to list the
basic open sets containing it. In this way, the basic open sets become the fundamental objects
describing the space, rather than the points. This observation indicates strong links with locale
theory, which can be seen as a kind of “pointless topology”. In our exposition, we work with count-
able sub-bases, which gives an equivalent theory, but which allows some spaces, notably function
spaces, to be treated more conveniently.

The theory presented is a model of intuitionistic type theory (Martin-Löf 1984). This means that
it is always possible to construct finite products and function types, with the corresponding natu-
ral computable operations. However, not all types and computable operations can be constructed
from a finite collection of base types; arbitrary subtypes are allowable, and sometimes it is nec-
essary to return to first principles to show that an operation is computable or that a constructive
definition is well-defined andmatches the classical definition. For example, to prove computability
of the solution of an ordinary differential equation, it is necessary to appeal to results of classical
analysis to prove that a construction based on Euler time steps has the classical properties of a
solution.

The ideas in this theory can be traced back to the intuitionistic logic of Brouwer (see van
Stigt 1990) and the constructive mathematics of Markov (see Kushner 1999) and Bishop (Bishop
and Bridges 1985), Mazur’s approach based on recursive function theory (Mazur 1963) (see
also Grzegorczyk 1957) and Ers̆ov’s theory of numberings (Ershov 1973, 1975, 1977). Although
these theories deal with constructive and recursive mathematics rather than explicitly with
machine-based computation, the idea of constructive existence is clearly linked.

The first link with computability was via the theory of Scott domains (Gierz et al. 2003), which
were initially developed to give a semantics for programming languages, but which were soon
recognized as a possible foundation for real analysis. There is a considerable body of work apply-
ing domain theory to various bodies of real analysis (e.g. Edalat 2009; Edalat and Sünderhauf
1999). However, the foundations of domain theory are based on lattice theory, and the notation
and terminology are still heavily based on these foundations, rather than on the natural language
for topology and analysis. Further, domain theory is usually not directly presented in terms of
Turing computation, and an extra level of theory is still needed to give an explicit relationship
with computation (though intuitively it is clear for experts how to proceed).

A seminal work providing a simplified theory of computable analysis based on type-2 effec-
tivity, which is explicitly based on Turing computation and using natural language, was given
by Weihrauch (2000). In this theory, representations are used to give a computational meaning
to objects from continuous mathematics. Unfortunately, the elegance of the framework tends to
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get lost in a plethora of subtly different representations for different classes of objects, and in
the necessity to always explicitly specify the representation used. From this point of view, our
use of types represents an important notational simplification, which we hope also improves the
readability and accessibility of the theory. Further, in our approach, the results of Weihrauch
(2000), which are mostly restricted to Euclidean spaces, extend naturally to spaces which are not
Hausdorff or locally compact.

An exposition of computable analysis focusing on complexity theory of real functions was
given by Ko, based on the notion of an oracle Turing machine. In computer science, an oracle
is a machine which can provide the answer to an unsolvable problem. The use of the word “ora-
cle” here may be slightly confusing; it does not mean that computations are performed with a
fictional computing device, but that the computations must be able to handle inputs which need
not be generated by a computational process (e.g. in the form of a decimal expansion of an uncom-
putable real number). The resulting framework is equivalent to that of Weihrauch (for which the
input tapes may contain uncomputable sequences).

Analog computing devices based around differential equation models are natural to consider
when working with real numbers. Their computational power can be shown to be essentially
equivalent to that of Turing machines (Bournez et al. 2006, 2013). However, Turing computa-
tion is some sense more practical, since it can be applied to discrete mathematical structures
and those without a direct physical interpretation. Further, analog computation is affected by
hardware component imperfections and by noise in the system, whereas digital computation is
extremely robust.We shall see that digital Turing computation can rigorously and effectively solve
differential equations, so it can simulate analog systems.

This article is organized as follows. In Section 2, we give an overview of Turing computabil-
ity theory for discrete computations on words over some alphabet � and show how this can be
extended to computations over sequences. We then give a formal definition of naming systems, by
which elements of some arbitrary set can be related to objects with some “computational mean-
ing”. Section 3 is the heart of the paper. Here, we give a complete exposition of computable analysis
for elementary classes of objects, including points, sets, and functions. In Section 4, we relate the
material of Section 3 to concepts from classical topology and locale theory, with a view to devel-
oping the most natural versions for use in applied mathematics. We give a characterization of
topological spaces which have a representation which adequately preserves the topological struc-
ture, describe the Scott topology on open sets, explain the concept of a sober space, and give an
overview of the theory of core-compact and locally compact spaces. Finally, in Section 5, we give
some applications to dynamical systems and control theory.

We emphasize that article is intended primarily as an “expository” paper (describing a theory)
rather than as a “survey” paper (describing existing results) or a “research” paper (describing new
results). It provides a self-contained exposition of the main theory of computable analysis needed
for the problems in dynamical systems we tackle, and we provide complete and simplified proofs
of the main results.

There have been a number of excellent Ph.D. theses in the area of computable analysis,
especially those of Brattka (1998), Bauer (2000) and Schröder (2002a) and Battenfeld (2008).
In particular, it was Schröder who first classified the topological spaces which can be given a
representation capturing the topology. Indeed, Schröder’s classification extends to weak limit
spaces, a generalization of topological spaces which may have some applications in probabil-
ity theory. Other important articles giving an exposition of a large part of the theory include
those of Escardo (2004), Blanck (2000), Taylor (2008), and the tutorial of Brattka et al. (2008).
Books specifically relating to computability in analysis include those of Pour-El and Ian Richards
(1989), Ko (1991) and Weihrauch (2000). Other interesting books which contain deeper material
in logic, domain theory and topos theory include those of Vickers (1989), Johnstone (2002a,b),
Gierz et al. (2003), Clementino et al. (2004). For an introduction to type theory, see Martin-Löf
(1984). Books relating to rigorous computation include Jaulin et al. (2001), Hansen and William
Walster (2004), Aberth (2007), and Moore et al. (2009).
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To avoid unnecessary complications, we have restricted ourselves to computability theory for
topological spaces, and not for the more general class of weak limit spaces, since in almost all
applications we use topological spaces. However, we have given most of the development of the
theory for general topological spaces and have only restricted to Hausdorff and local-compact
spaces where necessary. This is important, since types of open/closed/compact subsets of a space
are not Hausdorff, and non-locally compact spaces quickly arise as function spaces and need to be
covered to discuss solution sets of dynamic systems.

We have not used the language of Scott domains, though we have given an explicit exposition of
the Scott topology on the open sets, as this is the topology induced by the canonical representation.
We have given an introduction to point-free topology, since this is the natural way to obtain a
representation for a countably based topological space, but have not used the language of locale
theory.We have introduced the notion of a sober space, since this is required to give a link between
a type-theoretic construction of compact sets by the subset predicate and the classical notion of a
compact point-set.

2. Turing Computability
In this section, we give an outline of the theory of computability based on the standard notion of
Turing machine, an abstract digital computing device with unlimited memory. The Turing model
of computation is the standard accepted model of digital computation. There are many variants
of the basic Turing machine and generalizations to computational models which are closer to the
architecture of modern digital computers, but they all yield the same computable functions.When
the model was introduced by Turing in (1937), it was envisaged that a human was performing the
calculations, but the theory is completely appropriate for mechanical devices. The only assump-
tion is that the machine has enough memory available to complete the task. The Church–Turing
thesis asserts that any algorithmic procedure for performing a calculation is given by a Turing-
computable function. It seems reasonable that the thesis even holds for reliable analog computing
devices, due to external noise and constraints on space and energy. See e.g. Beggs and Tucker
(2009), Ziegler (2009) for more detailed discussions of analog computation.

2.1 Turingmachines
The standard model of computation is that of the Turing machine. This is a model of a process
for performing computations in which only a fixed finite amount of information can be used
at any stage, but for which an arbitrary amount of storage is available. In the standard model,
computations are performed on one or more infinite tapes whose cells contain symbols from an
alphabet �. For a digital computer, one might expect the alphabet to be {0, 1}, but for expository
purposes we can take a more expressive alphabet, such as the ASCII or Unicode character sets. It
is also useful to distinguish a tape alphabet � from the input/output alphabet�.

We first give a description of a multiple-tape Turing machine as a dynamical system; later, we
will see what it means for the machine to compute a function.

Definition 2.1 (Turing machine).A k-tape Turing machine is described by a tuple (�,Q, τ ), where
� and Q are finite sets, and τ :Q× �k→Q× �k × {−1, 0,+1}k describes the transition function.

The action of a Turing machine is as follows. The state of the machine is given by (q, h1, . . . ,
hk, �s1, . . . , �sk), where q ∈Q, each hi ∈N and each �si ∈ �ω. The next state (q′, h′1, . . . , h′k, �s ′1, . . . , �s ′k)
is determined by taking(

q′, (s′1,h1 , . . . , s
′
k,hk), (δ1, . . . , δn)

)= τ(q, (s1,h1 , . . . , sk,hk)), (1)

and setting

h′i =max (hi + δi, 0) for i= 1, . . . , k. (2)
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Informally, the value of q ∈Q is the register state of the machine and is a kind of “program
counter”. The hi represents the position of the “tape head” for the ith tape. For each computational
step starting at register state q, the machine scans the values s1,h1 , . . . , sk,hk at the tape head, replaces
them with new values s′1,h1 , . . . , s

′
k,hk

, shifts the tape head left or right depending on the value of
δ1, . . . , δk, and updates the register state to q′.

Remark 2.2. In the definition given here, we “shift” the tapes heads left and right to scan new
symbols. Sometimes, the symbols {L, N, R} are used instead of {−1, 0,+1} for the δi. If hi = 0 and
δi =−1, then the tape head does not move; an alternative would be for this to be an error. An
equivalent model sometimes used in the literature is to have shiftable tapes rather than movable
tape heads. This model yields the same computable functions in Definition 2.3.

Now suppose � is an alphabet containing a special blank symbol , and� ⊂ � \ { }. Define
an encoding ι :�∗ → �ω by taking (ι(w))j =wj for j= 0, . . . , |w| − 1, and (ι(w))j = other-
wise. Since �∈�, the encoding ι is injective, so w can be unambiguously recovered from
�s= ι(w).

When using multiple tapes, we can separately consider input, output, andwork tapes. The work
tape and output tape start off completely blank. An input tape can only be read from and contains
the initial input, the output tape can only be written to on blank spaces, but not subsequently
altered, and contains the final output. Formally, the ith tape is unidirectional if for any tran-
sition, we always have δi ∈ {0,+1}, is read-only if we always have s′i,hi = si,hi (so �si is constant),
and is write-only-once if s′i,hi = si,hi or si,hi = . A unidirectional read-only tape is an input tape.
A unidirectional write-only-once tape such that δ =+1 implies s′ �= is an output tape.

We now show how Turing machines can be used to compute partial word functions (�∗)m⇀
(�∗)n. We need to consider partial functions since not all words should be considered valid inputs;
for example, the string 2/3/4 is not a valid description of a rational number. To distinguish
“ordinary” computation on words from computation on sequences (which will be introduced in
Section 2.2), we call this type-one Turing computation.

Definition 2.3 (Type-1 Turing computation). Let (�,Q, τ ) be a k-tape Turing machine where
� contains a special blank character , and � ⊂ � \ { }. Let q0, qf ∈Q be the initial and final
states, respectively. Let m, n ∈N define the number of input and output tapes, respectively, such that
m+ n≤ k.

Then, M= (�,m, n, �,Q, q0, qf , τ ) defines a partial function (�∗)m→ (�∗)n as follows: For
input (w1, . . . ,wm) ∈ (�∗)m, the initial state is given by q= q0, �si = ι(wi) for i= 1, . . . ,m and
�si = Z otherwise. The computation proceeds as given by Definition 2.1 until the register state q
is equal to qf , at which point the machine halts. The computation is valid if the machine halts, and
in the halting state, there exist vi ∈�∗ such that �sm+i = ι(vi) for i= 1, . . . , n. The function is defined
on all inputs (w1, . . . ,wm) for which the computation is valid, and the result of the computation is
the tuple (v1, . . . , vn).

A partial function (�∗)m⇀ (�∗)n is computable if it is the function computed by some Turing
machine.

An example of the input and output of a Turingmachine computing the product of two integers
is given in Figure 1.

Remark 2.4. A theory of computable word functions can be developed without separate “input”,
“output” and “work” tapes. Indeed, the computability theory can be developed for single-tape
machines which replace the initial contents of the tape (the input) by the output. We use the
definition above for compatibility with the definition of type-two computability in Section 2.2.
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Figure 1. A Turing machine computing the product
of two integers in decimal form.

Remark 2.5. The computability theory could equally well be presented using partial recur-
sive functions on N instead of Turing computable functions on �∗. However, for a meaningful
complexity theory, we need to use a finite alphabet �.

Remark 2.6. In order to show that a function is computable, we in principle need to explicitly
construct a Turing machine which computes the function. In general, this is a tedious exercise
in Turing machine programming. In this article, in the few cases where this is necessary, we
shall merely give a sketch of how the function could be computed, without explicitly describing a
Turing machine.

The most important properties of Turing computability are summarized in the following
theorem.

Theorem 2.7.

(a) If ξ : (�∗)l⇀ (�∗)m and η : (�∗)m⇀ (�∗)n are computable, then ζ = η ◦ ξ : (�∗)l⇀ (�∗)n
is computable, where we take dom (η ◦ ξ )= ξ−1( dom (η)).

(b) There is a computable tupling function τ :�∗ ×�∗ →�∗ and computable projections π1, π2 :
�∗⇀�∗ such that πi(τ (w1,w2))=wi for i= 1, 2.

(c) There is a universal Turing machine U computing a function ε :�∗ ×�∗⇀�∗ such that for
every Turing machineM computing a function φ :�∗⇀�∗, there is a word a ∈�∗ such that
ε(a,w)= φ(w) for all w ∈�∗.

(d) There is a computable function σ :�∗ ×�∗⇀�∗ such that ε(σ (a, v),w)= ε(a, τ2(v,w)) for
all a, v,w ∈�∗.

Part (a) shows that the composition of computable functions is computable. Roughly speaking, the
computation can be carried out by running a machine computing ξ until it halts and then running
the computation of η. Part (b) shows that the contents of two input tapes can be combined into
one, and the contents recovered later. A (slightly) simpler case is that of computing a function
τ :�∗ ×�∗ → �̂∗, where �̂ contains a symbol ‘,’ not present in �, and τ (w1,w2)=w1,w2. To
avoid introducing a new symbol, we can take τ (w1,w2)= 1|w1|0w1w2 to recover the break between
w1 andw2. Part (c) asserts the existence of a universal Turing machine, that is, a machine with two
inputs, one of which is a “program” for the computation of another machine. For example, assum-
ing Q⊂� and L, N, R ∈�, we can encode a transition (q, s)→ (q′, s′, δ) by the string q,s,q′,s′,δ.
Part (d) is Kleene’s s-m-n theorem (Kleene 1936),1 which shows that given a computable function
of two variables ξ (v,w) with program a, we can compute the program of the function taking w to
ξ (v,w) from a and v.

For more details on type-one Turing computation, see Sipser (1996).

2.2 Type-two effectivity
When dealing with computation on objects from continuous mathematics, we shall need func-
tions on sequences �ω ⇀�ω or, more generally, (�ω)m⇀ (�ω)n. In order to compute such a
function, a machine needs to run forever, reading symbols from the input tape(s) and writing to
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the output tape, with access to finitely many internal work tapes of unbounded length. Symbols
from the output tape may not be overwritten once they have been produced. A computational run
is valid if the machine writes infinitely many symbols to the output tape. A formal definition is
given below. See Weihrauch (2000, Chapter 2) for a comprehensive treatment.

Definition 2.8 (Type-two computation). Let (�,Q, τ ) be a k-tape Turing machine where � con-
tains a special blank character , and � ⊂ � \ { }. Let q0, qf ∈Q be the initial and final states,
respectively. Let m, n ∈N such that m+ n≤ k define the number of input and output tapes,
respectively. We require that the input tapes �s1, . . . , �sm and output tapes �sm+1, . . . , �sm+n are uni-
directional, in which the input tapes are read-only and the output tapes are write-only. Define an
encoding ι :�ω→ �Z by taking (ι(p))j = pj for j≥ 0 and (ι(w))j = for j< 0.

Then, M defines a partial function (�ω)m→ (�ω)n as follows: For input (p1, . . . , pm) ∈ (�ω)m,
the initial state is given by q= q0, �si = ι(pi) for i= 1, . . . ,m, and �si = Z otherwise. The compu-
tation proceeds as given by Definition 2.1. The computation is valid if the machine does not halt and
also writes infinitely many symbols on each output tape. The result of the computation is (r1, . . . , rn),
where each ri is defined by (ri)j = sm+i,j all j.
Note that the question of whether a type-two Turing machine with no inputs produces a valid (i.e.
infinite) output is undecidable.

Definition 2.9 (Machine computability). A partial function η : (�ω)m⇀ (�ω)n is (machine)
computable if it can be computed by a type-two Turing machine.

A sequence p ∈�ω is (machine) computable if there is a type-two Turing machine with no inputs
which outputs p.

Since an output tape of one machine may be used as the input of another, and the resulting
combination can be realized by a single machine, we have the following result:

Proposition 2.10 (Composition of machine-computable functions). Let η : (�ω)l⇀ (�ω)m and
ζ : (�ω)m⇀ (�ω)n be computable. Then ζ ◦ η : (�ω)l⇀ (�ω)n is computable with dom (ζ ◦ η)=
η−1( dom (ζ )).

Note that the definition ensures that if η(p) is an invalid input to ζ , then p is not in the domain
of ζ ◦ η.

Just as in the type-one case, we can combine the data on multiple input tapes into a single
output tape and later recover the original data.

Proposition 2.11 (Tupling). For any n ∈N, there is a machine-computable function τn : (�ω)n→
�ω, and machine-computable functions πn,i :�ω ⇀�ω such that for any i≤ n, πn,i(τn
(p1, . . . , pn))= pi.

The natural tupling function is given by (τn(p1, . . . , pn))in+j = (pj)i for i ∈N and j= 1, . . . , n, and
the projections by (πn,i(p))j = pin+j. It is clear that these functions can be computed by a type-two
Turing machine.

In the sequel, we will drop the subscript n when this is clear from the context.
As well as the finitary tupling functions (�∗)n→�∗ and (�ω)n→�ω, we can also define

mixed and infinite tupling functions. The infinite tupling function τ∞ : (�ω)ω→�ω can be
given by

τ∞ : (p0, p1, . . . )= q if qg(i,j) = (pi)j, where g(i, j)= (i+ j)(i+ j+ 1)/2+ j for i, j ∈N. (3)

It is clear that g is a computable bijection N×N→N. If �̂ ⊃� and contains a special separator
character ‘,’ not in �, then tupling (�∗)ω→ �̂ω can be performed by taking τ∞(w0,w1, . . . )=
w0,w1,w2, · · · . To tuple (�∗)ω→�ω, we can choose an “escape” character ‘\’ as well as a
separator ‘,’ and replace any occurrence of ‘\’ in wi with the string “\\” and ‘,’ with “\,”.
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We shall also want to construct sequences by tupling infinitely many words from a subsetW of
�∗. We sayW is prefix-free if v is not a prefix of w for all v,w ∈W. For a prefix-free subset ofW,
if v1, . . . , vm,w1, . . . ,wn are words inW with v1v2 · · · vm =w1w2 · · ·wn, thenm= n and vi =wi
for all i. In other words, tuplingWω→�ω can be accomplished by concatenation.

Notation 2.12. We henceforth write 〈·, · · · , ·〉 for any tupling function, and subscript 〈·〉i for the
projection onto the ith element. We write w� p if p= 〈w0,w1, . . .〉 and w=wi for some i ∈N.

We now consider some topological aspects of computable functions.

Definition 2.13 (Topology on�ω).Define a topology on�ω by taking the basic open sets to be the
cylinder sets

Cw = {p ∈�ω | pi =wi for i= 0, . . . , |w| − 1} (4)

where w ∈�∗ is a word of length |w|.
The following theorem shows that machine-computable functions are continuous relative to

the topology defined by the cylinder sets.

Theorem 2.14 (Machine computability implies continuity). Any machine-computable function
η : (�ω)m⇀ (�ω)n is continuous.

Sketch of proof. For simplicity, consider η :�ω ⇀�ω. Consider p ∈ dom (η). For all n ∈N, there
exists m ∈N such that n symbols of η(p) have been written to the output tape after m compu-
tational steps, and hence after at most m digits of p have been read. Then for any q ∈ dom (η)
such that q|[0,m) = p|[0,m), the output after m computational steps is the same as that of p, so
η(q)|[0,n) = η(p)|[0,n). Note that setting v= p|[0,m) and w= η(p)|[0,n), we have shown that Cv ⊂
η−1(Cw). Hence η is continuous at p.

This result provides the basis for the main results on uncomputability; it suffices to prove
discontinuity.

Recall that a subset of a topological space is aGδ-set if it is a countable intersection of open sets;
in particular, any open set is a Gδ-set. In general, even for a locally compact Hausdorff space, not
every closed set is a Gδ-set; a counterexample is the Tychonoff plank (Steen and Seebach 1978),
but any closed subset of�ω is a Gδ set.

Proposition 2.15 (Natural extension). Any continuous function η : (�ω)m⇀ (�ω)n extends
naturally to a continuous function on a Gδ-set.

Sketch of proof. For simplicity, consider η :�ω ⇀�ω. Define a partial function η̃ :�∗⇀�∗ by
taking dom (η̃)= {v ∈�∗ | dom (η)∩ Cv �= ∅}, and w= η̃(v) of maximal length such that η(Cv ∩
dom (η))⊂ Cw. Note that if v1 is a prefix of v2, then η̃(v1) is a prefix of η̃(v2). Then for p ∈�ω, if
Cv ∩ dom (η) �= ∅ for every prefix v of p, and |η̃(v)|→∞ as |v|→∞, then we can define η̂(p)= q
where {q} =⋂{Cη̃(p|[0,k)) | k ∈N}. Clearly, η̂ is an extension of η, and dom (η̂) is a Gδ-set.

The set of continuous partial functions η : (�ω)m⇀ (�ω)n with Gδ-domain has continuum
cardinality. This means that the continuous partial functions (�ω)m⇀ (�ω)n with Gδ-domain
can also be represented by sequences. This is a similar closure property for continuous functions
provided by the universal Turing machine result for computable functions; computable word
functions can be represented by words and continuous stream functions can be represented by
streams.

We can now present the main result of this section, the universal Turing machine (UTM) the-
orem, and Kleene’s s-m-n theorem, which is a type-two version of Theorem 2.7(c), (d). Note the
interplay between the finite description of Turing machines by words, and the infinite description
of continuous functions by sequences.
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Theorem 2.16 (Universal Turing machines/s-m-n). There exist machine-computable functions
ε :�ω ×�ω ⇀�ω, μ :�∗ →�ω and σ :�ω ×�ω ⇀�ω with the following properties:

(a) For any continuous function η :�ω ⇀�ω with Gδ-domain, there exists a ∈�ω such that
ε(a, ·)= η.

(b) If η is computable, there exists c ∈�∗ such that ε(a, ·)= η where a=μ(c); in particular, a is
computable.

(c) For all a, p, q ∈�ω, ε(σ (a, p), q)= ε(a, τ2(p, q)), where τ2 is the tupling function.
The function ε is the evaluation function. The first argument a is an encoding of the continuous
partial function η :�ω ⇀�ω as an element of�ω. Further, if the partial function η is computable,
then it has a computable encoding, and this encoding can be generated by a finite program. Note
that there may be several different a corresponding to the same function f , some of which may
be uncomputable even if f is computable. The function σ is a type-two analog of the function
s in the s-m-n theorem. In particular, given a computable function η of two variables, there is a
computable sequence a such that η(p, q)= ε(a, τ2(p, q))= ε(σ (a, p), q).

Sketch of Proof. Given a continuous function η :�ω ⇀�ω, we can define the set of all pairs
(v,w) ∈�∗ ×�∗ such that η(p)||w| =w whenever p|v| = v. (In other words, any input with prefix
v results in an output with prefix w.) By tupling in (�∗ ×�∗)ω, we can list all such pairs as a
sequence in �ω and reconstruct the function η from this list. If η is computable, then the list can
be constructed from a description of the Turing machine.

Remark 2.17. An important consequence of this theorem is that it is possible to simulate the
evaluation of a function as part of another computation. Indeed, it is even possible to simulate
countably-many such computations in parallel.

2.3 Computation on words and sequences
We now have two theories of computation, type-one computability, which deals with finite com-
putations on words �∗, and type-two computation, which deals with infinite computations on
sequences �ω. In many situations, we wish to combine these two types of computation; we may,
for example, wish to compute a function with mixed arguments, for example, �∗ ×�ω→�ω,
compute an infinite sequence from a finite input�∗ →�ω, or convert an infinite computation to
a finite one.

At first sight, it seems straightforward to place type-one computation in the framework of type-
two computation. Both words in �∗ and sequences in �ω are naturally expressed as sequences
over the alphabet �̂ =� � { }. Where the result of a computation on an output tape is a word
w ∈�∗, the computation continues forever, writing w0 · · ·wn−1 on the output tape, optionally
followed by an arbitrary number of ‘ ’. Unfortunately, this approach suffers from the subtle
drawback that it is impossible to know when a word has been completed, or whether a is
merely an as-yet unwritten space.

The simplest way of correcting this defect is to introduce a special “carriage return symbol” ‘↵’
to signify the end of a word. Hence, a word w=w0w1 · · ·wn−1 is encoded on an input tape as
w0w1 · · ·wn−1↵ · · · ; note that all the symbols after the ‘↵’ are taken to be blanks. Once the
‘↵’ symbol has been encountered, the result for that tape is known. In principle, the computation
could be halted once the result on all output tapes is known.

Definition 2.18 (Mixed Turing computation). Computation on words �∗ and sequences �ω can
be combined in a type-two Turing computation with alphabet � containing special symbols , ↵ �∈
�. An element p of �ω is encoded on a tape by �s ∈ �Z = ι(p) with si = pi for i≥ 0 and si =
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otherwise. An element w of�∗ is encoded on a tape by �s= ι(p) with si =wi for 0≤ i< |w|, s|w| =↵,
and si = otherwise.

The computation proceeds as for a standard type-two computation. A computation is valid if it
runs forever, writing either ι(p) for some p ∈�ω or ι(w) for some w ∈�∗. Since every output tape
starts completely blank, it is not necessary to write infinitely many symbols to an output tape for
which the result is an element of�∗; instead the computation of that element is finished once the ‘↵’
symbol has been written. If all outputs are elements of�∗, the computation may halt once all output
tapes have had a ‘↵’ written on them.

Note that if we wish to restrict to purely using the binary alphabet, we can encode words w ∈
{0, 1}∗ as sequences in {0, 1}ω by describing the length of w in some way. A simple method is to
encode the wordw=w0 · · ·wn−1 as ŵ= 1w01w11 · · · 1wn−100 · · · . In other words, each element
of w is preceded by ‘1’, and the word is followed by an infinite sequence of ‘0’. Alternatively, we
can encode w as 1|w|0w00 · · · .

When performing type-two computations in practice, we cannot in general wait for the infi-
nite amount of time needed to obtain the complete answer. Instead, we may wish to terminate
the computation after a fixed number of output digits. This means that a type-two machine-
computable function η :�ω ⇀�ω would be replaced by a function η̄ :�∗ ×�ω ⇀�∗, where
η̄(v, p)= η(p)||v|. Additionally, the infinite input p is itself likely to be generated from a finite input
w ∈�∗ by some function p= ξ (w), for example, p is a decimal expansion of a rational defined by
the word w. We then obtain a purely finite computation of a function ζ :�∗ ×�∗ →�∗ defined
by ζ (v,w)= η̄(v, ξ (w)).

Given that we can reduce type-two computation to type-one computation, one might wonder
what is the point of studying type-two computation in its own right. The main reason is that ele-
ments of�ω can be used to describe objects from mathematical analysis, such as real numbers or
continuous functions, completely, whereas restricting to type-one computation either forces one
to always work with approximations or to only consider computable elements. In the former case,
we are often required to work with messy ε-δ style considerations, while the latter is unnatural
from the point of view of analysis. Even if we are ultimately only interested in finite computa-
tion, the use of sequences to represent intermediate results yields a much more elegant and simple
theory than one based purely on finite computation.

2.4 Computability induced by representations
We have seen how computability theory can be developed for partial functions (�ω)m⇀ (�ω)n.
However, we are really more interested in computations on more general mathematical objects,
such as N or R, and so we need a way to relate computation over �ω to that over more general
spaces.

The basic idea is that each element x of a set of interest X should be described by one or more
sequences p ∈�ω. We note that the description of an element need not be unique; for example,
in the decimal representation, 0.999 · · · 1.000 · · · denote the same real number. Further, not
every sequence needed correspond to an element of X; as an example, the strings 1000 · · · and
1.0.00 · · · are both invalid as decimal representations of a real number.

Definition 2.19 (Representations). Let� be a fixed alphabet and X be a set. Then, a representation
of X is a partial surjective function δ :�ω ⇀ X. For x ∈ X, an element p ∈�ω such that δ(p)= x is
called a δ-name of x.

Remark 2.20. In the definition of representation, there is no restriction placed on the domain.
This is because there are spaces for which the domain is necessarily complicated. Ideally, we would
like the domain to be an open set, so we can tell after a finite amount of data that a sequence is a
valid input, or a closed set, so we can tell that a sequence is invalid. Frequently, there will be invalid
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sequences, but most words can be continued to both valid and invalid inputs. Where possible, it
would be advantageous to have a decision procedure for whether a given word can be extended to
a valid name.

Definition 2.21 (Equivalence). A representation δ1 of X is said to reduce to δ2, denoted δ1 ≤ δ2
if there is a machine computable function η :�ω ⇀�ω such that dom (δ2 ◦ η)⊃ dom (δ1) and
δ1 = δ2 ◦ η|dom (δ1). In other words, given any δ1-name p of x, η(p) is a δ2-name of x. Representations
δ1 and δ2 are equivalent if δ1 ≤ δ2 and δ2 ≤ δ1.

Remark 2.22. A representation δ1 reduces to δ2 if a δ1-name contains as much or more infor-
mation about the object then a δ2-name. The use of δ1 ≤ δ2 to denote “δ1 reduces to δ2” is
standard.

Since elements of finite and denumerable sets can be described by a finite amount of infor-
mation, and these are often important in their own right, we define a similar notion for naming
systems in terms of�∗.
Definition 2.23 (Notations). Let � be a fixed alphabet and X be a countable set. Then a notation
of X is a partial surjective function ν :�∗⇀ X.

Representations and notations are both naming systems since they relate general sets to words and
sequences over some alphabet.

Remark 2.24 (Realizations). More generally, suppose we have a set � for which we already
have some kind of “computational structure” defined. This could be �ω, with computations
described by type-two Turing machines, or N with computations described by partial recursive
functions. Then, we can induce a computational structure on another set X using the computa-
tional structure on �. The traditional way of doing this is by a realization relation � on �× X.
A realization is sound if for all x1, x2 ∈ X, if γ � x1 and γ � x2, then x1 = x2, and is complete if
∀x ∈ X, ∃γ ∈ �, γ � x.

A sound realization � induces a partial function ρ : �⇀ X by ρ(γ )= x ⇐⇒ γ � x, and this
function ρ is surjective if � is complete. An element γ ∈ � such that ρ(γ )= x is called a ρ-name
of c. Hence, a representation of X can be seen as sound and complete realization of X in �ω.
It is trivial that if δ :�ω ⇀� is a representation of �, and ρ : �⇀ X is a sound and complete
realization of X, then ρ ◦ δ is a sound and complete realization of X.

Given a function f : X→ Y , a partial function η :�ω ⇀�ω is a valid description of f if it
translates any sequence p denoting x into a sequence q denoting y= f (x). The function f is then
computable if η is computable.

Definition 2.25 (Computability induced by representations). A function f : X1 × · · · × Xk→ X0
is (δ1, . . . , δk; δ0)-computable if there is a machine computable function η :�ω × · · · ×�ω ⇀�ω

such that

f (δ1(y1), . . . , δk(yk))= δ0(η(y1, . . . , yk))
whenever the left-hand side is defined. We say that η is a realizer for f .

Note that it does not make sense to say whether a representation itself is computable. This is
because representations are used to induce a computability structure on another set. However,
most sets encountered in practice have a canonical equivalence class of “natural” representations,
and we can, of course, consider the computability of a representation with respect to a natural
representation.
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Remark 2.26 (Multi-functions). As noted in Luckhardt (1977), not all computationally important
operations can be realized by a computable function. A typical example is making a decision based
on the value of a real number; we shall see in Section 3.2 that we must allow an overlap region on
which both true and false values are allowed.

Amultifunction F : X⇒ Y is a functionX→P(Y), whereP(Y) is the power-set of Y . An inten-
sional selection (in the literature also known as a realization) of F is a machine-computable func-
tion η :�ω→�ω such that dom (η)⊃ dom (δX) and δY (η(p)) ∈ F(δX(p)) for all p ∈ dom (δX).
Here, the word intensional means that the image of x chosen depends on the description (name)
of x, and not just on x itself.

Note that an extensional selection of F would be a function f : X→ Y such that f (x) ∈ F(x)
for all x.

In this paper, we will mostly consider multivalued functions as representing nondeterministic
dynamic systems. For these applications, we are interested in properties of the function X→PY
itself, and not in its selections.

3. Computable Analysis
We now present the basic constructions of number, function, and set types we require for the
foundations of continuous mathematics. These types and their computable operations are listed
in Appendix A.1.

3.1 Review of classical notions
We begin by recalling basic concepts from topology and analysis. We denote the power-set of a
set X, that is, the set of subsets of X by P(X).

Recall that a topological space (X, T ) consists of a set X and a set T of open subsets of X satisfy-
ing the axioms: ∅, X ∈ T , if U1,U2 ∈ T , then U1 ∩U2 ∈ T , and if U ⊂ T , then

⋃
U∈U U ∈ T . The

open sets thus support finite intersections and arbitrary unions. A set is closed if its complement
is open.

If the topology is clear from the context, we shall not mention it explicitly and simply say “X is
a topological space”.

A base B for a topological space is a set of subsets such that any open set is a union of sets in
B. In other words, B⊂P(X) is such that for any U ∈ T , there exists U ⊂ B such that U =⋃

U . A
topological space is countably based or second-countable if it has a countable base.

If (X, TX) and (Y , TY ) are topological spaces, then f : X→ Y is continuous (with respect to
TX , TY ) if for all V ∈ TY , f−1(V) ∈ TX .

A function q : X→ Y is a quotient map if it is surjective, and whenever q−1(U) is open, then U
is open. If (X, T ) is a topological space, Y is a set, and f : X→ Y , then the topology coinduced by
f on Y consists of all sets V such that f−1(V) is open in X. If f is surjective, then it is a quotient
map with respect to the coinduced topology on Y .

A topological space X is Kolmogorov or T0 if for every pair of distinct points x1 �= x2, either
there exists open U1 such that x1 ∈U1 and x2 �∈U1 or open U2 such that x2 ∈U2 and x1 �∈U2. A
space is Hausdorff or T2 if for every pair of distinct points x1 �= x2, there exist open U1,U2 such
that x1, ∈U1, x2 ∈U2, and U1 ∩U2 =∅. A space is discrete if every singleton set {x} is open.

A subset C of X is compact if every open cover has a finite subcover, and countably compact if
every countable open cover has a finite subcover. A subset S of X is dense if for all open U, there
exists s ∈ S such that s ∈U. A set is separable if it has a countable dense subset.

We say a space X is locally compact if for all x ∈ X and open U � x, there exist open V and
compact K such that x ∈V ⊂K ⊂U. Note that it is not always the case that a compact space is
locally compact. A weaker definition which is often used in the literature is obtained by omitting
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the condition on U. For Hausdorff spaces, the two definitions are equivalent and all compact
spaces are locally compact.

A subset S of a topological space (X, τ ) is sequentially open if whenever �x is a convergent
sequence with limit x∞ ∈ S, there exists N ∈N such that xn ∈ S for all n≥N. Clearly, any open
set is sequentially open. A topological space (X, τ ) is sequential if any sequentially open set is
open. It is straightforward to show that any countably based space is a sequential space.

A setA is sequentially closed if whenever �x is a convergent sequence for which every xn ∈A, then
the limit x∞ ∈A, or equivalently, if its complement is sequentially open. A set C is sequentially
compact if every sequence has a convergent subsequence. We shall show in Section 4.1 that if
C is sequentially compact, then it is countably compact, and if X is a sequential space, then any
countably compact set is sequentially compact.

A function f : X→ Y is sequentially continuous if for any convergent sequence xn→ x∞, we
have limn→∞ f (xn)= f (x∞). Any continuous function is continuous, and if X is a sequential
space, then any sequentially continuous function is continuous.

A metric space (X, d) consists of a set X and a function d : X× X→R+ satisfying reflexivity
d(x, y)= 0 ⇐⇒ x= y, symmetry d(x, y)= d(y, x) and the triangle inequality d(x, z)≤ d(x, y)+
d(y, z) for all x, y, z ∈ X. The open ball about x of radius ε is the set B(x, ε)= {y ∈ X | d(x, y)< ε}.
The topology T of (X, d) is generated by the base consisting of all open balls for x ∈ X and ε ∈
(0,∞).

A sequence �x in a metric space converges to x∞ if ∀ε > 0, ∃N, ∀n≥N, d(xn, x∞)< ε. The
sequence �x is a Cauchy sequence if ∀ε > 0, ∃N, ∀m, n≥N, d(xm, xn)< ε. Any convergent
sequence is Cauchy, and a metric space is complete if every Cauchy sequence converges.

If (X, dX) and (Y , dY ) are metric spaces, then a function f : X→ Y is uniformly continu-
ous over a set U if there exists a modulus of continuity δ :Q+→Q+ such that for all x1, x2 ∈
U, dX(x1, x2)< δ(ε) =⇒ dY ( f (x1), f (x2))< ε.

3.2 Representations of topological spaces
We now consider representations of topological spaces. We first show that a representation of a
set X induces a natural topology on X.

Definition 3.1 (Topology induced by a representation). Let X be a set and δ be a representation of
X. Then, the topology τ induced by δ is the final topology of δ, namely U ∈ τ ⇐⇒ δ−1(U) is open
in dom (δ).

By definition, the representation δ becomes a continuous quotient map. If X is already equipped
with a topology τ , then we will require the representation δ to be a continuous quotient map.

Definition 3.2 (Continuous quotient representation). Let (X, τ ) be a topological space, and δ be
a representation of the set X. We say δ is a continuous representation if it is a continuous map,
that is, whenever U is open, then δ−1(U)=W ∩ dom (δ) for some open W. We say δ is a quotient
representation if it is a quotient map, that is, whenever δ−1(U)=W ∩ dom (δ) for some open W,
then U is open.

However, not all continuous quotient maps are “good” representations, as the following
example shows.

Example 3.3. Consider the binary representation of R. More precisely,

δ(±anan−1 · · · a0.a−1a−2 · · · )= x ⇐⇒ x=±∑n
k=−∞ ak2k,

where each ak ∈ {0, 1}. It can be shown (see Section 3.4) that δ is a partial surjective quotient map
�ω ⇀R. Let xn = 1+ (− 1/2)n/3 for n ∈N, and x∞ = 1, so the function f :N∪ {∞}→R, f (n)=
xn is continuous. Then, we have names p∞ =+1.000 · · · and p′∞ =+0.111 · · · , whereas for x2n,
we have names p2n =+1.02n(01)ω and for x2n+1 we have a unique name p2n+1 =+0.12n+1(10)ω.
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Hence even though xn→ 1 as n→∞, we cannot choose binary expansions for xn which converge.
In terms of representations, any function h :N∪ {∞}→�ω satisfying δ(h(n))= f (n) (there are
only two) has a discontinuity at∞, so f does not continuously lift through the representation δ.

In order to prevent pathological situations as described above, we impose an admissibility
condition on representation in addition to the quotient condition.

Definition 3.4 (Admissible representation). A representation δ of a topological space X is admis-
sible if it is continuous, and whenever φ :�ω ⇀ X is a continuous partial function, there exists a
continuous partial function η :�ω ⇀�ω such that φ = δ ◦ η.

A representation δ of a set X is admissible if δ is an admissible representation with respect to its
final topology.

The condition that a representation of a topological space be continuous captures the notion
that δ must contain at least the information given by the topology of the space. The quotient and
admissibility conditions mean that δ does not contain “too much” information; neither implies
the other. Note that by the definition of admissibility, an admissible quotient representation is
continuous.

The following result is derived from Schröder (2002b). It gives the basic properties implied by
the quotient and admissibility conditions on continuous representations.

Proposition 3.5. Let (X, τX) and (Y , τY ) be topological spaces, and δX , δY be continuous represen-
tations of X and Y.

(a) Suppose η is a continuous realizer for a function f : X→ Y and δX is a quotient representation.
Then, f is continuous.

(b) Suppose f : X→ Y is continuous, and δY is an admissible representation. Then, f has a
continuous realizer.

Proof.

(a) Take φ = δY ◦ η, which is continuous.We have f ◦ δX = δY ◦ η|dom (δX), so f ◦ δX is continuous.
Since δX is a quotient map, f is continuous.

(b) Take φ = f ◦ δX . Then since δY is admissible, there exists a continuous η such that δY ◦ η=
f ◦ δX .

The following result is a direct consequence of Proposition 3.5.

Corollary 3.6 (Discontinuity implies uncomputability). Let (Xi, τi) be topological spaces, and
δi be admissible quotient representations of Xi for i= 0, . . . , k. Then if f : X1 × · · · × Xk→ X0 is
(δ1, . . . , δk; δ0)-computable, then f is (τ1, . . . , τk; τ0)-continuous.

In other words, only continuous functions can be computable, yielding a very strong link
between topology and computability. The main use of this result is to show certain operations
are uncomputable, since it is sufficient to show that the operation is discontinuous. The con-
verse is not true, as there are continuous functions that are not computable, but in practice, most
“naturally-defined” continuous functions are computable.

A common critique of computable analysis is that “only” continuous functions can be han-
dled, whereas there are plenty of important functions that are discontinuous. Perhaps, the most
important discontinuous function is the Heaviside function

H(t)=
⎧⎨
⎩
0 if t< 0;

1 if t≥ 0.
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By Corollary 3.6, H is an uncomputable function. This negative computability result should
be interpreted as follows: it is impossible to evaluate H arbitrarily accurately at every point if
only approximations to the argument are known. The computation fails at t= 0; for example,
it is impossible to determine H(3x− 1) given finitely many digits of the decimal expansion of
x= 1

3 = 0.33333 · · · . However, there are weaker function-space topologies with admissible quo-
tient representations in which H has a computable name which is sufficient to perform useful
computations. For example, interpretingH in the space L1 of integrable functions (see Section 3.8)
gives a valid name from which we can compute

∫ b
a f (x)H(x) dx for any continuous f . This is suf-

ficient for most practical applications, in which the Heaviside function occurs on the right-hand
side of a differential equation, and only its integrals are involved.

Alternatively, by refining the topology on the argument space (corresponding to more infor-
mation) or coarsening the topology on the result space (corresponding to less information) again
allows for a valid name. In this way, the computability theory yields important information on the
properties and valid uses of the function.

We now turn to the question of which topological spaces have an admissible quotient repre-
sentation. An obvious condition is that the space should have at most continuum cardinality 2ℵ0 ,
the cardinality of�ω. A second condition is that the points in the space should be distinguishable
based on the open sets containing them, so should at least satisfy the Kolmogorov’s T0 separation
axiom (see Section 3.1). Henceforth, all topological spaces considered will be Kolmogorov spaces
with at most continuum cardinality unless explicitly declared otherwise.

One natural class of spaces which have at most continuum cardinality is the countably
based Kolmogorov spaces, since every point is described by the basic open sets containing it. In
Section 3.7, we give an explicit construction of an admissible quotient representation for a count-
ably based Kolmogorov space. However, it turns out that any topological quotient of a countably
based space also has a quotient representation which is admissible and that the class of quotients
of countably based (qcb) Kolmogorov spaces are exactly the spaces with an admissible quotient
representation. We prove this result in Section 4.2.

In general, a quotient of a countably based space need not be countably based, but we will show
that it has a countable pseudobase in the following sense:

Definition 3.7 (Pseudobase). A collection ρ of subsets of a topological space (X, τ ) is a pseudobase
if for any x ∈ X and U ∈ τ with U � x, there exists P ∈ ρ such that x ∈ P and P⊂U.

It is clear that if (X, τ ) is a Kolmogorov space with a countable pseudobase, then X has at
most continuum cardinality. Further, any pseudobase is a base if, and only if, it consists only
of open sets.

The admissibility condition is strongly tied to the concept of sequential space. The space �ω
is an example of a sequential space. The property of being sequential is preserved by taking sub-
spaces and quotient spaces, so any space with a quotient representation is itself a sequential space.
Conversely, for a sequential space to have a quotient representation, we also need to bound the car-
dinality in some way. In Section 4.2, we show that any sequential space with a countable sequential
pseudobase has an admissible quotient representation.

Definition 3.8 (Sequential quotient). A representation δ :�ω ⇀ X of a topological space X is a
sequential quotient if whenever xn→ x∞ is a convergent sequence in X, there exists a convergent
sequence ξn→ ξ∞ in�ω such that δ(ξn)= xn for all n ∈N∪ {∞}.
Proposition 3.9. If δ is an admissible quotient representation, then it is a sequential quotient.

Proof. If δ is admissible, and xn→ x∞ is a convergent sequence in X, then define x̂ : {0, 1}ω→ X
by x̂(0n1 · · · )= xn and x̂(0∞)= x∞. Then, x̂ is continuous, so there exists η :�ω→�ω such that
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x̂= δ ◦ η. Define ξn = η(0n10∞) and ξ∞ = η(0∞). Then ξn ∈ {0, 1}ω and δ(ξn)= x̂(0n10∞)= xn,
δ(ξ∞)= x∞. Hence, admissibility implies sequential admissibility.

However, being a sequential quotient is weaker than admissibility, as shown by Schröder (2002a,
Example 2.3.9). The binary representation of Example 3.3 is a quotient but not admissible.

3.3 Computable type theory
We now develop a computable type theory based on the admissible quotient representations.
The most important goals are to give a collection of initial concrete types and then to build up
new types from existing types. The resulting types form a Cartesian-closed category, with objects
which are computable types, and morphisms which are continuous functions (some of which are
computable).

Definition 3.10 (Computable type). A computable type is a pair (X, [δ]) where X is a set and [δ]
is an equivalence class of admissible quotient representations of X.

We henceforth denote computable types by script X or calligraphic X letters, and sets by italic X
or blackboard-boldX letters. Note that we always consider different sets as having different types,
even if the sets are bijective and the representations respect this bijection.

Note that there are two natural categories whose objects are computable types. In the first, all
continuous functions are allowed as morphisms, while in the second, only computable functions
are allowed. In general, the morphisms involved in universal constructions in a category will all
be computable, but the conditions apply to all continuous functions.

Definition 3.11 (Category of computable types). The category of computable types (with con-
tinuous morphisms) is the category whose objects are computable types X = (X, [δ]) where δ is an
admissible representation of X, and morphisms X →Y are functions f : X→ Y which are continu-
ous with respect to the induced topologies on X and Y. A morphism is computable if it corresponds
to a computable function. The category of computable types with computable morphisms is the
subcategory with the same objects, but whose morphisms are the computable functions.

If f :X1 × · · ·Xn→Y is a computable function, we say that y= f (x1, . . . , xn) is computable from
x1, . . . , xn as an element of type Y .

Recall that a category is Cartesian closed if it satisfies the following properties:

(a) There is a terminal object I, such that for any objectW , there is a unique morphismW→ I.
(b) For any objectsX1,X2, there is a product objectX1 ×X2, with projectionmorphisms pi :X1 ×

X2→Xi such that whenever fi :W→Xi, there exists a unique morphism f :W→X1 ×X2
such that fi = pi ◦ f for i= 1, 2.

(c) For any objects X ,Y , there is an exponential object YX , with an evaluation morphism e :
YX ×X →Y , such that whenever f :W ×X →Y , there is a unique morphism f̂ :W→YX

such that e ◦ ( f̂ × idX)= f . i.e. e( f̂ (w), x)= f (w, x).

An element of an object X is defined to a morphism I→X . This identification is useful in that it
allows us to work purely within the category itself, but still recover elements of the underlying set
of X .

The following equivalences hold in any Cartesian-closed category.

Proposition 3.12.

(a) For any object X , the products of the terminal type I and X are isomorphic to X .
(b) The elements of YX are in bijective correspondence with the morphisms X →Y .
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Proof.

(a) TakeW = I. Since an element of any type is associated with a morphism I→X , the elements
of I×X are associated with pairs (i, x) where i is the unique element of I and x ∈X .

(b) f :X →Y , we can construct f̂ : I→YX as the unique morphism satisfying e ◦ ( f̂ × idX )=
f ◦ p where p : I×X →X , and conversely.

The next theorem gives some closure properties of the category of computable types. These
properties imply that the category of computable types is Cartesian-closed. This is an important
notion in intuitionistic/constructive type theory, since the lambda-calculus can be developed in
any Cartesian-closed category.

Theorem 3.13. The category of computable types is Cartesian closed. Further:

(a) The morphismsW→ I are computable.
(b) The projections pi :X1 ×X2→Xi are computable, and the function f :W→X1 ×X2 satisfy-

ing fi = pi ◦ f for i= 1, 2 is computable from f1, f2.
(c) The evaluation function e :YX ×X →Y is computable, and the function f , f̂ are each com-

putable from the other.

Proof.

(a) Let I be a one-point-set, with representation δ with dom (δ)=�ω. (Actually, any representa-
tion whose domain contains a machine-computable element of�ω will do.)

(b) Let δi be a representation ofXi, i= 1, 2.We say that q is a name of (x1, x2) ∈ X1 × X2 ifπ2,i(q) ∈
dom (δi) with δi(π2,i(q))= xi for i= 1, 2. We have pi(x1, x2)= pi(δ(q))= δi(π2,i(q)) for i= 1, 2
so the projections are computable.

Suppose P and P ′ are two types satisfying the properties. Then taking fi = p′i, there exists
computable f :P ′ →P such that xi = p′i(x1, x2)= pi( f (x1, x2)) for all x1, x2, so id is com-
putable. The same holds reversing the roles of P and P ′, so any two product types are
equivalent.

(c) Let δX , δY be admissible quotient representations of X and Y . We aim to define a representa-
tion δX→Y on C(X; Y). Let f : X→ Y be continuous. Then, there exists continuous η :�ω ⇀
�ω with Gδ-domain such that f (δX(q))= δY (η(q)) for all q ∈ dom (δX). By Theorem 2.16,
there exists a ∈�ω such that η( · )= ε(a, ·). We therefore take δX→Y (a)= f if, and only if,
f (δX(q))= δY (ε(a, q)) for all q ∈ dom (δX).

The evaluation function e is computable, since if f = δX→Y (a) and x= δX(q), we have
e( f , x)= f (x)= f (δX(q))= δY (ε(a, q)). Further, if f :W ×X →Y is computable, then there
exists computable ξ :�ω ×�ω ⇀�ω such that f (δW(p), δX(q))= δY (ξ (p, q)). Take η :
�ω ⇀�ω such that η(τ2(p, q))= ξ (p, q), noting that η can be taken to be computable.
Then, there exists computable a such that ε(a, p)= η(p). Then for any x ∈ X,
δX→Y (σ (a, p))(x) = δX→Y (σ (a, p))(δX(q)) = δY (ε(σ (a, p), q)) = δY (ε(a, τ2(p, q)))= δY (η
(τ2(p, q)))= δY (ξ (p, q)) = f (δW(p), δX(q))= f (w, x) = f̂ (w)(x), so δX→Y (σ (a, p))= f̂ (w).
Hence, f̂ is computable.

We henceforth identify w ∈YX with the (necessarily continuous) function
f (x)= e(w, x).

To show that the representation is unique up to equivalence, suppose C and C′ are types
of the continuous functions satisfying the required properties, with respective evaluation
functions e and e′. Since evaluation e : C ×X →Y is computable, the function i : C→ C′
satisfying e′(i(w), x)= e( f , x) is computable. Then e′(i( f ), x)= f (x), so i( f ) is equal to f ,
that is, the identity C and C′ are computable. Similarly, the identity i′ from C′ to C is
computable.
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Viewed in terms of computable types, any singleton space has a representation yielding the type
of the terminal object. (Indeed, any representation whose domain contains a computable element
of�ω will do.) There is a natural bijection between elements x of a space X and continuous func-
tions from the singleton space I toX. An element ofX is computable if the corresponding function
I→X is computable. It is easy to see that this is equivalent to x having a computable name.

Remark 3.14. The topology on X1 × X2 induced by the representation δX1×X2 is not necessarily
the product topology. For the topology of X1 ×X2 must be sequential, but the product topology
need not to be. In fact, the topology on X1 ×X2 is the sequentialization of the product topology.
An elementary example is the productQ× (Q/Z) (Franklin 1965).

We can additionally define countable products in the category of computable types.

Definition 3.15. Let (Xn)n∈N be computable types. Then,
∏∞

n=0 Xn is a computable type with
representation δ given by taking

δ(τ (p0, p1, . . . ))= (x0, x1, . . . ) ⇐⇒ δi(pi)= xi (5)

where τ is the infinite tupling function given by (3).

There are similar initial constructions in the category of computable types. The initial type E is
the type of the empty set, and the sum type X1 +X2 is the type of the disjoint union.

Theorem 3.16.

(a) There is a computable initial type E which is unique up to computable isomorphism such that
for any computable type X , there is a unique function E→X , and this function is computable.

(b) IfX1 andX2 are computable types, then there is a unique computable sum typeX1 +X2 together
with computable embeddings ji :Xi→X1 +X2 such that for all continuous/computable func-
tions fi :Xi→W , there exists a continuous/computable function f :X1 +X2→W such that
fi = f ◦ ji for i= 1, 2.

The proof is similar to that of Theorem 3.13, and it was omitted.

3.4 Fundamental types
We now describe three fundamental logical and numerical types, and some derived product types,
which form the cornerstone of computable analysis. Where possible, we give representations
where the domain has a particularly nice form.

3.4.1 The natural numbers
We begin with the natural numbers N and define the corresponding typeN. A simple representa-
tion using the alphabet {0, 1, ↵} is given by the binary expansion using the ‘↵’ symbol to act as a
terminator:

δ(pkpk−1 · · · p1p0↵ · · · )=
k∑

i=0
2ipi.

The decimal representation uses the alphabet {0, 1, 2, . . . , 9, ↵} and is defined by

δ(pkpk−1 · · · p1p0↵ · · · )=
k∑

i=0
10ipi.
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In both cases, any symbol may appear after the terminator, though equivalent representations are
obtained by, for example, requiring all symbols after the ‘↵’ to be fixed (e.g. ‘↵’).

A simple representation ofNwith the alphabet� = {0, 1} is given by a function δ with domain
{0, 1}ω \ {1ω} by

δ(1n0 · · · )= n.

Alternatively, we can restrict dom (δ) to {1n0ω | n ∈N}. The above representation is very inef-
ficient, since the number n requires n+ 1 bits to determine. In order to encode the binary
representation using only symbols {0, 1}, we need to know how to specify the end of the input.
A simple way of doing this is to prefix the binary name with a unary name giving the number of
binary digits; or better, the number of “machine words”:

δ(1m0pkm−1pkm−2 · · · p1p0 · · · )=
∑km−1

i=0 2ipi.

or the logarithm of the number of digits:

δ(1m0p2m−1p2m−2 · · · p1p0 · · · )=∑2m−1
i=0 2ipi.

For example, the number 425 has a binary expansion of 110101001 with 9 digits, so the names
of 425 with m= 4 are 11110 0000000110101001 · · · , where the elements indicated by · · · are
arbitrary.

Under any of the above representations, it is easy to show that addition and multiplication are
computable and that comparisons are decidable predicates.

Note that there is no continuous representation of the natural numbers with domain�ω, since
�ω is compact but N is not.

The integers can be constructed by introducing a symbol−, or as the quotient ofN×N under
the function z(m, n)=m− n. The rationals can be constructed by introducing a symbol /, or as
the quotient of Z× (N \ {0}) under the function q(m, n)=m/n.

The space N∞ =N∪ {∞} is particularly important, since any convergent sequence in a topo-
logical space X can be viewed as a continuous function s :N∞→ X. A representation of N∞ as a
total function is δ(1n0 · · · )= n; δ(1ω)=∞.

3.4.2 Logical types
We shall later see that almost all problems in computable analysis are undecidable. In particular,
equality on �ω is undecidable, since we can never tell in finite time whether two sequences are
equal. For this reason, it is most natural to use a three-valued logical typeK with values {�,⊥, ↑}
denoting, true, false, and indeterminate. These values represent the results of predicates which are,
respectively, verifiable (provable), falsifiable (disprovable), and undecidable.

The typeK can be given a representation δ which is a total function on {0, 1}ω. We define

δ(0∗10 · · · )=⊥; δ(0∗11 · · · )=�; δ(0ω)=↑,
where any symbol may appear in the trailing · · · . We interpret the representation as follows.
A leading 0 indicates that at the given stage of computation, there is insufficient information to
determine whether the value should be true or false. The first 1 indicates that a decision has been
made, and the next digit is 0 for false and 1 for true. If the result is undecidable, then the output is
an infinite sequence of zeroes.

The induced topology has basic open sets {�} and {⊥}, so the open sets are{{ }, {�}, {⊥}, {�,⊥}, {�,⊥, ↑}}. In particular, the set {↑} is closed but not open, so although
the topology is finite, it is not the discrete topology. Indeed, it is not even Hausdorff, since the
only open set containing ↑ is {�,⊥, ↑}.
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Subtypes ofK include the Boolean type B= {�,⊥} and the Sierpinskian type S= {�, ↑}. The
Sierpinskian type is closed under finite conjunctions ∧ : S× S→ S and countable disjunctions∨ : Sω→ S, with realizer (�ω)ω→� given by η∨(p0, p1, . . . )i = 1 ⇐⇒ ∃j≤ i, (pj)i = 1.

The following theorem gives a generally applicable result on quantifiers:

Proposition 3.17.

(a) Given π :N→ S, then the existential quantifier ∃n, π(n) is computable.
(b) Given π : C→ S, then the universal quantifier ∀p, π(p) is computable.

Sketch of proof.

(a) Simulate parallel computation of every π(n) on a single machine, which returns true in finite
time if any one is true.

(b) By Brouwer’s fan theorem (see e.g. Troelstra and van Dalen 1988), if π(p) is true for all p : C,
then there is a uniform boundm on the number of bits of p which need to be read in order to
prove π(p), so the returns true in finite time.

3.4.3 The real numbers
Perhaps the most important computable type, and our first concrete example of an uncountable
type, is the type of the real numbers. Similar considerations hold for the decimal representation.

A class of representations which are admissible are known as extended digit representations. The
simplest is the binary signed-digit representation with alphabet� = {0, 1, 1̄, .} The representation
is defined by

δ(anan−1 · · · a0.a−1a−2 · · · )=
n∑

i=−∞
ai 2i, (6)

where the symbol ‘1̄’ is read as−1.
It is easy to show that arithmetic is computable with respect to the binary signed-digit rep-

resentation and that strict inequality < is semidecidable. We also need to account for the
topological/metric structure of the real line. The most straightforward way of doing this is by
looking at limits of convergent sequences. Since a finite part of a general convergent sequence
gives no information about the limit, we need to restrict to effectively convergent sequences for
which the rate of convergence is known.

Definition 3.18 (Effective limit). A limit in a metric space is effective if there exists a computable
sequence of rationals εn such that εn↘ 0 and d(xm, xn)< εmin (m,n) for all m, n.

Without loss of generality, by proceeding to an appropriate subsequence, we can always take εn =
2−n or εn = 1/n.

The following theorem is due to Hertling (1999, Theorem 3.5). It asserts the existence of a
canonical real number type.

Theorem3.19 (Real number type).There is a unique computable typeRwith underlying setR such
that the constant 1 is a computable number, arithmetical operations +,−,×,÷ are computable,
strict comparison< is semidecidable, and effective limits lim are computable.

Sketch of proof. Suppose δ1 and δ2 are representations of R satisfying the required properties.
Given a δ1-name p1 of x ∈R, we need to compute a δ2-name of p.

Since the constant one and addition are computable, given a positive integer n, we can find a
δ1- or δ2-name of n by computing 1+ 1+ · · · + 1. Since subtraction is computable, we can find
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a name of any integer m as m= n1 − n2. Since division is computable, we can find a name of any
rational number q as q=m/n.

Given a δ1-name p of x ∈R, since we can construct any rational number q and verify q< x and
x< q, we enumerate all rational numbers l< x and all rational numbers u> x. We can therefore
construct a sequence of rational numbers qi such that |qi − qj|< 2−min (i,j) and limi→∞ qi = x.
Since the qi are rational, we can find a δ2-name of each qi. We can find a δ2-name of x since
effective limits are δ2-computable.

3.5 Set and function types
We now define types for the main classes of sets and functions arising in topology. The construc-
tions in this section are general; in Section 3.7 we will consider countably based spaces, following
Weihrauch (2000, Chapter 5), Weihrauch and Grubba (2009). Many of the results in this section
can be found in Pauly (2016). Extensions to general descriptive set theory (of Borel sets) can be
found in Pauly and de Brecht (2015).

We have already seen in Theorem 3.13(c) that the exponential type is suitable as a type of
continuous functions:

Definition 3.20. Let X , Y be computable types. The type of continuous functions C(X ;Y) is the
exponential type YX .

We now develop the theory of subsets of a topological type. We begin by introducing some
convenient notation.

Notation 3.21. Write A �U to denote the classical predicate U ∩A �= ∅. If U is open, we say that
A overlaps U. Write Un↗U∞ if Un+1 ⊃Un for all n and

⋃∞
n=0 Un =U∞.

From classical topology, we have the property that a set U is open if, and only if, its
characteristic function is a continuous map from X to S:

Proposition 3.22 (Open sets). Let X be a topological space. Then there is a canonical bijection
between O(X) and continuous functions X→ S given by χ(x)=� ⇐⇒ x ∈U for U ∈O(X) and
χ : X→ S.

We use this as a basis for the definitions of types of subsets of a computable type.

Definition 3.23 (Open and closed set types).

(a) The type of open subsets of X , denoted O(X ), is defined to be the exponential object SX . The
interpretation of continuous χ : X→ S as a point-set U ∈O(X) is given by U = χ−1({�}).

(b) The type of closed subsets of X , denoted A(X ), is identified with SX . The interpretation of
continuous χ : X→ S as a point-set A ∈A(X) is given by A= χ −1({↑}).

We now turn to types of compact sets, and the dual type of separable or overt sets, which are
defined in terms of subset and overlap relations. Note that the overlap and subset relations can be
defined in terms of existential and universal quantifiers as

S �U⇐⇒∃x ∈ S, x ∈U

S⊂U⇐⇒∀x ∈ S, x ∈U.

Further, for any set S, the overlap relation and subset relations satisfy:

S � (U1 ∪U2)⇐⇒(S �U1)∨ (S �U2); (7)

S⊂ (U1 ∩U2)⇐⇒(S⊂U1)∧ (S⊂U2). (8)
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Given a fixed set S, these relations define functions O(X)→ S, or equivalently, a set of open sets
O(X). It can be shown that the functions defined by � are always continuous, but the functions
defined by ⊂ are continuous if, and only if, S is compact The observations above motivate the
definition of set types as functions defined by the overlap and subset relations.

Definition 3.24 (Overt and compact set types).

(a) The type of overt2 subsets of X , denoted V(X ), is defined to be the subtype of SO(X ) defined by
functions b :O(X )→ S satisfying b(U ∪V)= b(U)∨ b(V) and b(∅)=↑. Given any set B, we
can define such a function b by b(U)=� ⇐⇒ B �U. The interpretation of the function b as a
point-set B is given by B= {x ∈ X | ∀U ∈O(X), (x ∈U =⇒ b(U)=�)}.

(b) The type of compact subsets of X , denotedK(X ), is defined to be the subtype of SO(X ) defined
by functions c :O(X )→ S satisfying c(U ∩V)= c(U)∧ c(V) and c(X)=�. Given any com-
pact set C, we can define such a function c by c(U)=� ⇐⇒ C⊂U. The interpretation of the
function c as a point-set C is given by C= {x ∈ X | ∀U ∈O(X), (c(U)=� =⇒ x ∈U)}.

Since S �U ⇐⇒ cl(S) �U, the function b :O(X )→ S defines a set only up to its closure; the
point-set construction of B always yields a closed set. If X is a Hausdorff space, then the function
c :O(X )→ S defines a compact set uniquely. However, if X is not Hausdorff, then the point-set is
defined only up to its saturation:

Definition 3.25 (Saturation). Let (X, τ ) be a topological space and S⊂ X. Then the saturation of S
in (X, τ ), denoted sat (S), is

sat (S)=
⋂
{U ∈ τ | S⊂U}. (9)

We say S is saturated if S= sat (S).

For example, if X=R with topology τ< = {(−∞, a) | a ∈R}, then any set S with sup (S) ∈ S is
compact, and the saturated compact sets have the form (−∞, s] for s ∈R.

Remark 3.26. The interpretation of c :O(X )→ S as a point-set may fail to be compact. For if X=
(Q, τ<) where τ< = {(−∞, a)∩Q | a ∈R} and r �∈Q, then the function c : (−∞, a) #→� ⇐⇒
a> r is continuous and satisfies (8), but the corresponding point-set C is (−∞, r]∩Q= (−
∞, r)∩Q which is not compact. Additionally, the identity c(U)=� ⇐⇒ C⊂U fails for the set
U = (−∞, r). In order that the interpretation of c as a point-set yields a compact set C, we require
the space X to be sober. We shall return to this point in Section 4.4.

We now give some computability results which are valid for any topological type.

Theorem 3.27. The following operators are computable:

(a) Complement O↔A.
(b) Finite intersection O×O→O.
(c) Countable union ON→O.
(d) Finite unionA×A→A.
(e) Countable intersectionAN→A.
(f) (Closed) intersection V×O→V.
(g) (Saturated) intersectionK×A→K.
(h) (Closed) countable union VN→V.
(i) Finite unionK×K→K.
(j) Singleton X →V and X →K.
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Proof. The basic proof technique in all cases is the same. Since our set types are special function
types, we need to give method for evaluating the function on its arguments in terms of operations
which are already known to be computable. For overt/compact sets, we use the general principle
that in order to prove that a function f̂ :W→YX is computable, it suffices to show that the
function f :W ×X →Y satisfying f (w, x)= f̂ (w)(x) is computable.

(a) x ∈U ⇐⇒ x �∈ X \U; x �∈A ⇐⇒ x ∈ X \A.
(b) x ∈U1 ∩U2 ⇐⇒ (x ∈U1)∧ (x ∈U2).
(c) x ∈⋃∞

n=1 Un ⇐⇒ ∨∞
n=1 (x ∈Un).

(d) x �∈A1 ∪A2 ⇐⇒ (x �∈A1)∧ (x �∈A2).
(e) x �∈⋂∞

n=1 An ⇐⇒ ∧∞
n=1 (x �∈An).

(f) cl(B∩U) �V ⇐⇒ B∩U �V ⇐⇒ B �U ∩V .
(g) sat (C ∩A)⊂U ⇐⇒ C ∩A⊂U ⇐⇒ C⊂U ∪ (X \A).
(h) cl(

⋃∞
n=1 Bn) �U ⇐⇒ ⋃∞

n=1 Bn �U ⇐⇒ ∨∞
n=1 (B �Un).

(i) C1 ∪ C2 ⊂U ⇐⇒ (C1 ⊂U)∧ (C2 ⊂U).
(j) x ∈U ⇐⇒ {x} �U ⇐⇒ {x} ⊂U.

In more detail, to prove (b), we need to show that we can computeU1 ∩U2 given (names of)U1
and U2. Since computing an open set means verifying its elements, we need to verify x ∈U1 ∩U2
whenever this is true. Since x ∈U1 ∩U2 ⇐⇒ x ∈U1 ∧ x ∈U2, it suffices to compute this formula.
Given U1 and U2, we can compute p1 = x ∈U1 and p2 = x ∈U2 in S by definition of the open set
type. Then, we can compute p1 ∧ p2 since conjunction is computable on S.

Similarly, in order to prove (f), we need to compute cl B∩U given (names of) overt B
and open U, which means verifying intersections of cl B∩U with arbitrary open sets V . We
show cl(B∩U) �V ⇐⇒ B �U ∩V , which suffices since U ∩V is computable from U,V , and
nonempty intersection of B with U ∩V is verifiable by the definition of the overt set type.

The set types are all closed under finite products:

Theorem 3.28. Let X1,X2 be computable types. Then the Cartesian product is computable:

(a) O(X1)×O(X2)→O(X1 ×X2);
(b) A(X1)×A(X2)→A(X1 ×X2).
(c) V(X1)×V(X2)→V(X1 ×X2).
(d) K(X1)×K(X2)→K(X1 ×X2).

Proof.

(a) (x1, x2) ∈U1 ×U2 ⇐⇒ x1 ∈U1 ∧ x2 ∈U2.
(b) (x1, x2) �∈A1 ×A2 ⇐⇒ x1 �∈A1 ∨ x2 �∈A2.
(c) V1 ×V2 �U ⇐⇒ ∃x1 ∈V1, (V2 � {x2 | (x1, x2) ∈U}).
(d) C1 × C2 ⊂U ⇐⇒ ∀x1 ∈ C1, (C2 ⊂ {x2 | (x1, x2) ∈U}).

We would also like to prove that countable products of the set types are computable. For com-
pact sets, this is an effective version of the Tychonoff theorem. While it is true that countable
products of overt and compact sets depend continuously on their arguments, we were unable to
prove computability.

Conjecture 3.29. Let Xn, n ∈N be computable types.

(a) Countable product (S0, S1, S2, . . . )→∏∞
n=0 Sn of nonempty sets is computable

∏∞
n=0

V(Xn)⇀V(
∏∞

n=0 Xn).
(b) Countable product is computable

∏∞
n=0 K(Xn)→K(

∏∞
n=0 Xn).
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We shall see in Theorem 3.47 that this holds under a stronger notion of overtness and com-
pactness. We shall also see in Theorem 3.66 that countable products of overt and compact sets are
computable in countably based spaces.

We have seen that the exponential YX (alternatively denoted C(X ;Y)) is a canonical type for
the continuous functionsX→ Y and that evaluation e : C(X ;Y)×X →Y is computable. We can
extend computability to preimages and images of sets.

Theorem 3.30 (Computable preimage/image). The following operators are computable:

(a) Preimage ( f , S) #→ f−1(S) is computable C(X ;Y)×O(Y)→O(X ).
(b) Preimage is computable C(X ;Y)×A(Y)→A(X ).
(c) Closed-image ( f , S) #→ cl( f (S)) is computable C(X ;Y)×V(X )→V(Y).
(d) Saturated-image ( f , S) #→ sat ( f (S)) is computable C(X ;Y)×K(X )→K(Y).

Proof.

(a) x ∈ f−1(U) ⇐⇒ f (x) ∈U.
(b) x �∈ f−1(A) ⇐⇒ f (x) �∈A.
(c) cl( f (A)) �V ⇐⇒ f (A) �V ⇐⇒ A � f−1(V).
(d) sat ( f (C)) �V ⇐⇒ f (C)⊂V ⇐⇒ C⊂ f−1(V).

Remark 3.31. As we have seen, when computing natural operators (such as intersection) yielding
an overt or compact set, it may be that the result of an operation is not, respectively, closed or
saturated. In these cases, we henceforth implicitly take the closed or saturated version, which
is the canonical representative of the type. This does not affect further operations, for example,
cl( f (B))= f (cl(B)) for continuous f .

We now turn to multivalued functions F : X⇒ Y , which can be thought of as set-valued func-
tions F : X→P(Y). A multivalued function is open- (respectively closed- or compact-) valued
if F(x) is open (respectively closed or compact) for all x. The image of a set S is defined by
F(S)=⋃{F(x) | x ∈ S} = {y ∈ Y | ∃x ∈ S, y ∈ F(x)}. The composition of F : X⇒ Y andG : Y ⇒ Z is
defined by G ◦ F(x)=G(F(x))= {z ∈ Z | ∃y ∈ Y , y ∈ F(x)∧ z ∈ F(y)}. The weak preimage F−1 of
F : X⇒ Y is defined by F−1(B)= {x ∈ X | F(x)∩ B �= ∅} and is a multivalued function F−1 : Y ⇒
X. The strong preimage F⇐ of F is defined by F⇐(B)= {x ∈ X | F(x)⊂ B}. A multivalued function
F : X⇒ Y is upper-semicontinuous if F−1(A) is closed whenever A is closed; equivalently if F⇐(U)
is open whenever U is open. F is lower-semicontinuous if F−1(U) is open whenever U is open;
equivalently if F⇐(A) is closed whenever A is closed. The graph of a multivalued map F : X⇒ Y
is the set graph F= {(x, y) ∈ X× Y | y ∈ F(x)}.
Theorem 3.32 (Action of multivalued functions).

(a) Multivalued preimage (F, S) #→ F−1(S) is computable C(X ;V(Y))×O(Y)→O(X ).
(b) Multivalued preimage is computable C(X ;K(Y))×A(Y)→A(X ).
(c) Multivalued image (F, S) #→ F(S) is computable C(X ;V(Y))×V(X )→V(Y).
(d) Multivalued image is computable C(X ;K(Y))×K(X )→K(Y).

Proof.

(a) Given F : C(X ;V(Y)) and V :O(Y), to show F−1(V) is computable in O(X ), we need to verify
x ∈ F−1(V) for x :X . This is effective since x ∈ F−1(V) ⇐⇒ F(x) �V .

(b) Given F : C(X ;K(Y)) and B :A(Y), we have x �∈ F−1(B) ⇐⇒ F(x)∩ B=∅ ⇐⇒ F(x)⊂ (Y \
B), so F−1(B) is computable inA(X ).
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(c) Given F : C(X ;V(Y)) and A :V(X ), to show F(A) is computable in V(Y), we need to ver-
ify F(A) �V for V :O(Y). This is effective since F(A) �V ⇐⇒ A � F−1(V), and F−1(V) is
computable in O(X ) by (a) above.

(d) Given F : C(X ;K(Y)) and C :K(X ), we have F(C)⊂V ⇐⇒ C⊂ F⇐(V) ⇐⇒ C⊂ X \
F−1(Y \V), which is effective since Y \V :A(Y), F−1(Y \V) :A(X ) and X \ F−1(Y \V) :
O(X ).

Considering the proof of Theorem 3.32, we see that computation of F(S) can be performed
directly using F−1. Further, since F(x)= F({x}), the action of F on points can be recovered from its
action on sets.We therefore obtain equivalence of representations of lower/upper semicontinuous
functions.

Corollary 3.33. The following types are equivalent:

(a) F :X →V(Y), F−1 :O(Y)→O(X ), and F :V(X )→V(Y) as representations of lower-
semicontinuous closed-valued functions F.

(b) F :X →K(Y), F−1 :A(Y)→A(X ), and F :K(X )→K(Y) as representations of upper-
semicontinuous compact-valued functions F.

Classically, the is a bijection between multivalued functions X⇒ Y and their graphs as subsets
of X× Y . However, this only holds computably for open- and closed-valued functions.

Proposition 3.34 (Graphs of multivalued functions). Under the graph operator:

(a) The types C(X ;O(Y)) and O(X ×Y) are equivalent.
(b) The types C(X ;A(Y)) andA(X ×Y) are equivalent.

Proof.

(a) y ∈ F(x) ⇐⇒ (x, y) ∈ graph (F).
(b) y �∈ F(x) ⇐⇒ (x, y) �∈ graph (F).

Example 3.35.

(a) The types C(X ;V(Y)) and V(X ×Y) are in general not equivalent. Consider X =Y =R and
the functions Fn with graph(Fn)= {(2−n, 0)} and graph(F∞)= {(0, 0)}. Then graph(Fn)→
graph(F∞) in V(R×R), but since Fn(0)=∅ for n ∈N and F∞(0)= {0}, Fn �→ F∞ in
C(X ;V(Y)).

(b) The types C(X ;K(Y)) andK(X ×Y) are in general also not equivalent. For if Fn(n)= {0} and
Fn(x)=∅ otherwise (including F∞(x)=∅), then Fn→ F∞ in C(X ;K(X )), but graph(Fn) �→
graph(F∞) inK(R×R) since graph(F∞)⊂∅ but graph(Fn) �⊂ ∅ for all n ∈N.

The above observation has important ramifications for the notion of causality in dynamic sys-
tems. With additional effectivity properties of Definition 3.38, we can derive reductions between
C(X ;V(Y)) and V(X ×Y), and betweenK(X ×Y) and C(X ;K(Y)), given as Proposition 3.44.

Define the multivalued restriction map RS for a set S by RS(x)= {x} if x ∈ S and RS(x)=∅ oth-
erwise. The following useful result shows that open/closed sets have overt/compact restriction
maps.

Theorem 3.36 (Properties of restriction maps). The restriction map S #→ RS is O(X )→
C(X ;V(X ))-computable andA(X )→ C(X ;K(X ))-computable.
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Proof. If U is open, then RU(x) �V ⇐⇒ x ∈U ∩V . If A is closed, then RA(x)⊂V ⇐⇒ x ∈V ∪
(X \A).

We can also define types of partial functions f : X⇀ Y , which are defined on dom ( f )⊂ X.
Note that a partial function f gives rise to a multivalued function F defined by

F(x)=
⎧⎨
⎩
{f (x)} if x ∈ dom ( f );

∅ if x �∈ dom ( f ).
(10)

This allows partial function types to be defined as subtypes of multivalued function types:

Definition 3.37 (Partial function types).

(a) The type of partial functions with open domain, CO(X ;Y), is the subtype of C(X ;V(Y))
under (10).

(b) The type of partial functions with closed domain, CA(X ;Y), is the subtype of C(X ;K(Y))
under (10).

In each case, dom ( f ) is computable from f and f (x) can be computed for all x in the domain; the
difference being that for f : CO(X ;Y), we can prove f is defined for all x in its domain.

3.6 Effective topological properties
We now give “effective” versions of some classical properties of topological spaces and deduce
some of their properties.

Definition 3.38 (Effectivity properties). Let X be a topological type. Then:

(a) X is effectively discrete if the equality relation is verifiable, that is, = :X ×X → S is
computable.

(b) X is effectively Hausdorff if the inequality relation is verifiable, that is, �= :X ×X → S is
computable.

(c) X is effectively overt if X is a computable element of V(X ).
(d) X is effectively compact if X is a computable element ofK(X ).

Remark 3.39. IfX× X with the product topology is a sequential space (in particular, ifX is locally
compact), and X is effectively Hausdorff, then it is Hausdorff. However, if X× X is not a sequen-
tial space, it is possible that X is effectively Hausdorff but not Hausdorff. For if {(x, y) | x �= y} is
sequentially open but not open, and hence contain points x �= y such that for any open U � x and
V � y, U ∩V �= ∅.

Remark 3.40. Note that for open U ⊂ X, we have X �U ⇐⇒ U �= ∅. Hence saying X is effec-
tively overt is equivalent to saying nonemptiness of open sets in X is verifiable. Similarly, X⊂
U ⇐⇒ U = X, so saying X is effectively compact is equivalent to saying entireness of open sets is
verifiable.

The following result gives a link between effectivity properties of the topological type and
conversions between subsets of that type.

Theorem 3.41. Let X be a topological type. Then:

(a) The interior function V(X )→O(X ) is computable if X is effectively discrete.
(b) The closure functionK(X )→A(X ) is computable if X is effectively Hausdorff.
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(c) The closure function O(X )→V(X ) is computable if, and only if X is effectively overt.
(d) The saturation function A(X )→K(X ) is computable if, and only if X is effectively

compact.

Proof.

(a) If X is effectively discrete, then the function x #→ {x} is computable X →O(X ), since y ∈
{x} ⇐⇒ x= y. Then for anyW ∈V(X ), we have x ∈W ⇐⇒ W � {x}.

(b) If X is effectively Hausdorff, then x #→ {x} is computable X →A(X ), since y �∈ {x} ⇐⇒
x �= y. Then x �∈ C ⇐⇒ C⊂ (X \ {x}).

(c) Suppose X is computable in V(X ), and let U ∈O(X ). Then, cl(U)= cl(U ∩ X) is computable
inV(X ) by Theorem 3.27(f). Conversely, if the closure functionO(X )→V(X ) is computable,
then since X is computable in O(X ), it is also computable in V(X ).

(d) Suppose X is computable inK(X ), and let A ∈A(X ). Then A=A∩ X is computable inK(X )
by Theorem 3.27(g). Conversely, if the saturation functionA(X )→K(X ) is computable, then
since X is computable inA(X ), it is also computable inK(X ).

Computability of interior of an overt set is in general weaker than effective discreteness, and
computability of the closure of a compact set is in general weaker than effective Hausdorffness:3

Example 3.42. Consider the Sierpinski type S= {�, ↑}. The open sets are {}, {�}, {�, ↑}. The overt
sets are given by the closed sets {}, {↑}, {�, ↑} with interiors {}◦ = {↑}◦ = {} and {�, ↑}◦ = {�, ↑}.
Hence, the interior function satisfies S◦(�)= S◦( ↑ )= bS({�}), so is computable given the V(S)-
name of S. However, S is not a discrete space.

Similarly, the closed sets are {}, {↑}, {�, ↑}, and the compact sets are given by saturated sets
{}, {�}, {�, ↑} with closures {} = {} and {�} = {�, ↑} = {�, ↑}. Hence the closure function is
computable, though S is not a Hausdorff space.

The following result shows that projection maps are computable on open and closed subsets
given suitable effectivity properties.

Proposition 3.43.

(a) Suppose Y is effectively overt. Then the set projection operator πX defined by πX(S)= {x ∈ X |
∃y ∈ Y , (x, y) ∈ S} is computable O(X ×Y)→O(X ).

(b) Suppose Y is effectively compact. Then the set projection operator πX is computable A(X ×
Y)→A(X ).

Proof.

(a) x ∈ πX(U) ⇐⇒ ({x} × Y)∩U �= ∅.
(b) x �∈ πX(A) ⇐⇒ ({x} × Y)∩A=∅.

Proposition 3.44.

(a) The graph operator is computable C(X ;V(Y))→V(X ×Y) if X is effectively overt, and its
inverse is computable V(X ×Y)→ C(X ;V(Y)) if X is effectively discrete.

(b) The graph operator is computable C(X ;K(Y))→K(X ×Y) if X is effectively compact, and its
inverse is computableK(X ×Y)→ C(X ;K(Y)) if X is effectively Hausdoff.
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Proof.

(a) If X is effectively overt, then we can compute graph (F) �W ⇐⇒ ∃x, F(x) � {y | (x, y) ∈W}.
Conversely, F(x) �V ⇐⇒ graph (F) � {x} ×V .

(b) If X is effectively compact, then we can compute graph (F)⊂W ⇐⇒ ∀x, F(x)⊂ {y | (x, y) ∈
W}. Conversely, F(x)⊂V ⇐⇒ graph (F)⊂ (X× Y) \ ({x} × (Y \V)).

Note that since the effective Hausdorff property and the effective overtness property are relatively
common for the main types used in analysis, the conversions O(X )→V(X ) andK(X )→A(X )
are usually computable, whereas the conversions V(X )→O(X ) and A(X )→K(X ) are usually
not. This means that a description of an open set in O(X ) provides more information than a
description of its closure in V(X ), and a description of a compact set in K(X ) provides more
information than its description inA(X ).

However, we would really like to prove that the countable product of effectively compact spaces
is effectively compact. This is known to be true for countably based spaces (Escardó 2004) (see our
proof in Theorem 3.66(b)), but unknown in general.

Definition 3.45. Let X be a topological type. Then:

(a) X is effectively separable if there is a computable functionN→X with dense range.
(b) X is effectively coverable if there is a computable surjective function C→X , where C is the

Cantor space {0, 1}ω.

The following proposition provides the relationship between overtness and separability,
similarly for compactness and coverabilty.

Proposition 3.46. Let X be a topological type. Then:

(a) X is effectively overt if it is effectively separable.4
(b) X is effectively compact if it is effectively coverable.5

Proof.

(a) Let ξ :N→X be a computable function encoding a dense sequence. Let U be a nonempty
open set, with χU :X → S its characteristic function.We need to show thatU �= ∅ is verifiable,
for which it suffices to prove x ∈U for some x. Since ξ has dense range, there exists n such that
ξ (n) ∈U. The result follows since we can simulate computing χU ◦ ξ over all n ∈N, which
is guaranteed to terminate once some n for which ξ (n) ∈U is found. The result follows by
Proposition 3.17(a).

(b) Let ξ : C�X be a computable surjective function. Let U be an open set. We need to show
that the property X⊂U is verifiable, which reduces to showing χU ◦ ξ is always � by
Proposition 3.17(b)

We now prove that the effective separability and coverability properties extend to countable
products. Note that Theorem 3.47(b) is an effective version of Tychonoff ’s theorem that the count-
able product of compact spaces is compact, but under the stronger hypothesis that the spaces are
effectively coverable.

Theorem 3.47. Let Xn, n ∈N be topological types.

(a) If each Xn is effectively separable, then
∏∞

n=0 Xn is effectively separable.
(b) If each Xn is effectively coverable, then

∏∞
n=0 Xn is effectively coverable.
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Proof.

(a) Suppose ξn :N→Xn are computable functions with countable dense range. Let h :N∗ →
N be a computable bijective function. Define η :N→∏∞

n=0 Xn by η(h(m0, . . . ,mj))=
(ξ0(m0), ξ1(m1), . . . , ξj(mj), ξj+1(0), ξj+2(0), . . . ). Then, η has dense range and is computable
by construction.

(b) Since each Xn is effectively coverable, there exist computable functions ξn : C→Xn for which
the saturation of the range is Xn. Define g :N×N→N by g(i, j)= (i+ j)(i+ j+ 1)/2+ j, and
note that g is a bijection. Define τ : Cω→ C by τ (p0, p1, . . . )k = pi,j where g(i, j)= k, and note
that τ is also a bijection. Define η : C→∏∞

n=0 Xn by (η(q))i = ξi(pi) for q= τ (p0, p1, . . . ).
Then, η : C→∏∞

n=0 Xn is surjective since each ξi is surjective and is computable by
construction.

We now consider effective version of the local-compactness property. Recall from Section 3.1
that a topological space is locally compact if every point has arbitrarily-small compact neighbor-
hoods.

Notation 3.48. We write U �V if every open cover of V has a finite subcover of U. We define

�U = {V ∈O(X) |U �V}.
Note that the notation A� B (or A⊂⊂ B) is often used in classical topology to denote that the
closure of A is a compact subset of the interior of B and is analogous to the way-below relation%
of Scott domain theory (Gierz et al. 2003, Definition 1.1).� is also used in domain theory.

Definition 3.49 (Effectively locally compact). A computable type X is effectively locally compact
if there is a computable function N→O(X )×K(X ), n #→ (Vn,Kn) such that for any n, Vn ⊂Kn,
and for any W ∈O(X) and x ∈W, there exists n such that x ∈Vn and Kn ⊂W.

We say that X is strongly effectively locally compact if we can take Kn =⋂{W ∈O(X) |Vn �
W} for all n; if X is a Hausdorff space, this is equivalent to Kn = cl(Vn).

Remark 3.50. Using the definition given, it is immediate that X is a countably based space, since
any U is given by U =⋃{Vn |Kn ⊂U}, and is effectively overt, since U �= ∅ ⇐⇒ ∃n, U ⊃Kn. It
would be interesting to find a weaker notion of effective local compactness which does not imply
these properties.

Frequently, rather than find a neighborhood of a point, we need a neighborhood of a compact set.
The next result shows that this can always be done.

Proposition 3.51. Suppose X is effectively locally compact. Then, there is a computable function
N→O(X )×K(X ), n #→ (Wn, Ln) with Wn ⊂ Ln such that for any compact C and open U with
C⊂U, there exists n with C⊂Wn and Ln ⊂U.

Proof. Consider the pairs (
⋃

n∈N Vn,
⋃

n∈N Kn) for N a finite subset of N. Let C⊂U be compact.
Then, {Vn |Kn ⊂U} is an open cover of C, so has a finite subcover {Vn | n ∈N}. By construction
{Kn | n ∈N} ⊂U.

3.7 Standard representations of topological spaces
In this section, we show a general purpose way of building representations of topological andmet-
ric spaces. These constructions can be used to give equivalent representations for the spaces con-
structed as category-theoretic products and exponentials, or to give representations of new spaces
which extend the type theory. We also give concrete representations of set and function types, and
conditions under which they are equivalent to the general category-theoretic constructions. Early
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work on computability in spaces with computable basis was given by Hauck (1980, 1981). The
material of this section is based on the definitions of Weihrauch and Grubba (2009).

Recall that if (X, τ ) is a topological space, then a collection β ⊂ τ is a base if any open set is a
union of elements of β , and σ ⊂ τ is a sub-base if the set of finite intersections of elements of σ
forms a base.

Definition 3.52 (Effective topological spaces; standard representation). A sub-effective topolog-
ical space is a tuple (X, τ , σ , ν) where (X, τ ) is a second-countable Kolmogorov (T0) space, σ is a
countable sub-base for τ , and ν is a notation for σ .

The standard representation δ of (X, τ , σ , ν) is the function δ :�ω ⇀ X such that
δ(p)= x ⇐⇒ {ν(w) |w� p} = {J ∈ σ | x ∈ J}. (11)

An effective topological space (X, τ , β , ν) is a sub-effective topological space where β is a base
for τ and ∅ ∈ β.
In other words, a name of x in the standard representation encodes a list of all J ∈ σ such that
x ∈ J.

Note that given a sub-effective topological space (X, τ , σ , ν), we can canonically construct an
equivalent effective topological space (X, τ , β , ρ) by taking β to be the set of finite intersections of
elements of σ , and ρ(〈p1, . . . , pn〉)= ν(p1)∩ · · · ∩ ν(pn).

The following result shows that the standard representation of a sub-effective topological space
is an admissible quotient representation. The proof is similar to that of the corresponding parts of
Theorem 4.5, but is considerably simpler, so we include it in full.

Theorem 3.53. Let (X, τ , σ , ν) be a sub-effective topological space. Then, the standard representa-
tion δ of (X, τ , σ , ν) is an admissible quotient representation.

Proof. δ is continuous: Let U ⊂ X be open and x= δ(p) ∈U. Since σ is a sub-base, there exist
J1, . . . , Jk ∈ σ such that x ∈⋂k

i=1 Ji ⊂U. Since p is a name of x, we have wi � p where ν(wi)= Ji
for i= 1, . . . , k. Hence, there is a prefix v of p such that wi � v for all i= 1, . . . , k. Hence,
δ(q) ∈⋂k

i=1 Ji ⊂U for any q ∈ v�ω.

δ is a quotient map: Suppose W ⊂ X and δ−1(W) is open. Let x ∈W and p ∈ δ−1(x). Then, there
is a prefix v of p such that q ∈ δ−1(W) whenever v is a prefix of q. From the information contained
in v, we can only deduce that there are open sets J1, . . . , Jk ∈ σ such that x ∈ Ji for all i= 1, . . . , k.
Hence,

⋂k
i=1 Ji is an open neighborhood of x which is a subset ofW.

δ is admissible: Suppose φ :�ω ⇀ X is a continuous partial function. Define a function η̃ :�ω ⇀
�ω such that if v1 is a prefix of v2, then η̃(v1) is a prefix of η̃(v2), and that w� η(v) if, and only
if, φ(p) ∈ ν(w) whenever p ∈ v�ω. Define η(p)= limn→∞ η̃(p|n). By padding η̃(v) with names of
the empty set if necessary, we can ensure that η :�ω ⇀�ω. Then by definition, w� η(p) ⇐⇒
φ(p) ∈ ν(W), so δ(η(p))= φ(p) for all p ∈ dom (φ).

We would like to define concrete representations of subsets of an effective topological space.
Since any open set is a union of basic open sets, we can define a representation of open sets by
taking a name of U to be an encoding of a list of basic open sets J whose union is U.

Definition 3.54 (Standard representations of open and closed sets). Let (X, τ , β , ν) be an effective
topological space.

(a) The standard representation θ< of open setsO(X) is given by

θ<(p)=U ⇐⇒ ⋃{ν(w) |w� p} =U.
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(b) The standard upper representation ψ> of closed setsA(X) is given by
ψ>(p)=A ⇐⇒ ⋃{ν(w) |w� p} = X \A.

Note that a θ<-name of ∅ is 〈w0,w0, . . .〉 where ν(w0)=∅.
The following result shows that it is always possible to verify x ∈U given a θ<-name of U.

Lemma 3.55. Let (X, τ , β , ν) be an effective topological space. Then inclusion ∈: X×O(X)→ S is
computable.

Proof. If x ∈U and U =⋃∞
i=0 Ji, then x ∈U ⇐⇒ ∃m ∈N, x ∈ Jm.

Without additional assumptions, it is not possible to compute intersections, in general.

Definition 3.56 (Computable intersection property).An effective topological space (X, τ , β , ν) has
the computable intersection property if there is a recursively-enumerable subset I of dom (ν)×
dom (ν)× dom (ν) such that for all w1,w2 ∈ dom (ν),

ν(v1)∩ ν(v2)=
⋃
{ν(w) | (v1, v2,w) ∈ I}.

For convenience, we may sometimes say that there is a recursively-enumerable subset I of β × β × β
such that I1 ∩ I2 =⋃{J ∈ β | (I1, I2, J) ∈ I}.
Proposition 3.57. Let (X, τ , β , ν) be an effective topological space. Then intersection O(X)×
O(X)→O(X) is (θ<, θ<; θ<)-computable if, and only if, (X, τ , β , ν) has the computable intersection
property.

Proof. If (X, τ , β , ν) has the computable intersection property, then we have (
⋃∞

i=0 ν(ui))∩
(
⋃∞

j=0 ν(vj))=
⋃∞

i,j=0 (ν(ui)∩ ν(vj))=
⋃∞

i,j=0
⋃{ν(w) | (ui, vj,w) ∈ I}, so intersection is (θ<,

θ<; θ<)-computable. Conversely, if intersection is (θ<, θ<; θ<)-computable, then ν(u)∩
ν(v)= (

⋃∞
i=0 ν(u))∩ (

⋃∞
j=0 ν(v))=

⋃∞
k=0 ν(wk), so (X, τ , β , ν) has the effective intersection

property.

We now show that the computable intersection property is precisely what is needed that
(O(X), θ<) has the type of O(X ).

Theorem 3.58. Let (X, τ , β , ν) be an effective topological space, and X = (X, [δ]) where δ is the
standard representation of X. Then (O(X), θ<)≡ (O(X), δX→S) (i.e. θ< is computably equivalent
to δX→S) if, and only if, (X, τ , β , ν) has the computable intersection property.

Proof. If θ< is equivalent to δX→S, then since intersection is (δX→S, δX→S; δX→S)-computable
by Theorem 3.27(b), it is also (θ<, θ<; θ<)-computable, so (X, τ , β , ν) has the computable
intersection property by Proposition 3.57.

Conversely, suppose (X, τ , β , ν) has the computable intersection property, and p : X→ S is
continuous. We need to show that we can compute a θ<-name of U = p−1(�) given a name of p.

Recall that the valid names of� in S have the form 00 · · · 011 · · · , whereas the only valid name
of ⊥ is 0ω. By Remark 2.17, it is possible to simulate computations of p, terminating whenever a
‘1’ has been an output.

Let w1, . . . ,wk ∈ dom (ν), and simulate a computation of p on input 〈w1,w2, . . . ,wk, . . .〉. If
this computation outputs 1 after reading at most the words w1, . . . ,wk, then we can deduce that⋂k

i=1 ν(wi)⊂U = p−1(�). For either the 〈w1, . . . ,wk〉 is a prefix of some valid name of some x,
in which case the computation is valid, and x ∈U whenever x ∈⋂k

i=1 ν(wi), or the computation
is invalid, in which case

⋂k
i=1 ν(wi)=∅.

Now since any x ∈ p−1(�) has a δ-name, and the computation π of p(x) is completed
in a finite time, there exists (w1, . . . ,wk) such that q= 〈w1, . . . ,wk, . . .〉 is a δ-name of x,
and computation of p on input q outputs 1 after reading at most the words w1, . . . ,wk,
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proving that x ∈⋂k
i=1 Ji ⊂U with Ji = ν(wi). Hence, p−1(�) is equal to

⋃{⋂k
i=1 ν(wi) |

π outputs 1 after reading at most w1, . . . ,wk}.
The result follows since we can write

⋂k
i=1 ν(vi)=

⋃∞
j=0 ν(wj) for some wj computable from

v1, . . . , vk by recursively applying the computable intersection property.

Since the type (O(X), [θ<]) embeds computably into X → S by Lemma 3.55, without the
computable intersection property, the reverse embedding may not hold. This indicates that the
representation θ< is in general too strong; it requires too much information about an open set to
compute the intersection. Hence, the computable intersection property is what is needed to ensure
that the explicit θ< representation yields the same computability theory as our type-theoretic
constructions. Following Weihrauch and Grubba (2009) (but differently from Weihrauch 2000,
Definition 3.2.1), we make the following definition:

Definition 3.59 (Computable topological space). An effective topological space (X, τ , β , ν) is
a computable topological space if dom (ν) is recursively-enumerable and (X, τ , β , ν) has the
computable intersection property.

We now give concrete standard representations of overt and compact subsets of computable
topological spaces. For the representation of open sets, a name p is a list of words w ∈ dom (ν)
encoding a list of basic open sets J ∈ β .
Definition 3.60 (Standard overt and compact set representations). Let (X, τ , β , ν) be an effective
topological space.

(a) The standard lower representation ψ< of the closed subsets of X is given by

ψ<(p)=A ⇐⇒ {ν(w) |w� p} = {J ∈ β |A � J}.
The corresponding type is the overt set type.

(b) The standard representation κ> of compact sets K(X) is given by

κ>(p)= C ⇐⇒ {(ν(w1), . . . , ν(wk)) | 〈w1, . . . ,wk〉� p}
= {(J1, . . . , Jk) ∈ β∗ | C⊂ J1 ∪ · · · ∪ Jk}.

We can also define a standard representation for the space of continuous functions.

Definition 3.61 (Standard representation of continuous functions). Let (X, τX , βX , νX) be an
effective topological space and (Y , τY , σY , νY ) a sub-effective topological space. The standard
representation γX→Y of C(X; Y) is given by

γX→Y (p)= f ⇐⇒ ∀wY ∈ dom (νY ), f−1(ν(wY ))=⋃{νX(wX) | 〈wX ,wY〉� p}.
Standard representations for spaces of multivalued functions can be defined analogously.

Intuitively, a name of f in the standard representation γX→Y of C(X; Y) encodes a list F of pairs
(I, J) ∈ βX × σY such that f−1(J)=⋃{I | (I, J) ∈F}.

The standard representations of spaces of overt and compact subsets and of continuous
functions are equivalent to those in Section 3.5 for computable topological spaces:

Proposition 3.62. Let (X, τ , β , ν) be a computable topological space. Then

(a) The representation ψ< of the closed subsets of X is equivalent to the representation of the overt
set type given in Definition 3.24(a).

(b) The representation κ> of the compact subsets of X is equivalent to the representation of the
compact set type given in Definition 3.24(b).

(c) The representation γX→Y of the continuous function X→ Y is equivalent to the representation
of the function type YX given in Definition 3.20.
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Even for effective topological spaces without the computable intersection property, evaluation
of continuous functions ε( f , x)= f (x) is (γX→Y , δX ; δY )-computable, intersection of overt and
open sets is verifiable, as is subset of a compact set in an open set.

A useful technique for computing a value x ∈ X is to compute the singleton {x} as a compact
(or overt) set. In a computable topological space, x can be computed from {x}, giving a converse
to Theorem 3.27(j):

Proposition 3.63. If (X, τ , β , ν) and {x} are ψ<-computable (i.e. as an element of V(X )) or κ>-
computable (i.e. as an element ofK(X )), then it is computable in X .

Proof. Computing {x}means verifying x ∈U for any open set U, including the basic sets β .

In order to relate open and overt sets, or compact and closed sets, we need some extra effectivity
properties (see Brattka and Presser 2003) of the notation ν of the basic open sets J ∈ β .
Definition 3.64. Let (X, τ , β , ν) be an effective topological space. Then (X, τ , β , ν) has the:

(a) effective overlap property if {w1,w2 ∈�∗ ×�∗ | ν(w1)∩ ν(w2) �= ∅} is recursively-
enumerable.

(b) effective disjointness property if there is a recursively-enumerable set D⊂ dom (ν)× dom (ν)
such that

⋃{ν(w1)× ν(w2) | (w1,w2) ∈D} = {(x, y) ∈ X× X | x �= y}.

The following theorem relates the effectivity properties for the standard representations with

Theorem 3.65. Let (X, τ , β , ν) be a computable topological space. Then

(a) the effective overlap property is equivalent to every open set being effectively overt.
(b) the effective disjointness property is equivalent to every saturated compact set being effectively

closed.

Proof.

(a) If (X, τ , β , ν) has the effective intersection property, then if U =⋃∞
i=0 Ji is open and L ∈ β ,

then U � L ⇐⇒ ∃i ∈N, Ji ∩ L �= ∅, so U is computable as an overt set since we can verify
intersection with elements of β . Conversely, for arbitrary J, L ∈ β , we can write J =⋃∞

n=0 J as
a countable union of basic open sets and verify J ∩ L �= ∅ since J � L ⇐⇒ (

⋃∞
i=0 J) � L.

(b) The effective disjointness property implies that {(x1, x2) ∈ X× X | x1 �= x2} is computable as
an open set, so inequality is verifiable. Hence, X is effectively Hausdoff, so every saturated
compact set is effectively closed. Conversely, suppose every saturated compact set is effectively
closed, and x1 �= x2. Then, there exists I ∈ β containing only one of x1 or x2, say I � x1. Then,
sat ({x1}) is a saturated compact set and a subset ofU. Since sat ({x1}) is computable as a closed
set, x2 �∈ sat ({x1}) is verifiable, so x1 �= x2 is verifiable.

The definition of the effective disjointness predicate used here is different from that of Brattka
and Presser (2003). We return to this point in Remark 3.73.

An effective version of Tychonoff ’s theorem holds for computable topological spaces.

Theorem 3.66. Suppose every Xn is a computable countably based space.

(a) The countable-product operator on nonempty sets is computable
∏∞

n=0 V(Xn)⇀V(
∏∞

n=0 Xn).

(b) The countable-product operator is computable
∏∞

n=0 K(Xn)→K(
∏∞

n=0 Xn).

Proof. Use base βn of Xn. A base β∞ for the topology of
∏∞

n=0 Xn is given by sets J = I0 × I1 ×
· · · × In−1 × Xn × Xn+1 × · · · where In ∈ βn.
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(a) Given nonempty overt sets Vn :V(X ), since a general open set U in
∏∞

n=0 Xn is represented
as a countable union of J ∈ β∞, it suffices to show intersection of

∏∞
n=0 Vn with some J

can be verified. Since each Vk is nonempty, Vk � XK , so
∏∞

k=0 Vk � I0 × I1 × · · · × In−1 ×
Xn × Xn+1 × · · · ⇐⇒ ∏n−1

k=0 Vk �
∏n−1

k=0 Ik. The result follows from Theorem 3.28(d), since∏m−1
n=0 Xn is effectively overt.

(b) By the classical Tychonoff theorem, it suffices to show that given a finite basic open
cover of

∏∞
n=0 Cn, we can prove that this is indeed a cover. Given the presentation Ji =∏mi−1

j=1 Ii,j ×∏∞
j=mi Xj, by taking M=maxi mi, we need only to consider the open cover⋃N−1

i=0
(∏mi−1

j=1 Ii,j ×∏M−1
j=mi Xj

)
of

∏M−1
n=0 Cn. The result follows from Theorem 3.28, since∏M−1

n=0 Cn is computable inK(
∏M−1

n=0 Xn).

Note that if the overt sets were allowed to be empty, computing
∏∞

n=0 Vn would enable verifying∏∞
n=0 Vn �

∏∞
n=0 Xn, which is equivalent to

∧∞
n=0 Vn �= ∅, a countable conjunction.

An alternative representation of open sets of an effective topological space (X, τ , β , ν) is the
Scott representation, based on the Scott topology (Gierz et al. 1980). For locally compact spaces, it
turns out that this is equivalent (following Definition 2.21) to the standard representation.

Definition 3.67. Let (X, τ , β , ν) be an effective topological space. The Scott representation θ ′< of
open setsO(X) is given by

θ ′<(p)=U ⇐⇒ {ν(w) |w� p} = {I ∈ β | I �U}.

Remark 3.68. If (X, τ ) is a Hausdorff space, then U �V for open U,V is equivalent to U a
compact subset of U.

In order to relate the representations θ and θ ′, we need an extra effective covering property.

Definition 3.69 (Effective covering property). Let (X, τ , β , ν) be an effective topological space.
Then, (X, τ , β , ν) has the effective covering property if {v,w1, . . . ,wk ∈�∗ ×�∗ × · · · ×�∗ |
ν(v)� ν(w1)∪ · · · ∪ ν(wk)} is recursively-enumerable.

The following theorem shows that the effective covering property is a necessary and sufficient
condition for equivalence of the representations θ< and θ ′<.
Theorem 3.70. Let (X, τ , β ,μ) be an effective topological space which is locally compact. Then,
the representations θ< and θ ′< are equivalent if, and only if, (X, τ , β ,μ) has the effective covering
property.

Proof. Suppose (X, τ , β ,μ) has the effective covering property. For any locally compact space
(X, τ ) and any U ∈O(X), we have U =⋃{I ∈ β | I �U}. Hence, any θ ′<-name is also a θ<-name.
If U =⋃∞

i=0 Ji and I �U, there exists k such that I ⊂⋃k
i=1 Ji, so we can prove that I �U. Hence,

any θ<-name is also a θ ′<-name
Conversely, if θ< and θ ′< are equivalent, then we can compute a θ ′<-name of

⋃k
i=1 Ji, which

amounts to enumerating {w ∈ dom (ν) | ν(w)�⋃k
i=1 Ji}. Hence, (X, τ , β ,μ) has the effective

covering property.

We now give standard representations of spaces of functions and multifunctions in an effectively
locally compact space, based on the Isbell topology (Isbell 1975).

Definition 3.71. If (X, τX , βX , νX) is a computable topological space and (Y , τY , σY , νY ) be a sub-
effective topological space, then
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1’. The Isbell representation γ ′ of C(X; Y) is given by

γ ′(p)= f ⇐⇒ {(νX(v), νY (w)) | 〈v,w〉� p} = {(I, J) ∈ βX × βY | I � f−1(J)}.
In other words, a γ ′-name of f encodes a list F ′ of all pairs (I, J) ∈ βX × σY such that I � f−1(J).

2’. The Isbell representation μ′< of C(X; V(Y)) is given by

μ′<(p)= F ⇐⇒ {(νX(v), νY (w)) | 〈v,w〉� p} = {(I, J) ∈ βX × βY | I � F−1(J)}.
3’. The Isbell representation μ′> of C(X;K(Y)) is given by

μ′<(p)= F ⇐⇒ {(νX(v), νY (w1), . . . , νY (wk)) | 〈v,w1, . . . ,wk〉� p}
= {(I, J1, . . . , Jk) ∈ βX × β∗Y | I � F⇐(J1 ∪ · · · ∪ Jk)}.

The following result is a direct corollary of Theorem 3.70.

Corollary 3.72. Let (X, τX , βX , νX) be an effectively locally compact space, and (Y , τY , σY , νY ) be a
sub-effective topological space. Then, the standard representation γ of C(X; Y) is equivalent to the
Isbell representation γ ′.

Remark 3.73. If (X, τ ) is a locally compact Hausdorff space, then we can choose a basis β
such that I is compact for all I ∈ β . Then, the effective covering property can be written as
{I, J1, . . . , Jk | I ⊂

⋃k
i=1 Ji} is recursively-enumerable. Further, the effective disjointness property

that can be written as {I1, I2 ∈ β × β | I1 × I2 =∅} is recursively-enumerable. This recovers the
definitions of Brattka and Presser (2003).

3.8 Metric spaces
We now turn to the metric spaces.

Definition 3.74 (Computable metric space). A computable metric space is a tuple (X, d, ξ , α),
where (X, d) is a metric space, ξ :�∗⇀ X encodes a countable dense subset of X, and
α :�∗ ×�∗ ×N⇀Q is such that |d(ξ (w1), ξ (w2))− α(w1,w2, n)|< 2−n.

The standard representation of a computable metric space is the Cauchy representation,
that is,

δ(〈w1,w2, . . .〉)= x ⇐⇒ lim
n→∞ ξ (wn)= x and α(wm,wn, min (m, n)+ 1)< 2−( min (m,n)+1).

Theorem 3.75. The standard representation δ of a computable metric space (X, d, ξ , α) is an
admissible quotient representation, and the metric d is a computable function X ×X →R.

Proof. The proof that δ is an admissible quotient representation is similar to that of
Theorem 3.53 and is omitted. To show that the metric is computable, let δ(〈v1, v2, . . .〉)= x and
δ(〈w1,w2, . . .〉)= y. Observe that d(ξ (vn), x)≤ 2−n and d(ξ (wn), y)≤ 2−n If δ(〈v1, v2, . . .〉)= x
we have

|d(x, y)− α(vn+2,wn+2, n+ 1)| ≤ d(x, ξ (vn+2))+ d(ξ (wn+2), y)

+ ∣∣d(ξ (vn+2), ξ (wn+2))− α(vn+2,wn+2, n+ 1)
∣∣

≤ 2−(n+2) + 2−(n+2) + 2−(n+1) ≤ 2−n.

Hence α(vn+2,wn+2, n+ 1) is a fast-convergent Cauchy sequence with limit d(x, y).
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We can therefore construct a complete computable metric space from a countable metric space
by defining a representation on equivalence classes of fast Cauchy sequences. Note that (X, d) is a
computable metric space if it is effectively separable and d is computable.

Let (X, dX) and (Y , dY ) be computable complete metric spaces, and Q a countable dense subset
of X. An important way of defining a function X→ Y is to define it on Q and extend over X by
continuity; if a continuous extension exists, then it is unique.

Following O’Connor and Spitters (2010) if f is computable, and uniformly continuous on Q
with a computable global modulus of continuity δ, then f extends to a computable function over
X. However, many important functions, such as x #→ x2, are only locally uniformly continuous.
In order to computably extend such functions, we need to weaken the requirement of global uni-
form continuity. However, it does not suffice that f is locally uniformly continuous on Q, as the
following example shows:

Example 3.76. Take Q=Q, X=R and cover U0 = {q ∈Q | q< 0∨ q2 < 2} andU1 = {q ∈Q | q>
0∧ q2 > 0}, and the function f (x)= 0 for x ∈U0 and f (x)= 1 for x ∈U1. Then, f is locally uni-
formly continuous on Q, as it is constant over U0 and over U1, but does not extend continuously
over R at

√
2.

Definition 3.77 (Completion locally uniform continuous). Let (X, dX) and (Y , dY ) be complete
metric spaces, and Q a countable dense subset of X. We say f :Q→ Y is completion locally uni-
formly continuous if there exists a countable open cover {U0,U1, . . .} of X and moduli of continuity
δn :Q+→Q+ such that for all n, f is δn-continuous on Q∩Un.

Proposition 3.78 (Extension of functions). Suppose f :Q→ Y is computable and is completion
locally uniformly continuous over computable open sets Un with computable moduli of continuity
δn. Then, f extends to a unique continuous function over X, and this extension is computable.

Proof. Given f :Q→Y , the sets Un :O(X ) and the moduli of continuity δn :Q+→Q+, we can
compute f at any x ∈ X to arbitrary precision ε ∈Q+ by finding someUn � x, choosing q ∈Q∩Un
such that d(q, x)< δn(ε), and approximating f (x)≈ f (q) with d( f (q), f (x))< ε.

An important class of computable metric spaces are the Lp-spaces. In order to study these, we
first need to define integrals. A simple approach is to define the integral by extension of locally
constant functions and relying on monotonicity:

Definition 3.79. The integral is the linear function (R→R)×R2→R written ( f , a, b) #→∫ b
a f (x)dx satisfying:

(a) f #→ ∫ b
a f (x)dx is linear:

∫ b
a [α1f1 + α2f2](x)dx= α1

∫ b
a f1(x)dx+ α2

∫ b
a f2(x)dx.

(b) If f is constant c on [a, b], then
∫ b
a f (x) dx= c(b− a).

(c) If f (x)≤ g(x) on [a, b] and a≤ b, then
∫ b
a f (x) dx≤ ∫ b

a g(x)dx.
(d)

∫ b
a f (x)dx= ∫ c

a f (x)dx+ ∫ b
c f (x)dx.

It is straightforward to show that the integral is well-defined for continuous functions and is
computable:

Theorem 3.80. The integral operator (R→R)×R×R→R taking ( f , a, b) #→ ∫ b
a f (x) dx is

computable.

Sketch of proof. Subdivide the interval [a, b] into n= 2m equal pieces with boundaries
t0, t1, . . . , tn. Since [tk, tk+1] is compact, f ([tk, tk+1])= [y

k
, yk] is computable as a compact sub-

set of R. Hence, Sn =∑n−1
k=0 (tk+1 − tk)[yk, yk] is computable as a compact subset of R. The result
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follows since {∫ b
a f (x)dx} =⋂∞

m=0 S2m (using classical continuity arguments), so is computable as
a compact set, and {∫ b

a f (x)dx} ⊂U ⇐⇒ ∫ b
a f (x)dx ∈U for open U.

The result extends in a natural way to Euclidean space, and also to generally measure spaces;
see Collins (2014) for details.

Definition 3.81 (Integrable functions). We start with a notion of integral of functions
I : (X →R)⇀R which is a computable linear functional defined on functions of compact sup-
port, and satisfying f ≥ 0 =⇒ I( f )≥ 0. The Lp space is defined as the completion of the functions
of compact support under the metric dp( f1, f2)= (I(|f1 − f2|p))1/p.
Since elements of Lp need not be continuous, evaluation on Lp is not a computable operator.
However, we can show that the integral extends computably over L1, since the integral is Lipschitz:

|I( f1)− I( f2)| = |I( f1 − f2)| ≤ I(|f1 − f2|)= d1( f1, f2).
We can also show standard properties of Lp spaces. For example, if f : L1 and g is uniformly
bounded with (known) bound B, then

|I( f × g)− I( fn × g)| = |I(( f − fn)× g)| ≤ I(|( f − fn)× g|)≤ I(|f − fn| × B)
≤ B× I(|f − fn|)≤ 2−nB.

4. Classical Topology
In this section, we relate the computability theory developed in Section 3 to concepts from clas-
sical topology. The material in this section is mostly quite technical and is not needed to actually
use the type theory. However, it is useful to relate the type theory to classical mathematics.
We answer the question of which spaces have an admissible quotient representation and so are
amenable to the theory. We consider the various set types and give a condition (sobriety) under
which these types are equivalent to their classical point-set definition. We also consider local-
compactness properties, including the result that locally compact spaces (which are suitable state
spaces of dynamical systems) have a locally compact open set type (which may be useful in control
synthesis).

4.1 Sequential spaces
Since all spaces with an admissible quotient representation are sequential spaces, we begin with
a brief overview of sequential spaces, and the relation between sequential spaces and topological
spaces.

Lemma 4.1. The space �ω is a countably based sequential space.

Proof. A countable base for �ω is given by the cylinder sets Cw = {p ∈�ω | ∀i< |w|, pi =wi}
where w ∈�∗ and |w| denotes the length of w.

Suppose U is sequentially open and p ∈U, but p �∈ int (U). Then for all n, the set p|n�ω \U =
{q �∈U | p|n = q|n} is nonempty. Therefore, there exists a sequence pn such that pn|n = p|n and
pn �∈U, contradicting U being sequentially open. Hence, p ∈ int (U), and since p ∈U is arbitrary,
U is open.

Recall that a subset C of X is compact if any open cover of C has a finite subcover, countably
compact if any countable open cover of C has a finite subcover, and sequentially compact if any
sequence in C has a convergent subsequence.

The following result shows that for representable spaces, these three notions of compact-
ness coincide. Hence, one may use whichever definition of compactness is most appropriate.
The equivalence of sequential- and countable-compactness for sequential spaces was proved
in Engelking (1989, Theorem 3.10.31).
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Theorem 4.2. Let X be a topological space. Then any compact subset is countably compact, as is any
sequentially compact subset. If X is a sequential space, then any countably compact set is sequentially
compact. If X has a countable pseudobase, then any countably compact set is compact.

Proof. It is immediate from the definition that any compact subset is countably compact. If C
is sequentially compact, suppose U = {U0,U1, . . .} is a countable collection of open sets with no
finite subset covering C. Then, there exists a sequence of points xn such that xn ∈ C \⋃n

k=0 Uk.
Since C is sequentially compact, the sequence �x has a convergent subsequence xk(n) with limit
x∞ ∈ C. By taking yn = xkm with km ≥m, we can construct a convergent sequence yn→ y∞ with
yn ∈ C \⋃n

k=0 Uk and limit y∞ ∈ C. Then, y∞ �∈⋃∞
n=0 Un, so U is not an open cover of C. Taking

the contrapositive, we see that any countable open cover has a finite subcover.
Let X be a sequential space, and suppose C is a countably compact subset of X. Let �x be

a sequence of mutually distinct points in C, define Sn = {xn, xn+1, . . .}, An = cl(Sn) and A∞ =⋂∞
n=0 An, the set of limit points of �x Let Un = X \An. Then, {Un | n ∈N} is a countable collec-

tion of open increasing open sets such that no Un contains C. Since C is countably compact,
U∞ =⋃∞

n=0 Un is not a cover of C, so A∞ ∩ C �= ∅. Take x∞ ∈A∞ ∩ C. Then, x∞ ∈An for all n,
but x∞ �∈ Sm for somem, so Sm �=Am = cl(Sm). Since Sm is not closed and X is a sequential space,
Sm contains a sequence �y converging to a point y∞ not in Sm. Taking a subsequence of �y yields a
convergent subsequence of �x with limit y∞. So some subsequence of �x has limit in C. This shows
that C is sequentially compact.

To prove that if X has a countable pseudobase, then any countably compact set is compact, we
use the following result:

Lemma 4.3. Suppose X has a countable pseudobase. Then for any U ⊂O(X), there exists countable
V ⊂ U such that

⋃
V =⋃

U .
For every x ∈⋃

U , choose U � x. Since B is a pseudobase, there exists B ∈ B such that x ∈ B⊂U.
By the axiom of choice, there is a countable subset C of B such that

⋃
C =⋃

U and for all B ∈ C,
there exists U ∈ U such that B⊂U. By the axiom of countable choice, there is a countable subset
V of U such that for all B ∈ C, there exists V ∈ V with B⊂V . By construction

⋃
U =⋃

C ⊂⋃
V ,

so
⋃

V =⋃
U .

Thus if C is countably compact and U is a possibly uncountable open cover of C, there is a
countable subcover V ⊂ U , hence a finite cover.

4.2 Spaces with an admissible quotient representation
We now prove one of the most important results of computable type theory, namely a char-
acterization of topological spaces with an admissible quotient representation. We will need the
following definition:

Definition 4.4 (Sequential pseudobase). A collection ρ of subsets of a topological space X is called
a sequential pseudobase if for any convergent sequence xn→ x∞ and any open set U � x∞, there
exists V ∈ ρ such that V ⊂U and xn ∈V for all sufficiently large n.

The following result combines Proposition 3.1.15 and Theorem 3 of Schröder (2002a). Due
to its fundamental importance, and the fact that in the original work, the results are scattered
through a sequence of lemmas, we give a simplified and self-contained proof.

Theorem 4.5 (Schröder 2002a, 2007). Let X be a Kolmogorov topological space. Then the following
are equivalent:

(a) X has an admissible quotient representation.
(b) X is a quotient of a countably based space.
(c) X is a sequential space with a countable sequential pseudobase.
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Proof.

(1=⇒ 2) �ω is a countably based space, so any subspaceR is also countably based. Let δ :�ω ⇀ X
be a quotient representation, and take R= dom (δ), so δ : R→ X is a total quotient map.
Thus, X is a quotient of the countably based space R.

(2=⇒ 3) Suppose X is a topological space, β is a countable base for X, and q : X→ Y is a quotient
map.

Y is a sequential space: Suppose V ⊂ Y is sequentially open. We need to show that
V is open. Since q is a quotient map, V is open if, and only if, q−1(V) is open. Let
x∞ ∈ X but x∞ �∈ int (q−1(V)). Let {I0, I1, . . .} = {I ∈ β | x ∈ I}. Since for any n ∈N,⋂n

j=0 Ji is open and x∞ �∈ int (q−1(V)), the set
⋂n

j=0 Ji \ q−1(V) is nonempty. Hence,
we can choose a sequence xn with xn ∈⋂n

j=0 Ji \ q−1(V). Since β is a base for X,
for any open U � x, there exists n such that

⋂n
j=0 Ji ⊂U. Hence, xn→ x∞. Then,

f (xn)→ x∞, so f (xn) is a convergent sequence in Y \V . Since V is sequentially open,
x∞ = limn→∞ f (xn) �∈V , so x∞ �∈ f−1(V). Hence int (q−1(V))= q−1(V), so q−1(V) is
open.

Y has a countable pseudobase: Let βX be a countable base of X. Define

BY = {sat (q(I1 ∪ . . .∪ Ik)) | (I1, . . . , Ik) ∈ β∗X}. (12)

We claim that B is a countable pseudobase of Y .
We first prove the following: Suppose K is a compact subset of Y ,V open and K ⊂V .

Let Un be a sequence of increasing open subsets of X such that
⋃∞

n=0 Un = q−1(V).
Then, there exists m such that sat (q(Um))⊃K. To this end, suppose that for all n,
sat (q(Um)) �⊃K. Then, there exists a sequence of open sets (Wn)n∈N such that for all n,
q(Un)⊂Wn butWn �⊃K. Then, Un ⊂ q−1(Wn), which implies

⋂
n≥m q−1(Wn). Since q

is a quotient map and q−1(
⋂

n≥m Wn)=⋂
n≥m q−1(Wn), we see that Vm =⋂

n≥m Wn
is open for anym. Since q−1(Vm)⊃Um, we have

⋃∞
m=0 q−1(Vm)= q−1(V), from which⋃∞

m=0 Vm =V . Since K is compact, there exists m such that K ⊂Vm, which means
K ⊂⋂∞

n=m Wn and hence K ⊂Wm, a contradiction. Hence, there exists m such that
sat (q(Um))⊃K.

To complete the proof, let yn→ y∞ with y∞ ∈V . Then, there existsm such that yn ∈
V for all n≥m. Take K = {ym, ym+1, . . . , y∞}. Let (I0, I1, . . . ) be a list of all I ∈ β such
that I ⊂ q−1(V), and let Uj =⋃j

i=0 Ij. Hence, there exists k such that yn ∈ sat (q(I0 ∪
· · · ∪ Ik)) for all n≥m.

(3=⇒ 1) Let X be a sequential topological space, and B= {B0, B1, . . .} be a countable pseudobase
with prefix-free notation ν :�∗� B. Define a function δ :�ω ⇀ X by

δ(p)= x ⇐⇒ ∀w� p, x ∈ ν(w) and ∀ open U � x, ∃w� p, ν(w)⊂U. (13)

Here, by w� p, we mean that p=w0w1w2 · · · with wi ∈ dom (ν) for all i and w=wi
for some i. We claim that δ is an admissible quotient representation.
δ is single-valued: If x �= y, there exists openU containing exactly one of x, y. Without

loss of generality, suppose x ∈U and y �∈U. Then for any name p of x, there exists w� p
such that x ∈ ν(w)⊂U, but for any name q of y and any w such that ν(w)⊂U, we have
y �∈ ν(w), so w ��q.
δ is surjective: For any x ∈ X and open U � x, there exists B ∈ B such that x ∈ B⊂U.
δ is continuous: Let U ∈O(X) and p ∈ δ−1(U) with x= δ(p). Then, there exists B=

ν(w) ∈ B such that x ∈ B⊂U, and then w� p. There is an open neighborhood W of p
in�ω such that w� q for all q ∈W, so for any q ∈W ∩ dom (δ), we have δ(q) ∈ B⊂U.
Hence, p ∈W ⊂ δ−1(U), so δ is continuous.
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δ is a quotient: Suppose that f : X→ Y and φ = f ◦ δ is continuous. Let V be open in
Y and U = f−1(V) with x∞ ∈U. Let p∞ be a δ-name of x∞ so y∞ = φ(p∞) ∈V . Let pn
be a sequence in dom (δ) such that pn→ p∞, and let xn = δ(pn). Since δ is continuous
and X is a sequential space, xn→ x∞ as n→∞. Since φ is continuous, there exists N
such that φ(pn) ∈V for all n≥N. Then for n≥N, we have f (xn)= f (δ(pn))= φ(pn) ∈
V , so xn ∈ f−1(V). Hence, f−1(V) is sequentially open, so is open.
δ is admissible: Suppose φ :�ω ⇀ X is a continuous partial function. Define a func-

tion η̃ :�ω ⇀�ω such that if v1 is a prefix of v2, then η̃(v1) is a prefix of η̃(v2), and
that w� η(v) if, and only if, φ(p) ∈ ν(w) whenever p ∈ v�ω and |w| ≤ |v|, the latter
condition being to ensure that given v ∈�∗, we do not obtain infinitely many w such
that φ(v�ω)⊂ ν(w). Define η(p)= limn→∞ η̃(p|n). By padding η̃(v) with names of the
empty set if necessary, we can ensure that η :�ω ⇀�ω. Clearly η is continuous.

It remains to show that for all p ∈ dom (φ), η(p) is a δ-name of φ(p). First, ifw� η(p),
then φ(p) ∈ ν(w). It remains to show that if φ(p) ∈U, there existsw� η(p) such that x ∈
ν(w)⊂U. Let vn = (p0, p1, . . . , pn). If φ(p) ∈U, then p ∈ φ−1(U) so there exists n such
that φ(vn�ω ∩ dom (φ))⊂U. Let Bx,U = {B ∈ B | x ∈ B⊂U. Suppose for all Bm ∈ Bx,U ,
there is a sequence (qm,n)n∈N ∈ dom (φ) such that (qm,n)i = pi for i≤ n and qm,n �∈ Bm
for all B. Then, there is a sequence (rk)k∈N such that rk ∈ dom (φ), (rk)i = pi for all i≤
k, and for each B ∈ Bx,U , rk �∈ B infinitely often. Then, rk→ p as k→∞, so φ(rk)→
x but there is no B ∈ Bx,U such that eventually φ(rk) ∈ B, contradicting the fact that
B is a sequential pseudobase. Hence, there exists B= ν(w) ∈ Bx,U and n ∈N such that
φ(vn�ω)⊂ B. Then, we have w� p as required.

Remark 4.6. It not true that convergent sequences lift under topological quotients. For example,
the disjoint union of [− 1, 0] and [0,+1] quotients onto [− 1,+1], but any sequence in [− 1,+1]
with infinitely many positive and negative elements does not lift to the base space.

The construction of the pseudobase for the topological quotient is Schröder (2002a,
Lemma 3.1.12).

Remark 4.7. It is not true in general that if q : Y→ X is a quotient map and δY is an admis-
sible quotient representation of Y , then q ◦ δY is an admissible quotient representation of X.
See Dahlgren (2007).

Remark 4.8. There are non-topological limit spaces which have an admissible representation.

Remark 4.9. To the best of our knowledge, it is an open question as to whether every separable
sequential space satisfies the equivalent conditions of Theorem 4.5.

4.3 The Scott topology on open sets
We now give a more detailed study of the open set type introduced by Definition 3.23.

We first study the induced topology onO(X). Recall that Un↗U∞ means Un+1 ⊃Un for all n
and

⋃∞
n=0 Un =U∞.

Definition 4.10 (Scott topology). Let X be a topological space. A collection U of open subsets of X
is Scott open if:

1. U ∈ U , V ∈O(X), and U ⊂V imply V ∈ U , and
2. whenever V ⊂O(X) and

⋃
V ∈ U , there is a finite subset {V1, . . . ,Vn} of V such that⋃n

k=1 Vk ∈ U .
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A collection U of open sets is ω-Scott open if 1. above and

2’. whenever V ⊂O(X) is countable and
⋃

V ∈ U , there is a finite subset {V1, . . . ,Vn} of V such
that

⋃n
k=1 Vk ∈ U , or equivalently

2”. whenever Un↗U∞ with U∞ ∈ U , then there exists n such that Un ∈ U .

It is straightforward to show that the collection of Scott open sets and ω-Scott open sets are topologies
onO(X), called the Scott topology and ω-Scott topology, respectively.

In general, the ω-Scott topology is finer than the Scott topology. However, the following result
shows that the ω-Scott topology coincides with the usual Scott topology if X has a countable
pseudobase; in particular, if X is a quotient of a countably based space.

Proposition 4.11. Let X be a topological space with a countable pseudobase. Then, a set is ω-Scott
open if, and only if, it is Scott open.

The proof is immediate from Theorem 4.2. we henceforth use 2. and 2’. interchangeably for defin-
ing Scott open sets when working in a space with a countable pseudobase, in particular, in a
quotient of a countably based space.

The following properties of the ω-Scott topology are elementary.

Lemma 4.12. Let X be a topological space.

(a) If Un↗U∞ with U∞ ⊃V, then Un→V in the ω-Scott topology.
(b) If C is countably compact, then {U | C⊂U} is open in the ω-Scott topology.
(c) The set of open sets with the ω-Scott topology is a sequential space.

Proof.

(a) Immediate from the definition of the ω-Scott topology.
(b) Suppose Un↗U∞ with C⊂U∞. Then, {Un | n ∈N} is a countable open cover of C so has a

finite subcover {U1, . . . ,Un}. Then, C⊂Un.
(c) SupposeW ⊂O(X), andW is sequentially open in the ω-Scott topology. Then, if U ∈W and

V ⊃U, then since V→U in the ω-Scott topology, we haveW �V . Further, ifUn↗U∞ with
U∞ ∈W , then Un→U∞ in the ω-Scott topology, so there exists N such that Un ∈W for
n≥N sinceW is sequentially open. Hence the ω-Scott topology is sequential.

The following theorem shows that the Scott topology (and by Proposition 4.11 the ω-Scott
topology) is an explicit description of the topology on O(X) induced by the representation of the
topological type SX .

Theorem 4.13. Let X = (X, [δ]) be a topological type. A subset of O(X) is open in the topology
induced by the representation δX→S if, and only if, it is Scott open.

Proof. It suffices to show that the Scott topology is the coarsest topology such that the inclusion
map X×O(X)→ S, (x,U) #→� ⇐⇒ x ∈U is sequentially continuous.

Suppose xn→ x∞ in X, and Un→U∞ in the Scott topology with x∞ ∈U∞. Since x∞ ∈U∞,
there exists N such that xn ∈U∞ for all n≥N. Consider V = {V ∈O(X) | {xN , xN+1, . . . , x∞}⊂
V}. The set V is Scott open, since {xn, xn+1, . . . , x∞} is compact. Hence, there existsM such that
Um ∈ V for all m≥M. Then, for k≥max (M,N), we have {xk, . . . , x∞}⊂Uk, so xk ∈Uk. Thus,
inclusion is sequentially continuous using the Scott topology onO(X).

Suppose T is a sequential topology on O(X) such that inclusion X×O(X)→ S is sequen-
tially continuous. Suppose U is Scott-open but not T-open. Since T is a sequential topology, U
is not T-sequentially-open. Hence, there exists a sequence Un→T U∞ with U∞ ∈ U but Un �∈ U
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for any n ∈N. Since U is Scott-open, we have
⋃∞

n=0 Un �⊃U∞. Let x ∈U∞ \⋃∞
n=0 Un. Then,

x ∈U∞ but x �∈Un for any n, contradicting inclusion being sequentially continuous with respect
to T. Hence, the Scott topology is coarser than any other topology making inclusion sequentially
continuous.

For any quotient of a countably based space X, we henceforth assume the Scott topology onO(X),
soO(O(X)) consists of Scott-open subsets ofO(X).

4.4 Sober spaces
We now consider the closed and compact subsets of X, and their relationships with the overt
and compact set types V(X ) and K(X ) given by Definition 3.24 as subtypes of O(O(X )), and the
consequences for V(X ) and K(X ). This is important when studying systems, since we need to
know when the classical notion of (compact) set actually corresponds to the effective notion of
Definition 3.24.

In particular, we are interested in spaces X for which any element of O(O(X )) which satisfies
both (7) and (8) arises from a singleton set. In other words, if Q :O(X )→ S satisfies

Q(∅)=↑, Q(U1 ∪U2) ⇐⇒ Q(U1)∨Q(U2),

Q(X)=� and Q(U1 ∩U2) ⇐⇒ Q(U1)∧Q(U2).
then there exists x ∈ X such that Q(U) ⇐⇒ x ∈U.

Definition 4.14 (Filters and cofilters). A subset D of P(X) is directed if S ∈D and T ⊃ S implies
T ∈D. A directed subsetF ofP(X) is a filter if S1 ∈F ∧ S2 ∈F =⇒ S1 ∩ S2 ∈F . A directed subset
F of P(X) is a cofilter if ∅ �∈F and S1 ∪ S2 ∈F =⇒ S1 ∈F ∨ S2 ∈F . A directed subset of P(X) is
an ultrafilter if it is both a filter and a cofilter. A (co)filter which is a Scott-open subset of O(X) is a
Scott-open (co)filter.

Remark 4.15. The condition ∅ �∈F in the definition of a cofilter could have been omitted, but
since for any set S⊂ X, we have S �� ∅, such a cofilter could never arise as the collection of sets
intersecting some set S.

If S is any set, then {U ∈O(X) | S⊂U} is a filter, and {U ∈O(X) | S �U} is a cofilter. If x ∈ X is
a point, then we have {x} ⊂U ⇐⇒ {x} �U ⇐⇒ x ∈U, so the set of neighborhoods of x is an
ultrafilter and is easily shown to be open in the Scott topology. Conversely, if X is a T0 space, and
S is a set such that for all open sets U, S⊂U ⇐⇒ S �U, then S is a singleton. Hence, the set of
Scott-open ultrafilters are in some sense “point-like”. However, as the following example shows,
not all Scott-open ultrafilters are the set of neighborhoods of a point.

Example 4.16. Let X= (Q, τ<), where τ< = {(−∞, a)∩Q | a ∈R}. In other words, X is the
restriction of the reals with the topology of lower convergence to the subspace of the rationals.
Take r �∈Q, and let U = {(−∞, a) | a> r}. Then, U is Scott-open, since if Un = (−∞, an) with
Un↗U∞ with U∞ = (−∞, a∞) ∈ U , then an↗ a∞ > r, so an > r for some n. Further, it is clear
that U is an ultrafilter. However, there is no q ∈Q such that U = {(−∞, a) | a> q}, so U is not the
set of neighborhoods of a point.

The topology τ< on Q is equivalent to the topology τ< on R, in the sense that there is a bijec-
tion between open sets preserving unions and intersections. This shows that a set of points of a
topological space cannot be recovered from the lattice of open sets. However, if we view the Scott-
open ultrafilters as providing a canonical set of points, we do obtain a unique space. We call a
space sober if every Scott-open ultrafilter is the closure of a (unique) point. Thus, a sober space
“has enough points” in the sense that any “point-like” collection of open sets corresponds to a real
point.
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Definition 4.17 (Sober space). A topological space X is sober if any Scott-open ultrafilter of X is
the set of neighborhoods of a point.

In the literature (see Gierz et al. 1980; Hofmann and Mislove 1981), an alternative definition of
sober space is sometimes used. A closed set A is irreducible if whenever A=A1 ∪A2 where A1,A2
are closed sets, either A1 =A or A2 =A. A topological space X is (classically) sober if every non-
empty irreducible closed subset is the closure of a point.

We now show that the definition of sober space used here coincides with the classical definition.

Theorem 4.18. Let X be a topological space. Then the following are equivalent:

(a) Any Scott-open ultrafilter of X is the set of neighborhoods of a point.
(b) Any irreducible closed subset of X is the closure of a point.

Proof. Let A be an irreducible closed set, and U = {U ∈O(X) |A �U}. If A is disjoint from U1 ∩
U2, then A=A \ (U1 ∩U2)= (A \U1)∪ (A \U2), so either A \U1 =A or A \U2 =A since A is
irreducible, and hence A is disjoint from either U1 or U2. Hence if A �U1 and A �U2, then A �
(U1 ∩U2). Hence, U is an ultrafilter. Further, ifA �

⋃
V with

⋃
V ∈ U , there exists x ∈A such that

x ∈⋃
V , and then x ∈V for someV ∈ V . Hence, U is Scott-open. Therefore, if any open ultrafilter

is the neighborhood filter of a point, we have U = {U ∈O(X) | x ∈U}. Then, cl{x} �U ⇐⇒ {x} �
U ⇐⇒ x ∈U ⇐⇒ U ∈ U ⇐⇒ A �U, so cl{x} =A.

Let U be a Scott-open ultrafilter, and let V =⋃{U |U �∈ U}. Suppose V ∈ U . Then, since U is
Scott open, we have V1 ∪ · · · ∪Vk ∈ U with Vi �∈ U for all i. Taking kminimal, we have V1 ∪ · · · ∪
Vk−1 �∈ U and Vk �∈ U , contradicting U being an cofilter. Hence, V �∈ U . Suppose V =V1 ∩V2
with V1,V2 �=V . Then, each Vi is a strict superset of V , so V1,V2 ∈ U by definition of V . But,
then V =V1 ∩V2 ∈ U since U is a filter, again a contradiction. Hence, A= X \V is an irreducible
closed set. Therefore, if every irreducible closed set is the closure of a point, we have X \⋃{U |
U �∈ U} = cl{x}. Then, U ∈ U ⇐⇒ U �⊂V ⇐⇒ cl{x} �U ⇐⇒ x ∈U.

Remark 4.19. A space is supersober if the set of limit points of each ultrafilter on X is either
empty or a singleton closure. Theorem 4.18 does not show that any supersober space is sober,
since it refers only to Scott-open ultrafilters, whereas the definition of a supersober space refers to
arbitrary ultrafilters.

We now give two results which relate the classical closed and compact subsets of X with V(X)
and K(X) considered as subsets ofO(O(X)).

Theorem 4.20. Let X be a T0 topological space. Then there is a bijection between closed subsets of
X and Scott-open cofilters inO(X).

Proof. Given A ∈A(X), define F = {U ∈O(X) |A �U}. Clearly F is a Scott-open cofilter.
Conversely, given a Scott-open cofilterF , defineA= {x ∈ X | x ∈U ∈O(X) =⇒ U ∈F}. If x �∈A,
there exists U ∈O(X) such that U �∈F . But, then A∩U =∅. Hence, A is closed. Finally, if
A ∈A(X) and F = {U ∈O(X) |A �U}, define B= {x ∈ X | x ∈U ∈O(X) =⇒ U ∈F}. If x ∈A,
then for any U ∈O(X) with x ∈U, we have x ∈A∩U, so A �U and U ∈F , hence x ∈ B. If x �∈A,
then taking V = X \A we have x ∈V but x �∈F , so x �∈ B.

Recall that the saturation of a set S is sat (S)=⋂{U ∈O(X) | S⊂U}, and a set S is saturated if
S= sat (S). The next result is due to Hofmann and Mislove (1981), which establishes an isomor-
phism between compact saturated sets and open filters. We give a direct proof due to Keimel and
Paseka (1994).

Theorem 4.21 (Hofmann-Mislove). Let X be a sober space. Then, there is a bijection between
saturated compact subsets of X and Scott-open filters inO(X).
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Proof. Let C be a compact subset of X and U = {U ∈O(X) | C⊂U}. Then, U is open since C is
compact, and is clearly a filter.

Let U be an open filter andC=⋂
U . SupposeC⊂V butV �∈ U . Then by Zorn’s lemma, there is

an open setW containingV which is maximal among all open sets not in U . IfW =W1 ∩W2 with
W1,W2 �=W, then we would have W1,W2 ∈ U and so W1 ∩W2 ∈W , a contradiction. Hence,
X \W is irreducible, so X \W = cl{x} for some x ∈ X. Any open set not containing x is therefore
a subset ofW. Hence, x ∈U for all U ∈ U so x ∈ C, but x �∈W and C⊂W, a contradiction. Thus,
if C⊂U then U ∈ U .

Now let V be an open cover of C, so C⊂⋃
V . Then

⋃
V ∈ U , and since U is open, there exists

V1, . . . ,Vk ∈ V such that
⋃k

i=1 Vi ∈ U , so C⊂⋃k
i=1 Vi. Thus, C is compact.

4.5 Core compact spaces
We now consider the property of effective local compactness, which is needed for many system-
theoretic properties. Classically, a weaker version of local compactness is that of core compactness.
We first show (Theorem 4.27) that any sober core-compact space is locally compact. This justi-
fies restricting to local compactness in the computability theory. We then prove (Theorem 4.28)
that any core-compact quotient of a countably based space is countably based. In view of
Theorem 3.66, this shows that countable products of compact and locally compact representable
spaces have the effective Tychonoff property, which will be important when working with trajec-
tories of dynamic systems. Finally, we show that if X is core-compact, then its open sets are locally
compact. This allows us, in principle, to work with systems over subsets of a space.

Much of the material in this sections is based on the work of Escardo and others (Escardó and
Heckmann 2002; Escardó et al. 2004), which is in turn based on Hofmann and Lawson (1978),
Gierz et al. (1980).

For core-compact spaces, we have an alternative representation of open sets; instead of denot-
ing an open set as a countable union of basic open sets, we denote it by sets which are “compactly
contained” in U. Recall from Notation 3.48 that U �V if every open cover of V has a finite
subcover of U, and �U = {V ∈O(X) |U �V}. Note that if X has a countable pseudobase, then
U �V if any monotone sequence Vn↗V has Vn ⊃U for some n. We first give some elementary
properties of the relation�.

Lemma 4.22. Let X be a topological space and U,V ,W ∈O(X). Then:

(a) U �V =⇒ U ⊂V.
(b) U ⊂U ′ �V ′ ⊂V =⇒ U �V.
(c) U �W ∧V �W =⇒ U ∪V �W

Note that it is not true in general that U �V and U �W imply U �V ∩W (though we shall
see that this does hold in a sober core-compact space).

Definition 4.23 (Core compact). A topological space X is core-compact (Hofmann and Lawson
1978) if, for every open set V and every x ∈V, there exists an open set U such that x ∈U and U �V.

If X is core-compact, then for anyW ∈O(X), we haveW =⋃{V ∈O(X) |V �W}.
The following result is Escardó and Heckmann (2002, Lemma 5.2):

Lemma 4.24. Let X be a core-compact space.

(a) For any U ∈O(X), the set �U = {V ∈O(X) |U �V} is Scott open.
(b) IfQ⊂O(X) is Scott open and V ∈Q then U �V for some U ∈Q.
(c) The sets �U for U ∈O(X) form a base of the Scott topology ofO(X).
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Proof.

(a) If V ∈ �U and V ⊂W, then U �V ⊂W so U �W and henceW ∈ �U. IfW ∈ �U then there
exists V ∈O(X) with U �V �W, so V ∈ �U. Hence, every open cover of a memberW of �U
has a finite subcover of a member V of �U.

(b) The open set V is the union of the open sets U �V , and such open sets are closed under the
formation of finite unions.

(c) An immediate consequence of (2) and (3).

The following lemma shows that the relation U �W can be interpolated.

Lemma 4.25 (Interpolation lemma). Suppose X is core-compact and U �W. Then, there exists
V ∈O(X) with U �V �W.

Proof. The open set W is the union of the open sets V �W, and each open set V �W is the
union of the open sets T �V . Hence, W is the union of the collection T = {T ∈O(X) | ∃V ∈
O(X), T �V � X}. For T1, T2 ∈ T , we have T1 ∪ T2 �V1 ∪V2 �W, so T is closed under finite
union. Hence, there exists T ∈ T with U ⊂ T. Taking the corresponding V , we have U ⊂ T �V �
W and hence U �V �W.

The following result shows that we can find a Scott-open filter V interpolating U �W.

Lemma 4.26. Suppose X is a core-compact space and U �W. Then, there exists a Scott open filter
V such that U ⊂⋂

V and W ∈ V .
Proof. Recursively construct a sequence of open sets Vn such that V0 =V and for all n,
U �Vn+1 �Vn. Define V = {W ∈O(X) | ∃n, Vn ⊂W}. Then if W ∈ V and W′ ⊃W, we have
Vn ⊂W ⊂W′ for some n, so W′ ∈ V . Further, if W1,W2 ∈ V , then there exists n1, n2 such
that Vn1 ⊂W1 and Vn2 ⊂W2. Let n=max (n1, n2), so Vn �Vn1 ⊂W1 and Vn �Vn2 ⊂W2, so
Vn ⊂W1 ∩W2, so W1 ∩W2 ∈K. Finally, if W ⊂O(X) such that

⋃
W ∈ V , then there exists n

such that
⋃

W ⊃Vn, so Vn+1 �
⋃

W and hence there is a finite subset {W1, . . . ,Wm} ofW such
that

⋃m
j=1 Wj ⊃Vn+1. Hence, V is a Scott-open filter.

The following result shows that core-compactness generalizes the classical notion of local com-
pactness, and that for sober space, local compactness is equivalent to core-compactness. The proof
that any sober core-compact space is locally compact is due to Hofmann and Lawson (1978).

Theorem 4.27. Any locally compact space X is core-compact, and any sober core-compact space is
locally compact.

Proof. If X is locally compact, then for any open set V and any x ∈V , there exists open U and
compact K such that x ∈U, U ⊂K and K ⊂V . Then any open cover of V has a finite subcover of
K and hence of U, so U �V .

Conversely, suppose X is a sober core-compact space, that W is open and x ∈W. Since X is
core-compact, there exists an open set U such that x ∈U and U �V . By Lemma 4.26, there exists
a Scott open filter V such thatU ⊂⋂

V andW ∈ V . By Theorem 4.21, the setK =⋂
V is compact.

Hence, x ∈U ⊂K ⊂W.

The following result is Escardó et al. (2004, Corollary 6.11). We give a direct proof.

Theorem 4.28. If a core-compact space is a quotient of a countably based space, then it is itself
countably based.

Proof. It suffices to show the result for a sober core-compact space X, which is therefore locally
compact. By Theorem 4.5, the space X has an admissible quotient representation δ : R→ X where
R⊂�ω. Take β to be a countable base for R. Let x ∈ X andU ∈O(X) be such that x ∈U. SinceX is
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locally compact, there exists V ∈O(X) and K ∈K(X) such that x ∈V ⊂K ⊂U. Let (I0, I1, . . . ) be
a list of sets with each Ij ∈ β such that δ−1(U)=⋃∞

j=0 Ij. Suppose δ(
⋃k−1

j=0 Ij) is not a cover ofK for
any k. Then, there is a sequence (xk)k∈N with xk ∈K \ δ(⋃k−1

j=0 Ij) for all k. Since K is compact and
X is a sequential space, K is sequentially compact, so (xk) has a convergent subsequence. Without
loss of generality, we can assume that (xk) is itself convergent and limk→∞ xk = x∞.

Since δ is admissible, there is a convergent sequence (rk)k∈N with limit r∞ such that δ(rk)= xk
for all k ∈ 0, 1, . . . ,∞. Since r∞ ∈ In for some n, there is a finite subset Im1 , . . . , Imk of (I0, I1, . . . )
such that V ⊂K ⊂⋃k

j=1 Imj ⊂U. This contradicts the assumption that δ(
⋃k−1

j=0 Ij) is not a cover
of K.

We have shown that if x ∈ X and U ∈O(X), then there is a finite subset {J1, . . . , Jk} of β
such that x ∈ int (δ(

⋃k
i=1 Ji))⊂U. Hence, {int (δ(⋃k

i=1 Ji)) | J1, . . . , Jk ∈ β∗} is a countable base
for X.

Note that the proof given relies crucially on the admissibility of the admissible quotient
representation δ, which may be different from the original quotient map q.

The following theorem can be derived from Escardó and Heckmann (2002, Theorem 5.3). Its
main significance is to show that core-compactness of X implies local-compactness ofO(X).

Theorem 4.29. Let X be core-compact. Then,O(X) with the Scott topology is locally compact.

Proof. Let U ∈O(X) andW ⊂O(X) be Scott open with U ∈W . By Lemma 4.24, there existsW ∈
O(X) such that U ∈ �W and �W ⊂W . Since U ∈ �W means W �U, and X is core-compact, by
Lemma 4.25 there exists V ∈O(X) such that W �V �U. Define ↑V = {S ∈O(X) |V ⊂ S}, and
note that ↑V is compact in the Scott topology, since any open cover has a singleton subcover. By
Lemma 4.24, the set �V is open in the Scott topology. Then, U ∈ �V ⊂↑V �W as required.

5. Applications to Dynamic Systems
We now use the computable type theory developed in Section 3 to give some results on com-
putable properties of dynamic systems. When considering solutions of nondeterministic systems,
we are often interested in function spaces with set-valued types. In this section, we now give some
applications of the computability type theory to problems in control and systems theory.We focus
on three problems, namely, the evolution of hybrid systems, computation of reachable and viable
sets, and control synthesis. Note that using the computable types developed earlier, many of the
results are almost trivial to prove.

The computations in this paper were performed with the ARIADNE tool for rigorous numerics
and analysis of dynamic systems (Ariadne 2018), commit number 33a1b8dd.

5.1 System behavior
The set of trajectories or solutions of a dynamic system is the space of continuous functions ξ : T→
X, where T is the time domain, and X is the state space. For a discrete-time system, T =N; for a
continuous-time system, T =R+. Throughout this section, we will assume that X is effectively
Hausdorff and effectively overt (Definition 3.38). We require the property of state, that if ξ and η
are solutions with ξ (s)= η(s), then there is a solution ζ with ζ (t)= ξ (t) for t ≤ s, and ζ (t)= η(t)
for t≥ s. For an autonomous system, we also require time-invariance, that if ξ is a solution and
s ∈ T, then the function defined by η(t)= ξ (t+ s) is also a solution.

We write trajs (S, x) for the set of trajectories of a system S with initial condition x. For a deter-
ministic system, there is only one trajectory through a given initial state. The solution operator
may be represented either as a function φ : X→ C(T; X) taking an initial point x to the trajectory
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ξ : T→ X with ξ (0)= x, by the function φ̃ : X× T→ X given by φ̃(x)[t]. By the exponentiation
property, the types X × T →X and X → C(T ;X ) are equivalent.

In a nondeterministic system, there may be many different trajectories with the same initial
state. In a Markov stochastic system, the behavior can be described by a function X× T→ Pr(X),
where Pr(X) is the set of probability measures on X. Since we have not considered computable
measure theory in this article, we will not consider stochastic systems further.

In general, we do not merely wish to compute the evolution only for a system described by
computable data, but for all systems within a class, even if the system data are uncomputable. We
therefore express the computability results in terms of both the system description and the initial
state.

The simplest class of system to consider is that of a deterministic discrete-time system defined
by a continuous function f : X→ X with the update law given by xn+1 = f (xn). The trajectory of
f starting at a point x is the function ξ :N→ X given by ξ (0)= x and ξ (n+ 1)= f (ξ (n)). The
evolution function is given by φ(x)[0]= x and φ(x)[n+ 1]= f (φ(x)[n]).

Proposition 5.1. The evolution of a discrete-time system defined by the update rule x′ = f (x) is
computable as a function traj : C(X ;X )×X → C(N;X ) (equivalently as a function C(X ;X )→
C(X ; C(N;X )) or C(X ;X )×X ×N→X ).

Proof. Immediate, since given f , x, and n, the value ξ (n) for ξ = traj ( f , x) can be computed by
recursion.

Remark 5.2. By saying “the evolution is computable as a function C(X ;X )×X → C(N;X )”, we
mean that for a system defined by an object f of type C(X ;X ), the trajectory starting at x0 in X
can be computed as a function ξ : C(N;X ) given a name of f : C(X ;X ) and x0 :X .

Example 5.3. The logistic map with parameter μ is defined by fμ(x)=μx(1− x). It is well-known
that for a positive-measure set of values of μ in the range [3.56, 4.0], fμ has a strange (chaotic)
attractor and that the long-term behavior of the system is unpredictable in practice. However,
Proposition 5.1 shows that the evolution is computable given μ and x0!

The answer to this conundrum is that very high accuracy must be used to compute the behavior
accurately over a long-time interval. As an example, takeμ= 3.75 and compute the orbit of x0 = 0.5
using double-precision interval arithmetic. Then after 88 iterates, the result stabilizes on the interval
x88 ∈ [0.2197265625:0.9375], which provides no useful information about the value of x88. However,
using 106 bits of precision allows the computation x88 ∈ 0.264510325218310[779 : 867], with an
error of the double-precision approximation.

The system has a fixed-point p= 1− 1/μ= 0.73̇. The orbit starting at the closest double-
precision approximation x0 to p (a distance of≈ 5× 10−17 away, reaches 0.23[2:3] after 66 iterates,
a distance of ≈ 0.5 away. This illustrates the phenomenon of sensitive dependence on initial con-
ditions, in which nearby orbits diverge from each other at an average growth factor of λ≈ 1.75 per
unit time.

5.2 Nondeterministic systems
Nondeterministic systems frequently arise in control and systems theory as models of systems
with control or disturbance inputs. A system with state space X and input space U is described by
a function f : X×U→ X with xn+1 = f (xn, un).

If the inputs un are under the control of the user, we are interested in determining whether there
exists a trajectory with some given property. Hence, we should compute overt sets of trajectories,
since given a verifiable predicate p on trajectories, that is, p : C(T ;X )→ S, we can verify existence
of a trajectory in a set B satisfying p if B :V(C(T ;X )) is effectively overt. If instead the inputs un are
disturbances from the external environment, then we are interested in properties which hold for
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all possible trajectories. Hence, we should try to obtain a compact set of trajectories B, for which
we can verify ∀ξ ∈ B : p(ξ ). Note that there is no distinction between which solutions are likely or
unlikely; merely between what is possible and impossible.

In both cases, we can define a multivalued map F : X⇒ X describing the evolution by F(x)=
f (x,U) and obtain an update law xn+1 ∈ F(xn). If U is overt, then F(x) is computable from f and
U as an overt set, and if U is compact, then F(x) is computable from x and U as a compact set.
Hence, it suffices to consider systems defined by multimaps F : X→ V(X) and F : X→K(X)

There are many different ways of describing the solution space of a system:

Definition 5.4 (Representations of solution spaces). The behavior of a system is the set of all solu-
tions, �̄ ∈P(C(T; X)). The canonical solution trajectory operator is a function �̂ : X→P(C(T; X))
such that �̂(x)= {ξ : T→ X | ξ ∈ �̄ and ξ (0)= x}. The finite reachability operator, �̃ : X× T→
P(X) defined as �̃(x, t)= {ξ (t) | ξ ∈ �̄∧ ξ (0)= x}.

The following result shows that the reachable sets can be recovered from the solution trajectory
operator. Further, unless X is compact, the set of all solutions cannot be represented as an element
of K(C(N;X )), whereas �̂ :X →V(C(N;X )) cannot be recovered from �̄ ∈V(C(N;X )). This
means that in order to study properties of the system, we should compute �̂ and not �̄ or �̃.

Proposition 5.5.
(a) Given the solution trajectory operator �̂ : C(X ;K(C(N;X ))), we can compute the reachability

operator �̃ : C(X ; C(N;K(X ))), and if X is effectively compact, then given �̂, we can compute
the behavior �̄ :K(C(N;X )).

If X is effectively Hausdorff, then given the behavior �̄, we can compute the solution
trajectory operator �̂.

(b) Given the solution trajectory operator �̂ : C(X ;V(C(N;X ))), we can compute the reachability
operator �̃ : C(X ; C(N;V(X ))), and If X is effectively overt, then given �̂, we can compute the
behavior �̄ :V(C(N;X )).

Proof.

(a) Given �̂ : X→K(C(N; X)), define �̃ : X×N→K(X) by �̃(x, n)= {ξ (n) | ξ ∈ �̂(x))=
(�̂(x))(n), which is computable. Given �̂ : X→K(C(N; X)), define �̄= �̂(X), which is
computable since X is effectively compact.

Given �̄ ∈K(C(N; X)), define �̂ : X→K(C(N; X)) by �̂(x)= �̄∩ {ξ ∈ C(N; X) | 0 ∈
ξ−1({x}}. The Hausdorff property ensures that {x} is computable from x as a closed set.

(b) Given �̂ : X→ V(C(N; X)), define �̄= �̂(X), which is computable since X is assumed to be
effectively overt, and hence a computable element of V(X ). Define �̃ : X×N→ V(X) by
�̃(x, n)= {ξ (n) | ξ ∈ �̂(x))= (�̂(x))(n).

This means that in order to study properties of the system, we should compute �̂ and not
�̄ or �̃. We henceforth write �F : X→P(C(N→ X)) for the solution trajectory operator of the
discrete-time system defined by F : X→P(X). Using Theorem 3.32 and Proposition 5.5, com-
putability of the forward-time evolution of discrete-time nondeterministic systems is immediate:

Theorem 5.6. The dynamics of a nondeterministic discrete-time system F is computable in the
following cases:

(a) If F :X →V(X ), then�F :X →V(C(N,X )) is computable from F.
(b) If F :X →K(X ), then�F :X →K(C(N,X )) is computable from F.
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5.3 Differential systems
We now consider the computability of systems defined by differential equations or differential
inclusions. For simplicity, we assume that X is a Euclidean space Rn, though these results also
extend to differential manifolds and locally compact Banach spaces. To prove the results of this
section, we need to go back to first principles to solve the differential systems; in particular, we
need to resort to the classical Arzela–Ascoli and Michael theorems to assert the existence of
solutions.

It is well-known that for general differentiable systems, solutions may escape to infinity in finite
time. We therefore consider trajectories which may be defined on an open subinterval [0, t∞) of
R+, as well as over [0,∞), so have the partial function type CO(R+;X ) from Definition 3.37.

Recall that a function f : X→ Y is Lipschitz over set U if there exists L> 0 such that for all
x1, x2 ∈U, d( f (x1), f (x2))≤ Ld(x1, x2), and locally Lipschitz if there is an open cover U of X such
that f is Lipschitz over all U ∈ U . We say that a function has (at most) linear growth if there exists
a constant C> 0 such that d( f (x), 0)≤ C(1+ d(x, 0)).

Theorem 5.7. Let f : X→ X be locally Lipschitz continuous with linear growth. Then, the solution
operator φ̂f of ẋ= f (x) is computable C(X ;X )×X → CO(R+;X ).

There are many possible proofs; a simple proof can be found in Collins and Graça (2008). Here,
we give two proofs; one based on Picard iteration (see Daniel and Moore 1970) and one based
on Euler steps using boxes to bound the flow tube (Collins and Graça 2008). For simplicity, we
restrict to the globally Lipschitz case. Note that we can weaken the locally Lipschitz condition to
simply requiring uniqueness of solutions (Ruohonen 1996).

Sketch of proof based on Picard iteration. Let L be a Lipschitz constant for f . Then, ‖f (x)‖ ≤K +
L‖x‖ where K ≥ ‖f (0)‖. We restrict to finding solutions on the interval [0, h] with h< 1/L start-
ing at a given x0 with ‖x0‖ ≤M. Define the Picard operator by Pic [ξ ](t)= x0 +

∫ t
0 f (ξ (τ ))dτ .

Then, ‖ Pic [ξ ]− Pic [η]‖ ≤ ∫ t
0 |f (ξ (τ ))− f (η(τ ))|dτ ≤ ∫ t

0 L|ξ (τ )− η(τ )|dτ ≤ Lh‖ξ − η‖, so Pic
is a contraction operator. Define ξ0(t)= x0, and ξn+1 = Pic [ξn]. Then for all m≤ n, ‖ξn − ξm‖ ≤∑n−1

k=m (Lh)k ≤ (Lh)m/(1− Lh), so ξn is a uniformly convergent sequence of functions. Since R is
complete, ξ∞(t)= limn→∞ ξn(t) exists pointwise and standard results of classical analysis show
that ξ∞ is continuous, is the uniform limit of the ξn, and satisfies the differential equation.

Sketch of proof based on Euler scheme. If B,D, B′ are coordinate-aligned boxes inRn. Write 〈S〉 for
the convex hull of a set S. If B+ [0, h]〈f (D)〉 ⊂D and B+ h〈f (D)〉 ⊂ B′, then by then mean value
theorem, we can show that the evolution φ of ẋ= f (x) satisfies φ(x, t) ∈D whenever x ∈ B and t ∈
[0, h], and φ(x, h) ∈ B′ whenever x ∈ B. Note that here, the set B+ [0, h]〈f (D)〉 is explicitly taken
as {x′ | ∃x ∈ B, τ ∈ [0, h] and y ∈ conv (F(D)), x′ = x+ τy}. Suppose we can find times 0= t0 <
t1 < · · ·< tm = T, and boxes B0, B1, . . . , Bn and D0,D1, . . . ,Dn−1 such that setting hk = tk+1 −
tk we have Bk + [0, hk]〈f (Dk)〉 ⊂Dk and Bk + hk〈f (Dk)〉 ⊂ Bk+1 for k= 0, 1, . . . , n− 1. Then, we
have shown that for x0 ∈ B0, the solution ξ with ξ (0)= x0 has ξ (T) ∈ Bn. The result follows that
an exhaustive enumeration over rational boxes finds boxed satisfying the condition with all Bk
arbitrarily small. An estimate for the radius of Bk is given by |Bk+1| ≤ δ + (1+ Lh)|Bk|, where δ
can be taken to be arbitrarily small, from which we find |Bk| ≤ δ

(
(1+ Lh)k+1 − 1

)
/Lh≤ δ((1+

Lh) exp (LT)− 1
)
/Lh.

Example 5.8 (The Van der Pol oscillator). The Van der Pol oscillator is a nonlinear differential
equation defined by

ẍ+μ(x2 − 1)ẋ+ x= 0.
Introducing variable y= ẋ gives the system of coupled first-order equations

ẋ= y; ẏ=μ(1− x2)y− x.
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Figure 2. The limit cycle of the Van der Pol oscillator.

For μ= 1.0, the system exhibits a limit cycle passing through xm when ẋ= 0, for some xm ∈
[2.0, 2.01]. A rigorous over-approximation to a trajectory converging to the limit-cycle is shown in
Figure 2.

We now turn to nondeterministic differential systems as defined by differential inclusions ẋ ∈
F(x). For an introduction to differential inclusions, see Aubin and Cellina (1984). Following the
well-known solution concept of Filippov (1988), we may first need to compute the convex hull of
the right-hand side. The continuous case was first proved in Puri (1996), but easily splits into the
lower- and upper-semicontinuous cases. The lower-semicontinuity with the one-sided Lipschitz
condition was proved in Gabor (2007). Full proofs can be found in Collins and Graça (2009).

We say that a function f :Rn→P(Rn) is one-sided Lipschitz over a set U if for every w, x ∈U,
and fw ∈ F(w), there exists fz ∈ F(x) such that (w− x) · ( fw − fx)≤ L‖w− x‖2 and that f is one-
sided locally Lipschitz if there is an open cover U of X such that for all U ∈ U , f is one-sided
Lipschitz over U.

Theorem 5.9.
(a) Let F be one-sided locally Lipschitz lower-semicontinuous with closed convex values.

Then the solution operator (F, x) #→ �̂F(x) of ẋ ∈ F(x) is computable C(X ;V(X ))×X →
V(CO(R+;X )).

(b) Let F be upper-semicontinuous with compact convex values. Then, the solution operator of ẋ ∈
F(x) is computable C(X ;K(X ))×X →K(CO(R+;X )).

5.4 Evolution of hybrid systems
A hybrid system is a dynamic system in which the state undergoes continuous evolution (governed
by differential equations/inclusions) interspersed with discrete jumps, which are instantaneous
changes in the state occurring when the continuous evolution enters a guard set G. See Goebel
and Teel (2006), Collins (2011) for more details.

It is well-known in the literature, for example, Asarin et al. (1995), Blondel and Tsitsiklis
(2000) that basic problems of reachability and stability are undecidable for even simple classes
of hybrid systems. However, the cause of undecidability for the reachability problem is infinite-
time behavior, as we shall see in Section 5.5. In this section, we shall show that even the finite-time
of a nonlinear hybrid system is uncomputable. However, under appropriate assumptions on the
dynamics, we can compute compact sets of trajectories for compact-valued systems and compute
backward-time evolution for overt-valued systems.
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Figure 3. Hybrid trajectory over a hybrid time domain. Notice
that there are two events at time t2 = t3, and three at time
t6 = t7 = t8.

Definition 5.10 (Hybrid system). A hybrid system is defined by a tuple H = (X, F,G, R), where
• X=Rn is the state space.
• F :Rn ⇒Rn defines the continuous dynamics ẋ ∈ Fq(x) with solution flow�F.
• G⊂ X is the guard set, defined as G= {x ∈ X | g(x)≥ 0} for the guard function g : X→R.
• R : X⇒ X is the resetmap.

Remark 5.11. There are many alternative definitions of hybrid system, most of which also have
a discrete state q as well as a continuous state x, yielding a state space

⊔
q∈Q{q} ×Rnq . Since in

this paper we are essentially interested in the interplay between the continuous dynamics and
instantaneous jumps, our simpler class of systems suffices.

Definition 5.12 (Hybrid trajectory). A hybrid trajectory in state space X is a function ξ : T → X,
where T hybrid time domain, namely a subset ofR+ ×Z+ of the form

⋃N
n=0 [tn, tn+1]× {n}. Here,

N ∈Z+ ∪ {∞} is the number of events, and the final interval is [tN ,∞) if N is finite, whereas
tn→∞ if N =∞. We let ξn : [tn, tn+1] be such that ξ (t, n)= ξn(t), and set tk = τk(ξ )

A hybrid trajectory ξ with domain
∏N

n=0 [tn, tn+1]× {n} is a solution of the hybrid system
(X, F,G, R) if:

• for almost every t ∈ [tn, tn+1], ξn is differentiable at t with ξ ′(t) ∈ F(ξ (t)).
• ξn(tn+1) ∈G for all n, but ξn(t) �∈G◦ for all t ∈ [tn, tn+1).
• ξn+1(tn+1) ∈ R(ξn(tn+1)) for all n.

We write trajs (H, x) for the set of solutions of H starting at a point x, and trajs (H) for the set of all
solutions.

The reachable set of a hybrid system H is defined to be {ξ (t, n) | ξ ∈ trajs (H)∧ (t, n) ∈
dom (ξ )}. The set of states�1 reachable after the first event is defined to be {ξ1(t1) | ξ ∈ trajs (H)}.

Suppose ξ (t) is a continuous trajectory with g(ξ (0))< 0, and g(ξ (t))> 0 for some t> 0. Then,
clearly the trajectory ξ crosses the guard set at some time. We define the hitting time τh by
τh(g, ξ )=min{t ∈R | g(ξ (t))= 0} and the crossing time τc as τc(g, ξ )= inf{t ∈R | g(ξ (t))> 0}.
Clearly τh(g, ξ )≤ τc(g, ξ ), but the two need not be equal, in general. If τh(g, ξ )= τc(g, ξ ), then
we say that ξ crosses g instantaneously at τ = τh(g, ξ ). Otherwise, it may be the case that ξ (t)
slides along the guard set G between τh and τc, or touches G and re-enters D before later crossing
G. We define the touching time set as τ (g, ξ )= {t ∈R+ | g(ξ (t))= 0 ∧ ∀s≤ t, g(ξ (s))≤ 0}.

An example of a hybrid trajectory is shown in Figure 3.

Lemma 5.13. Let g :X →R. Then set of continuous functions ξ : [0,∞)→X with g(ξ (0))< 0
and g(ξ (t))> 0 for some t> 0 is computable in O(C(R+;X )) from g.

Proof. For fixed t, {ξ :R→X | g(ξ (t))< 0} is computable in O(C(R+;X )), since ξ #→ g(ξ (t)) is
computable with values in R, and x #→ (x< 0) is computable in S. The result follows since ∃t ∈
R, g(ξ (t))> 0 ⇐⇒ ∃t ∈Q, g(ξ (t))> 0, so {ξ :R+→X | ∃t ∈R+ g(ξ (t))> 0} is a countable
union of computable open sets.
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Theorem 5.14. The touching time set τ (g, ξ ) is computable in A(R) from g : C(X ,R) and ξ :
C(R+,X ). Further, if g(ξ (t))> 0 for some t> 0, then τ (g, ξ ) can be computed inK(R).

Proof. Define γξ ,g(t)= g(ξ (t)) and μξ ,g(t)= sup{g(ξ (s)) | s ∈ [0, t]} which is a computable func-
tion. Then, τ (g, ξ )= γ−1ξ ,g ({0})∩μ−1ξ ,g ((−∞, 0]) so is computable. If g(ξ (t))> 0, then τ (g, ξ )=
τ (g, ξ )∩ [0, t], so is effectively compact.

Theorem 5.15. Consider a hybrid system (X, F,G, R) whose flow �F :X →K(C(R+;X )) is a
compact-valued multiflow, guard set G= {x ∈ X | g(x)≥ 0} for continuous g :X →R, and reset
map R :X →K(X ) is compact-valued. Let X0 :K(X ) be a compact set of initial states. Then,
the set of points �1(X0) reachable after the first event is computable in K(X ) from �F , g, R
and X0.

Proof. The set of points reachable after the first event of a continuous solution ξ is R(ξ (τ (g, ξ )),
which is computable inK(X ) from ξ ∈ C(R+;X ). The set of trajectories with initial condition X0
is�F(X0), so is computable inK(C(R+;X )). Then,�(X0) is the union of R(ξ (τ (g, ξ )) for ξ in the
compact set�F(X0), so is computable inK(X ).

Unfortunately, the set of points reachable after the first event is not computable as an overt set,
since the touching time set is not computable as an overt set.

Lemma 5.16. The touching time set τ (g, ξ ) is not computable as an overt set from g :X →R and
ξ :R+→X .

Proof. Consider X=R, g(x)= x and ξε(t)= ξ (t)+ ε where ξ (t)=max (t− 2, 0)+min (t−
1, 0). Note that ξ (t)= t− 1 for 0≤ t≤ 1, ξ (t)= 0 for 1≤ t≤ 2, and ξ (t)= t− 2 for t≥ 2. The
touching time set of ξε is {2− ε} for ε < 0, [1, 2] for ε = 0 and {1− ε} for 0< ε < 1.

It turns out that event detection is easier in the context of backward reachability

Theorem 5.17. Consider a hybrid system H = (X, F,G, R) where �F :X →V(C(R+;X )) is an
overt multiflow, G= {x ∈ X | g(x)≥ 0} for g :X →R and R :X →V(X ) is overt-valued. Let V :
O(X ) be an open set. Define �−11 (V) to be the set of initial points for which there is a solution for
which the state is in V immediately after the first event. Then �−11 (V) is computable in O(X ) from
�F ,G, R and V.

Proof. The trajectory ξ crosses G in R−1(V) if ξ (τ (g, ξ ))⊂V . Since R :X →V(X ), U = R−1(V)
is computable in O(X). Since τ (g, ξ ) is compact and ξ is continuous, W = {ξ | τ (g, ξ )⊂U} is
computable in O(C(R+;X )). Since � :X →V(C(R+;X )), �−1(W) is computable in O(X ). We
have �−1(V)= {x | ∃ξ ∈�F(x) s.t. ξ (τ (g, ξ ))⊂ R−1})=�−1F ({ξ (τ (g, ξ ))⊂ R−1}), so �−1(V) is
computable in O(X ).

Example 5.18. Consider a simple heating system, in which the temperature is to be controlled
by means of a thermostat. The thermostat turns the heater on when the temperature goes below
15.0◦ ± 0.2◦, and off when the temperature goes above 20.0◦. The temperature satisfies the dif-
ferential equation Ṫ = P+K(Te + Ta cos (2π t)− T) where t is the time (in days), K = 1.0 is the
conductivity, Te = 16.0 is the average external temperature, Ta = 8.0 is half the amplitude of the
external temperature range, and P is the heater power, which is 4.0 when turned on, and 0 when
turned off.

The behavior of the system is shown in Figure 4. The heater is initially turned off, and the temper-
ature decreases until it reaches the threshold for the heater to turn on. However, even if the heater is
not turned on, the external temperature increases sufficiently that on the first day, the temperature
never decreases below the threshold 14.8◦ below in which the heater must turn on. Hence, there are
two qualitatively different evolutions, one in which the heater turns on (in red) and one in which it
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Figure 4. Behavior of the heating system. The blue flow tubes
indicate where the heater is off, and the red where it is on.

remains off (in blue). By the third day, the heater must turn itself on, but if it was turned on dur-
ing the first day, then it is turned off in the second day, though may then turn on again during the
fifth day.

5.5 Reachable and viable sets
We now apply the results of Section 5.2 to prove computability of some infinite-time operators
in discrete-time dynamical systems. Computability of reachable sets was considered in Collins
(2005). Computability of the viability kernel was considered in Saint-Pierre (1994). Similar results
for upper-semicontinuous hybrid systems have been obtained in Fränzle (1999), Aubin et al.
(2002), Goebel and Teel (2006).

In this section, we will sometimes require that X is effectively locally compact, so there is a
recursively-enumerable set D of pairs (Vn,Kn) ∈O(X )×K(X ) such that Vn ⊂Kn for all n, and
for any compact C and open U with C⊂U there exists n such that C⊂Vn and Kn ⊂U.

We define the reachable set of a system F : X→P(X) with initial state set X0 as

reach (F, X0)= {x ∈ X | ∃ solution ξ and t ∈ T with ξ (0) ∈ X0 and ξ (t)= x}.
Theorem 5.19. The reachable set operator reach is computable as a function C(X ;V(X ))×
V(X )→V(X ), but not as a function C(X ;K(X ))×K(X )→K(X ).

Proof. We canwrite reach (F, X0)=⋃∞
i=0 Xi, whereXi+1 = Xi ∪ F(Xi). Then reach : C(X; V(X))×

V(X)→ V(X) is computable since all operations are computable. However, reach fails to be com-
putable from C(X ;K(X ))×K(X ) toK(X ) even if X is compact since it is easy to show that reach
is not upper-semicontinuous in parameters, as in Example 5.20.

Example 5.20. Consider the system f :R→R defined by fε(x)= ε + x+ x2 − x4. Then,
reach ( f0, {−1/2})⊂ [− 1, 0], but reach ( fε , {−1/2}) �⊂ [− 1, 1/2] for any ε > 0.

Let (X, d) be a metric space. An ε-trajectory of F : X→P(X) is a sequence �x ∈ Xω, such that for
all n ∈N, there exists yn+1 ∈ X such that yn+1 � F(Xn) and d(yn+1, xn+1)< ε. The chain-reachable
set of F the set of all points reachable by ε-orbits for arbitrarily-small ε.

An equivalent definition of the chain-reachable set, which is valid in arbitrary locally compact
spaces, is:

chainreach (F, X0)=
⋂
{U ∈O(X)| cl(U) is compact, and X0 ∪ F( cl(U))⊂U}.
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Theorem 5.21. Let X be an effectively locally compact type. If F : C(X ;K(X )), X0 :K(X ) and
chainreach (F, X0) is bounded, then chainreach (F, X0) is computable in K(X ) from F and X0.
Further, chainreach (F, X0) is the optimalK(X )-computable over-approximation to reach (F, X0).

Proof. It is clear that chainreach (F, X0)=⋂{V | (K,V) ∈D and X0 ∪ F(K)⊂V}, proving com-
putability. The proof of optimality involves considering perturbations and can be found in Collins
(2007).

The viability kernel of a multivalued map F and a set S is given by

viab (F, S)= {x ∈ X | ∃ solution ξ s.t. x= ξ (0) and ∀t ∈ T, x(t) ∈ S}.
Since we consider existence of solutions of the system, the nondeterminism ismost naturally inter-
preted as a user input, rather than as noise. The viability kernel of S for F represents the set of initial
points which can be controlled to remain in S for all times.

For compact-valued systems, the viability kernel of a compact set is computable:

Theorem 5.22. The viability kernel operator viab (F, S) is computable as a function C(X ,K(X ))×
K(X )→K(X ).

Proof. Write viab (F, S)=⋂∞
i=0 Si, where S0 = S and Si+1 = Si ∩ F−1(Si).

Given the interpretation of a compact-valued nondeterminism as uncontrollable noise, this result
is not physically relevant. Unfortunately, the viability kernel of an overt-valued system is not
computable as an open or overt set. However, we can define a robust viability kernel

robviab (F, S)=
⋃
{C ∈K(X) | C⊂ S∩ F−1( int (C))}.

Theorem 5.23. Let X be an effectively locally compact type. The robust viability kernel operator
robviab (F, S) is computable as a function C(X ,V(X ))×O(X )→O(X ).

Proof. Write robviab (F, S)=⋃{K | (K,V) ∈D and K ⊂ S∩ F−1(V)}.
Example 5.24. The Hénon map is the function f (x, y)= (a− x2 + by, x). For parameter values
a= 1.3, b= 0.3, the system is chaotic. We computed the reachable set starting at (0.55, 1.0) up to 114
iterates with ARIADNE using zonotope (affine) enclosures. An approximate analysis shows that f 114
magnifies initial errors by a factor of approximately 6×1012. A lower approximation to the reachable
set and an over-approximation to the chain-reachable set are shown in Figure 5. The approximation
to the reachable set is defined by a collection of zonotopes, each of which is guaranteed to contain a
point in the true reachable set.

5.6 Control synthesis
A noisy control system with state space X, input space U and noise space V is a function f : X×
U ×V→ X. We assume that U is an overt space and V a compact space, and define FU : X→
P(X×U), FU(x)= {(x, u) | u ∈U}, and FV : X×U→P(X) by FV (x, u)= {f (x, u, v) | v ∈V}.

The controllable set ctrl ( f , T, S) of f with target set T and safe set S is the set of initial points
for which there is a control law guiding the state into T in finite time, while remaining in S. It can
be determined recursively by T0 = T ∩ S, Ti+1 = Ti ∪ {x ∈ X | ∃u ∈U, ∀v ∈V , f (x, u, v) ∈ Ti} ∩ S
and ctrl ( f , T, S)=⋃∞

i=0 Ti.
The problem of control synthesis is to develop a controller for the system, which uses the system

outputs to generate suitable inputs to solve the control problem. The methods given here general-
ize provide a general framework for control synthesis for discrete-time systems, similar to existing
approaches for linear (Asarin et al. 2000) and nonlinear (Tomlin et al. 2000) hybrid systems.
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Figure 5. A lower approximation to the reachable set (left) and an over-approximation to the chain-reachable set (right).

Theorem 5.25. Let U be an effectively overt type, and V effectively compact. Then, the controllable
set operator ctrl : C(X , U , V ;X )×O(X )×O(X )→O(X ) is computable.

Proof. The multivalued functions FU : X→ V(X×U) and FV : (X×U)→K(X) can be com-
puted from f , U and V . Write T0 = T and Ti+1 = Ti ∪ (F−1U (F⇐V (Ti))∩ S). Then, the controllable
set is given by

⋃∞
i=0 Ti.

Classically, a state feedback control law is a function g : X→U. There are systems which are
controllable by a discontinuous state feedback, but not a continuous feedback, so we cannot hope
to solve a general control problem by computing a continuous state feedback. One solution to
this difficulty is to first compute a supervisor, which is a multivalued function G : X⇒U such that
taking inputs un ∈G(xn) always gives a solution to the control problem. If G is open-valued, we
can then construct a deterministic feedback law by taking g(x) ∈G(x).

Theorem5.26. LetX be an effectively locally compact type,U be an effectively overt type, V be effec-
tively compact, f :X × U × V→X , T, S :O(X ), and X0 :K(X ). If ctrl ( f , T, S)⊃ X0, then there is
a supervisor G : X→O(U) which can be computed from f , T, S, X0.

Proof. From Ti+1 = Ti ∪ F−1U (F⇐V (Ti)) and X0 ⊂ Tn, by local-compactness of X we can find
open Bi, Ci such that C0 ⊂ T, X0 ⊂⋃n

i=0 Bi, and for all i, Ci ⊂ Bi and Bi+1 ⊂ F−1U (F⇐V (Ci). For
x ∈ Bi \⋃i−1

j=0 Cj, define Gi(x)= {u ∈U | (x, u) ∈ F⇐V (Ci−1)}, and define G(x)=⋃{Gi(x) | x ∈ Bi \⋃i−1
j=0 Cj}.
A noisy control system with partial observations with output space Y and measurement noise

space W is defined by functions f : X×U ×V→ X and h : X×W→ Y . We assume W is com-
pact and define H : X→K(Y) by H(x)= {h(x,w) |w ∈W}. An observer for the system takes
values X̂ ∈K(X), with initialization X̂0 = X0 ∩H−1(y0) and update rule

X̂n+1 = F̂(X̂n, un, yn+1)= FV (X̂n, un)∩H−1(yn+1). (14)

In order to guarantee control to the target set within the safe set, we require X̂n ⊂ T for some
n, and X̂i ⊂ S for all i≤ n. We can therefore define sets Ti ⊂K(X) by T0 = {C ∈K(S) | C⊂ T} and
Ti+1 = {C ∈K(S) | ∃u ∈U, ∀y ∈ Y , F̂(C, u, y) ∈ Ti}. Note that {C ∈K(X) | C⊂U} is open inK(X)
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for U open in X. Then, Ti+1 is the set of all state estimates for which we can choose an input such
that the next state estimate is guaranteed to be in Ti. The problem is solvable if, and only if, there
exists n such that

⋃n
i=1 Ti ⊃ {C ∈K(X) | ∃y ∈ Y s.t. C= X0 ∩H−1(y)}.

Define the controllable set operator ctrl byX0 ∈ ctrl ( f , h, S, T) ifX0 is controllable into T inside
S under the system ( f , h).

Theorem 5.27. Let U be an effectively overt type and V ,W be effectively compact. The con-
trollable set operator ctrl ( f , h, T, S) for systems with partial observations is computable ctrl :
C(X , U , V ;X )× C(X ,W ;Y)×O(X )×O(X )→O(K(X )).

Proof. Define a function Ĥ :K(X)× Y→K(X) by Ĥ(C, y)= C ∩H−1(Y). Then Ĥ is com-
putable. Further, either Y is compact or Ĥ(C, Y)= Ĥ(C,H(C))∪ ∅, so Ĥ(C, Y)= {Ĥ(C, y) | y ∈
Y} ∈K(K(X)). For X0 ∈K(X), define X̂0 = {C ∈K(X) | ∃y ∈ Y s.t. C= X0 ∩H−1(y)}. Then, X̂0 =
Ĥ(X0) is computable inK(K(X )).

The set T0 = {C ∈K(S) | C⊂ T} = {C ∈K(X) | C⊂ S∩ T} is computable in O(K(X)) directly
from S and T. We now show that Ti+1 is computable in O(K(X)). Let Vi = {C ∈K(X) | ∀y ∈
Y , C ∩H−1(y) ∈ Ti} and Ui+1 = {(C, u) ∈K(X)×U | FV (C, u) ∈Vi}, so Ti+1 = {C ∈K(S) | ∃u ∈
U, (C, u) ∈Ui+1}. Then Vi = {C ∈K(X) | Ĥ(C, Y)⊂ Ti}, and since Ĥ(C, Y) ∈K(K(X)), we have
Vi computable in O(K(X )). Then Ui+1 = F−1V (Vi), so is computable in O(K(X )× U). Defining
F̃U(C)= C×U ∈ V(K(X)×U), we obtain {C ∈K(X) | ∃u ∈U, (C, u) ∈Ui+1} = F̃−1U (Ui+1), so
Ti+1 = F̃−1U (Ui+1 ∩ {C ∈K(X) | C⊂ S} is computable in O(K(X )).

We can construct a controller solving the problem in a similar way to the case of state feedback.
However, since the type of compact sets is not Hausdorff, we add an additional state k, and take
the controller to be a partial functionsK(X )×N⇀O(U) defined on (Ck, k) when Ck ∈ Tk.

Theorem 5.28. Let X be an effectively locally compact type, U be an effectively overt type,
V ,W be effectively compact, f :X × U × V→X , h :X ×W→X , T, S :O(X ), and X0 :K(X ).
If ctrl ( f , h, T, S)⊃ X0, then there is an supervisor G :K(X)×N⇀O(U) which can be computed
from f , h, T, S, X0.

Sketch of proof. Since X0 ∈ ctrl ( f , h, S, T), there exists N such that X0 ∈ TN , and since each Tn
is open, we can effectively find such an N. We initialize the supervisor to (X̂0,N) where X̂0 =
X0 ∩H−1(y). From controller state (X̂i, j), we choose input ui ∈Gj(X̂i), update the controller state
to (X̂i+1, j− 1) where X̂i+1 is given by (14). It is immediate from construction that X̂i ∈ TN−i, so
X̂N ∈ T as required.

Remark 5.29. An alternative approach is to consider a fully-discrete controller, as in Collins
(2008, Theorem 18). Here, the main difficulty is in moving from observers with states in K(X ),
which is not Hausdoff, to an element of a discrete Hausdorff space.

6. Conclusions
In this paper, we have given an exposition of a theory of rigorous computation for objects of
continuousmathematics and shown that this theory is powerful enough to construct algorithms to
solve a variety of problems of dynamic systems theory, including differential equations/inclusions,
evolution of hybrid systems, reachability analysis, and control synthesis. By expressing the results
within a simple type theory, we can give simple proofs which are similar in style to those of classical
or constructive mathematics.

There are many possible directions for future work, including differentiable dynamical
systems, partial differential equations, and stochastic systems. Differentiable dynamical systems
are a rich field for which many powerful analytic results exists (Katok and Hasselblatt 1995). We
do not expect any significant problems effectivizing much of this theory, though results of ergodic
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theory may be more challenging. Partial differential equations rely crucially on existence and
uniqueness results on Sobolev spaces; again we do not expect significant problems. For stochastic
systems, we need a theory of probability. This is more challenging, since classical probability is
based on measure theory, which is not directly computable. We have shown that an approach
based on valuations is sufficient to prove computability of solutions of stochastic differential
equations (Collins 2014).

Finally, it is important to provide rigorous and efficient implementations of the operations
proved computable. The tool ARIADNE (Bresolin et al. 2015) provides such functionality for
reachability analysis of nonlinear hybrid systems.
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Notes
1 The term “s-m-n” is standard and refers to letters occurring in the original statement of the theorem in Kleene (1936) rather
than being an abbreviation.
2 The terminology overt is becoming standard in the literature. One might instead use the terminology separable since this is
the classical property most closely related to this type.
3 The author wishes to thank the anonymous referee for pointing out the (rather obvious) Sierpinski space counterexample.
4 On (Pauly 2016, p. 170), it is claimed that this result is wrong. The counterexample given, namely {p ∈ [0, 1]ω |
p is not computable}, is not effectively separable, since any countable dense computable sequence in [0, 1]ω has computable
elements.
5 On (Pauly 2016, p. 166), it is claimed that this result is also wrong and that the one-point compactificatio of Baire space,
Nω ∪ {∞}, is a counterexample, as communicated by de Brecht. We suspect this is an example of an effectively compact space
which is not effectively coverable and that the claim was due to misreading “if ” for “if, and only if ”.
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A. Appendix
A.1 Summary of computable types and operations
Predicates:

Element χS(x) ⇐⇒ x ∈ S.
Overlap S �U ⇐⇒ ∃ x ∈ S, x ∈U ⇐⇒ A∩U �= ∅.
Subset S⊂U ⇐⇒ ∀ x ∈ S, x ∈U.

General constructions:

Terminal I.
Element X ≡ I→X .
Subtype {x ∈X | p(x)}.
Sum X1 +X2 with inclusions i1,2 :X1,2→X1 +X2.
Product X1 ×X2 with projections p1,2 :X1 ×X2→ X1,2.
Exponential YX ≡ (X →Y); YA×X ≡ (YX )A (or A×X →Y ≡A→YX ) with eval-
uation ε :YX ×X →Y .

Countable types:

Binary Words {0, 1}∗.
BooleanB := {�,⊥}.
Sierpinskian S := {�, ↑}.
KleeneanK := {�,⊥, ↑}.
NaturalsN := {0, 1, 2, . . .}.
Integers Z := {. . . ,−2,−1, 0, 1, 2, . . .}.
Rationals Q := {m/n |m ∈Z, n ∈N, and n �= 0}.

Uncountable types:

Cantor space {0, 1}ω.
Baire spaceNω.

Real numbers R := {�x ∈QN | abs(xm − xn)≤ 2−min (m,n), x∼ y⇐⇒abs(xn − yn)≤
21−n}.
Continuous functions C(X ;Y) :=YX .

Linear functions L(V ;W) := {f ∈ C(V ;W) | f (x+ sy)= f (x)+ sf (y)}.
Measures (weak)M(X ) := {μ ∈L(C(X ;R);R) | f ≥ 0 =⇒ μ( f )≥ 0}.
Open sets O(X ) :- SX ; U - χU .

Closed setsA(X ) :- SX ; A- χX\A.
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Overt sets V(X ) := {(A� ·) ∈ SO(X ) |A� (U ∪V) ⇐⇒ A �U ∨A �V}.
Compact setsK(X ) := {(C⊂ ·) ∈ SO(X ) | C⊂ (U ∩V) ⇐⇒ C⊂U ∧ C⊂V}.
Flow {φ ∈ C(X ;C(R;X ))≡ C(X ×R;X ) | φ(x, s+ t)= φ(φ(x, s), t)}.

Logic:

UnprovabilityB→ S,⊥ #→↑.
Countable disjunction SN→ S, (an)n∈N #→∨

n∈N an.

Finite conjunction S× S→ S, (a1, a2) #→ a1 ∧ a2.

Arithmetic:

Unit 1 ∈R.

Addition (x, y) #→ x+ y :R×R→R.

Subtraction (x, y) #→ x− y :R×R→R.

Multiplication (x, y) #→ x× y :R×R→R.

Division (x, y) #→ x÷ y :R× (R \ 0)→R.

Comparison x #→ sgn (x) :R→K.

Limit (xn)n∈N #→ limn→∞ xn :RN⇀R if ∃ ε :N→Q+ such that limn→∞ εn = 0 and
|xm − xn| ≤ εmin (m,n); in particular εn = 2−n.

Sets:

Complement O↔A.

Finite union O×O→O,A×A→A, V×V→V,K×K→K.

Countable union ON→O, VN→V.

Finite intersection O×O→O,A×A→A, V×O→V,K×A→K.

Countable intersectionAN→A. (KN→K can be derived if X is Hausdorff.)

Singleton X →V(X ), X →K(X ).

Closure O(X )→V(X ) if X is effectively overt.

SaturationK(X )→A(X ) if X is effectively Hausdorff.

Evaluation C(X ;Y)×X →Y .

Preimage C(X ;Y)×O(Y)→O(X ), C(X ;Y)×A(Y)→A(X ).

Image C(X ;Y)×V(X )→V(Y), C(X ;Y)×K(X )→K(Y).

Element X ×O(X )→ S.

Overlap V(X )×O(X )→ S.

SubsetK(X )×O(X )→ S.
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