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Abstract

In this paper we present closed form solutions of some discounted optimal stopping
problems for the maximum process in a model driven by a Brownian motion and a
compound Poisson process with exponential jumps. The method of proof is based
on reducing the initial problems to integro-differential free-boundary problems, where
the normal-reflection and smooth-fit conditions may break down and the latter then
replaced by the continuous-fit condition. We show that, under certain relationships on the
parameters of the model, the optimal stopping boundary can be uniquely determined as a
component of the solution of a two-dimensional system of nonlinear ordinary differential
equations. The obtained results can be interpreted as pricing perpetualAmerican lookback
options with fixed and floating strikes in a jump-diffusion model.
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1. Introduction

The main aim of this paper is to present closed form solutions to the discounted optimal
stopping problems, (2.4) and (5.1), below, for the running maximum S associated with the
process X defined in (2.1)–(2.2). These problems are related to the option pricing theory in
mathematical finance, where the process X can describe the price of a risky asset (e.g. a stock)
on a financial market. In this case, the values of (2.4) and (5.1) can be interpreted as fair prices of
perpetual lookback options of American type with fixed and floating strikes in a jump-diffusion
model, respectively. For a continuous model, (2.4) and (5.1) were solved by Pedersen [23],
Guo and Shepp [15], and Beibel and Lerche [4]; see also [11] for the case of finite time horizon.

Observe that, when K = 0, (2.4) and (5.1) turn into the classical Russian option problem
introduced and explicitly solved by Shepp and Shiryaev [30] by means of reducing the initial
problem to an optimal stopping problem for a (continuous) two-dimensional Markov process
and then solving the latter problem using the smooth-fit and normal-reflection conditions. It
was further observed in [31] that the change-of-measure theorem enables the Russian option
problem to be reduced to a one-dimensional optimal stopping problem; this fact explained the
simplicity of the structure of the solution in [30]. Building on the optimal stopping analysis of
Shepp and Shiryaev [30], [31], Duffie and Harrison [7] derived a rational economic value for
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the Russian option and then extended their arbitrage arguments to perpetual lookback options.
More recently, Shepp et al. [32] proposed a barrier version of the Russian option, where the
decision about stopping should be taken before the price process reaches a positive level. Peskir
[25] presented a solution to the Russian option problem in the finite horizon case; see also [8]
for a numeric algorithm for solving the corresponding free-boundary problem and [10] for a
study of asymptotic behavior of the optimal stopping boundary near expiration.

In recent years, the Russian option problem in models with jumps has been studied quite
extensively. Gerber et al. [14] and then Mordecki and Moreira [22] obtained closed form
solutions to the perpetual Russian option problem for diffusions with negative exponential
jumps. Asmussen et al. [2] derived explicit expressions for the prices of perpetual Russian
options in the dense class of Lévy processes with phase-type jumps in both directions by
reducing the initial problem to the first passage time problem and solving the latter by martingale
stopping and Wiener–Hopf factorization. Avram et al. [3] studied exit problems for spectrally
negative Lévy processes and applied the results to solving optimal stopping problems associated
with perpetual Russian and American put options.

In contrast to the Russian option problem, (2.4) is necessarily two-dimensional in the
sense that it cannot be reduced to an optimal stopping problem for a one-dimensional (time-
homogeneous) Markov process. Some other necessarily two-dimensional optimal stopping
problems for continuous processes were earlier considered in [6] and [24]. The main feature of
the optimal stopping problem for the maximum process in continuous models is that the normal-
reflection condition at the diagonal of the state space of the process (X, S) holds, which implies
that the characterization of the optimal boundary is a unique solution of a one-dimensional (first-
order) nonlinear ordinary differential equation; see, e.g. [6], [15], [23], [24], [30], and [31]. The
key point to note when solving optimal stopping problems for the jump processes established
in [27] and [28] is that the smooth-fit condition at the optimal boundary may break down and
then needs replacing by the continuous-fit condition; see also [1] for necessary and sufficient
conditions for the occurrence of the smooth-fit condition and the references therein, and [29]
for an extensive overview.

In the present paper we derive closed form solutions to the discounted optimal stopping
problems, (2.4) and (5.1), below, in a jump-diffusion model driven by a Brownian motion and
a compound Poisson process with exponential jumps. Such a model was considered in [12],
[13], [17]–[19], [20], and [21], where some one-dimensional optimal stopping problems were
solved. We note that the approach chosen in this paper, which is based on reducing the initial
optimal stopping problem to solving the associated free-boundary problem, provides more
valuable information on the nature of the solution and its analytic properties than the standard
so-called guess-and-verify approach. More precisely, the obtained solution of the equivalent
two-dimensional integro-differential free-boundary problem gives the possibility of observing
explicitly not only that the smooth-fit condition for the value function on the optimal boundary
but that the normal-reflection condition at the diagonal may also break down owing to the
occurrence of jumps in the model. It is shown that, under certain relationships on the parameters
of the model, the optimal stopping boundary can be uniquely determined as a component of the
solution of a two-dimensional system of nonlinear (first-order) ordinary differential equations.
These properties prove the structural difference between the solutions of the problem given
by (2.4) in the continuous and jump-diffusion cases.

The paper is organized as follows. In Section 2, we formulate the optimal stopping problem,
(2.4), for a two-dimensional Markov process related to the perpetual American fixed-strike
lookback option problem and reduce it to an equivalent integro-differential free-boundary
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problem. In Section 3, we obtain an explicit solution to the free-boundary problem and derive
nonlinear ordinary differential equations for the optimal stopping boundary as well as specify
asymptotic behavior of the boundary under different relationships on the parameters of the
model. In Section 4, using the change-of-variable formula with local time on surfaces, we verify
that the solution of the free-boundary problem turns out to be a solution of the initial optimal
stopping problem. In Section 5, we give some concluding remarks as well as present an explicit
solution to the optimal stopping problem, (5.1), related to the perpetualAmerican floating-strike
lookback option problem. The main results of the paper are stated in Theorems 4.1 and 5.1.

2. Formulation of the problem

In this section we introduce the setting and notation of the two-dimensional optimal stopping
problem, which is related to pricing the perpetual American fixed-strike lookback option, and
formulate an equivalent integro-differential free-boundary problem.

For a precise formulation of the problem let us consider a probability space (�, F , P )

with a standard Brownian motion B = (Bt )t≥0 and a jump process J = (Jt )t≥0 defined by
Jt = ∑Nt

i=1 Yi , where N = (Nt )t≥0 is a Poisson process with intensity λ > 0 and (Yi)i∈N is a
sequence of independent random variables exponentially distributed with parameter 1 (B, N ,
and (Yi)i∈N are supposed to be independent). Assume that there exists a process X = (Xt )t≥0
given by

Xt = x exp

((
r − δ − σ 2

2
− λθ

1 − θ

)
t + σBt + θJt

)
, (2.1)

where σ ≥ 0, 0 ≤ δ < r , θ < 1, and θ �= 0. It follows that the process X solves the stochastic
differential equation

dXt = (r −δ)Xt− dt +σXt− dBt +Xt−
∫ ∞

0
(eθy −1)(µ(dt, dy)−ν(dt, dy)) (X0 = x),

(2.2)
where x > 0 is given and fixed. It can be assumed that the process X describes a stock price
on a financial market, where r > 0 is the riskless interest rate and the dividend rate paid
to stockholders is δ. Here µ(dt, dy) is the measure of the jumps of the process J with the
compensator ν(dt, dy) = λ dt 1(y > 0)e−y dy, which means that we work directly under a
martingale measure for X; see, e.g. [34, Chapter VII, Section 3g]. Note that the assumption
θ < 1 guarantees that the jumps of X are integrable under the martingale measure, which is no
restriction. With the process X let us associate the maximum process S = (St )t≥0 defined by

St =
(

sup
0≤u≤t

Xu

)
∨ s (2.3)

for an arbitrary s ≥ x > 0. The main purpose of the present paper is to derive a solution to
the optimal stopping problem for the time-homogeneous (strong) Markov process (X, S) =
(Xt , St )t≥0 given by

V∗(x, s) = sup
τ

Ex,s[e−rτ (Sτ − K)+], (2.4)

where the supremum is taken over all stopping times τ with respect to the natural filtration of
X, and Ex,s denotes the expectation under the assumption that the (two-dimensional) process
(X, S) defined by (2.1)–(2.3) starts at (x, s) ∈ E. Here E = {(x, s) | 0 < x ≤ s} denotes
the state space of the process (X, S). The value of (2.4) coincides with an arbitrage-free price
of a perpetual American fixed-strike lookback option with the strike price K > 0; see, e.g.
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[34, Chapter VIII]. It is also seen that if σ = 0 and 0 < θ < 1 with r − δ − λθ/(1 − θ) ≥ 0,
then Xt = St for all t ≥ 0 and, thus, (2.4) coincides with the value function of the perpetual
American call option problem; see, e.g. [12] for a solution of this problem in the given model.
Recall that for the continuous case, in which σ > 0 and θ = 0, (2.4) was solved in [23] and [15].

2.1. The structure of the optimal stopping time in (2.4)

We determine the structure of the optimal stopping time in (2.4) as follows.

(i) By applying the arguments from [6, Subsection 3.2] and [24, Proposition 2.1] to the optimal
stopping problem, (2.4), we see that it is never optimal to stop when Xt = St for t ≥ 0, when
either σ > 0, θ < 0, or r−δ−λθ/(1−θ) < 0 holds (this fact will also be proved independently
in (iv), below). It also follows, directly from the structure of (2.4), that it is never optimal to
stop when St ≤ K for t ≥ 0. In other words, this shows that all points (x, s) from the set

C′ = {(x, s) ∈ E | 0 < x ≤ s ≤ K} (2.5)

and from the diagonal {(x, s) ∈ E | x = s} belong to the continuation region

C∗ = {(x, s) ∈ E | V∗(x, s) > (s − K)+}. (2.6)

(From the solution below it is seen that V∗(x, s) is continuous, so that C∗ is open.)

(ii) Let us fix (x, s) ∈ C∗ and let τ∗ = τ∗(x, s) denote the optimal stopping time in (2.4). Then,
taking another starting point (y, s) for the process (X, S) such that 0 < x < y ≤ s and using
the fact that the running maximum S from (2.3) of the process X from (2.1) started at the point
y is greater or equal to the running maximum S of X started at x, by virtue of the linear structure
of the payoff function in the optimal stopping problem, (2.4), we obtain

V∗(y, s) ≥ Ey,s[e−λτ∗(Sτ∗ − K)+] ≥ Ex,s[e−λτ∗(Sτ∗ − K)+] = V∗(x, s) > (s − K)+,

and, thus, we conclude that (y, s) ∈ C∗. Conversely, we note that the process (X, S) stays at
the same level under the fixed second variable until it hits the diagonal {(x, s) ∈ E | x = s}.
Following the lines of [24, Subsection 3.3] we also clearly observe that, due to the discounting
in (2.4), we should not let the process (X, S) run too much to the left as it could be ‘too
expensive’ to get back to the diagonal in order to offset the ‘cost’ spent to travel all the way.
These arguments, together with the comments in [6, Subsection 3.3] and the fact that, by the
structure of (2.4) and (2.3) with (2.1), the function V∗(x, s) is convex in x on (0, s) for each
s > 0, show that there exists a function g∗(s) for s > K such that the continuation region,
(2.6), is an open set consisting of (2.5) and of the set

C′′∗ = {(x, s) ∈ E | g∗(s) < x ≤ s, s > K}, (2.7)

while the stopping region is the closure of the set

D∗ = {(x, s) ∈ E | 0 < x < g∗(s), s > K}. (2.8)

(iii) Let us now show that in (2.7) and (2.8) the function g∗(s) is increasing on (K, ∞); this
fact also follows from the solution below. As in (2.4) the function s − K is linear in s on
(K, ∞), and by means of standard arguments, it is shown that V∗(x, s)− (s −K) is decreasing
in s on (K, ∞). Hence, if, for given (x, s) ∈ C′′∗ , we take s′ such that K < s′ < s, then
V∗(x, s′) − (s′ − K) ≥ V∗(x, s) − (s − K) > 0 so that (x, s′) ∈ C′′∗ and, thus, the assertion
follows.
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(iv) Let us denote by V ′∗(x, s) the value function of the optimal stopping problem related to
the corresponding Russian option problem, where the optimal stopping time has the structure
τ ′∗ = inf{t ≥ 0 | Xt ≤ a∗St }. It is easily seen that for the case in which K = 0, the function
V ′∗(x, s) coincides with (2.4) and (5.1), while, under different relationships on the parameters
of the model, a∗ < 1 can be uniquely determined by (5.10), (5.12), (5.14), and (5.16). Suppose
that g∗(s) > a∗s for some s > K . Then, as is clearly seen from (2.4), for any given and fixed
x ∈ (a∗s, g∗(s)), we have V ′∗(x, s) − K > s − K = V∗(x, s) contradicting the obvious fact
that V ′∗(x, s) − K ≤ V∗(x, s) for all (x, s) ∈ E with s > K . Thus, we may conclude that
g∗(s) ≤ a∗s < s for all s > K .

2.2. The free-boundary problem

By means of standard arguments it can be shown that the infinitesimal operator L of the
process (X, S) acts on a function F(x, s) from the class C2,1 on E (or F from C1,1 on E when
σ = 0) according to the following rule:

(LF)(x, s) = (r − δ + ζ )xFx(x, s) + σ 2

2
x2Fxx(x, s)

+
∫ ∞

0
(F (xeθy, xeθy ∨ s) − F(x, s))λe−y dy

for all 0 < x < s, where ζ = −λθ/(1 − θ). Using standard arguments based on the strong
Markov property it follows that the function V∗(x, s) belongs to the class C2,1 on C∗ ≡ C′ ∪C′′∗
(or V∗(x, s) belongs to C1,1 on C∗ when σ = 0). In order to find analytic expressions for the
unknown value function V∗(x, s) in (2.4) and the unknown boundary g∗(s) in (2.7) and (2.8), let
us use the results of general theory of optimal stopping problems for Markov processes; see, e.g.
[33, Chapter III, Section 8] and [29, Chapter IV, Section 8]. We can reduce the optimal stopping
problem, (2.4), to the equivalent free-boundary problem:

(LV )(x, s) = rV (x, s) for (x, s) ∈ C ≡ C′ ∪ C′′ such that x �= s, (2.9)

V (x, s)|x=g(s)+ = s − K (continuous-fit condition), (2.10)

V (x, s) = (s − K)+ for (x, s) ∈ D, (2.11)

V (x, s) > (s − K)+ for (x, s) ∈ C, (2.12)

where C′′ and D are defined as C′′∗ and D∗ in (2.7) and (2.8) with g(s) in lieu of g∗(s),
respectively, and (2.10) plays the role of the instantaneous-stopping condition which is satisfied
for all s > K . Observe that the superharmonic characterization of the value function (see
[9], [29, Chapter IV, Section 9], and [33]) implies that V∗(x, s) is the smallest function
satisfying (2.9)–(2.11) with the boundary g∗(s). Moreover, we further assume that the following
conditions are satisfied for all s > K:

Vx(x, s)|x=g(s)+ = 0 if either σ > 0 or r − δ + ζ < 0 (smooth-fit condition), (2.13)

Vs(x, s)|x=s− = 0 if either σ > 0 or r − δ + ζ > 0 (normal-reflection condition). (2.14)

Assumption (2.13) can be explained by the fact that in those cases, leaving the continuation
region C∗, the process X can pass through the boundary g∗(s) continuously. This property
was earlier observed by Peskir and Shiryaev [27, Section 2], [28] when solving some other
optimal stopping problems for jump processes. Assumption (2.14) can be explained by the fact
that in those cases the process X can hit the diagonal continuously. This property was earlier
explained in [6, Section 3.3]. We recall that for the continuous case, in which σ > 0 and θ = 0,
the free-boundary problem given by (2.9)–(2.14) was solved in [23] and [15].
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2.3. Asymptotics for the value function V∗(x, s)

In order to specify the boundary g∗(s) as a solution of the free-boundary problem, (2.9)–
(2.14), we need to observe that, from (2.4), it follows that the inequalities

0 ≤ sup
τ

Ex,s[e−rτ Sτ ] − K ≤ sup
τ

Ex,s[e−rτ (Sτ − K)+] ≤ sup
τ

Ex,s[e−rτ Sτ ], (2.15)

which are equivalent to

0 ≤ V ′∗(x, s) − K ≤ V∗(x, s) ≤ V ′∗(x, s), (2.16)

hold for all (x, s) ∈ E with s > K . Thus, by setting x = s into (2.16) we obtain

0 ≤ V ′∗(s, s)
s

− K

s
≤ V∗(s, s)

s
≤ V ′∗(s, s)

s
(2.17)

for all s > K , so that by letting s tend to ∞ in (2.17) we obtain

lim inf
s→∞

V∗(s, s)
s

= lim sup
s→∞

V∗(s, s)
s

= lim
s→∞

V ′∗(s, s)
s

. (2.18)

2.4. Estimating the value function V∗(x, s)

In order to estimate the value function V∗(x, s) in (2.4), we observe that, from (2.15) and
(2.16), it directly follows that the inequalities

0 ≤ V∗(x, s) − Ex,s[e−rτ ′∗(Sτ ′∗ − K)+] ≤ K Ex,s[e−rτ ′∗ ] ≤ KV ′∗(x, s)

s

hold for all (x, s) ∈ E with s > K , where V ′∗(x, s) and τ ′∗ = inf{t ≥ 0 | Xt ≤ a∗St } are the
value function and the optimal stopping time, respectively, in (2.4) and (5.1) for the case in
which K = 0.

3. Solution to the free-boundary problem

In this section we obtain solutions to the free-boundary problem, (2.9)–(2.14), and derive
ordinary differential equations for the optimal boundary under different relationships on the
parameters of the model, (2.1) and (2.2).

3.1. Reducing the free-boundary problem

By means of straightforward calculations we reduce (2.9) to the form

(r − δ + ζ )xVx(x, s) + σ 2

2
x2Vxx(x, s) − αλxαG(x, s) = (r + λ)V (x, s), (3.1)

with α = 1/θ and ζ = −λθ/(1 − θ), where taking into account conditions (2.10) and (2.11)
we set

G(x, s) = −
∫ s

x

V (z, s)

zα+1 dz −
∫ ∞

s

V (z, z)

zα+1 dz if α = 1

θ
> 1, (3.2)

G(x, s) =
∫ x

g(s)

V (z, s)

zα+1 dz − s − K

αg(s)α
if α = 1

θ
< 0, (3.3)
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for all 0 < g(s) < x ≤ s and s > K . Then, using the arguments from [12, Subsection 3.2],
we may conclude that the function G(x, s) in (3.2) and (3.3) solves an ordinary (third-order)
differential equation, which is equivalent to (3.1), and its general solution is given by

G(x, s) = C1(s)
xβ1

β1
+ C2(s)

xβ2

β2
+ C3(s)

xβ3

β3
, (3.4)

where C1(s), C2(s), and C3(s) are some arbitrary functions and β3 < β2 < β1, βi �= 0 for
i = 1, 2, 3 are the real roots of the corresponding (characteristic) equation:

σ 2

2
β3+

[
σ 2

(
α− 1

2

)
+r−δ+ζ

]
β2+

[
α

(
σ 2(α − 1)

2
+r−δ+ζ

)
−(r+λ)

]
β−αλ = 0. (3.5)

Therefore, differentiating both sides of (3.2) and (3.3) we find that the integro-differential
equation, (3.1), has the general solution

V (x, s) = C1(s)x
γ1 + C2(s)x

γ2 + C3(s)x
γ3 , (3.6)

where we set γi = βi + α for i = 1, 2, 3. Observe that if σ = 0 and r − δ + ζ < 0 then we
can set C3(s) ≡ 0 in (3.4) and (3.6), while the roots of (3.5) are explicitly given by

βi = r + λ

2(r − δ + ζ )
− α

2
− (−1)i

√(
r + λ

2(r − δ + ζ )
− α

2

)2

+ αλ

r − δ + ζ
(3.7)

for i = 1, 2. Thus, by substituting (3.4) and (3.6) into (3.2) and letting x = s we obtain

C1(s)
sγ1

β1
+ C2(s)

sγ2

β2
+ C3(s)

sγ3

β3
= f (s)sα(s − K), (3.8)

where

f (s) = − 1

s − K

∫ ∞

s

(C1(z)z
β1−1 + C2(z)z

β2−1 + C3(z)z
β3−1) dz (3.9)

for s > K . Hence, by differentiating both sides of (3.8) and by applying conditions (3.3) and
(2.10), and (2.13) and (2.14) to the functions in (3.4) and (3.6), respectively, we find that the
following equalities hold for all s > K:

C′
1(s)

sγ1

β1
+ C′

2(s)
sγ2

β2
+ C′

3(s)
sγ3

β3
= 0, (3.10)

C1(s)
g(s)γ1

β1
+ C2(s)

g(s)γ2

β2
+ C3(s)

g(s)γ3

β3
= − s − K

α
, (3.11)

C1(s)g(s)γ1 + C2(s)g(s)γ2 + C3(s)g(s)γ3 = s − K, (3.12)

γ1C1(s)g(s)γ1 + γ2C2(s)g(s)γ2 + γ3C3(s)g(s)γ3 = 0, (3.13)

C′
1(s)s

γ1 + C′
2(s)s

γ2 + C′
3(s)s

γ3 = 0. (3.14)

Here, (3.8) and (3.10) hold if 0 < θ < 1, (3.11) holds if θ < 0, (3.13) holds if either σ > 0 or
r − δ + ζ < 0 with ζ = −λθ/(1 − θ), and (3.14) holds if either σ > 0 or r − δ + ζ > 0. We
assume that the functions Ci(s) for i = 1, 2, 3, as well as the boundary g(s), are continuously
differentiable for s > K . Below we determine the unknown functions Ci(s) for i = 1, 2, 3 and
the optimal boundary g∗(s) under different relationships on the parameters of the model.

https://doi.org/10.1239/jap/1189717540 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1189717540


720 P. V. GAPEEV

3.2. The subcase of negative jumps

Let us consider the subcase of negative jumps, i.e. α = 1/θ < 0. If, in addition, σ > 0
holds then, by solving the system (3.11)–(3.13) using straightforward calculations, we find that
the solution of the system (2.9)–(2.11) and (2.13) is given by

V (x, s; g∗(s)) = β1γ2γ3(s − K)

α(γ2 − γ1)(γ1 − γ3)

(
x

g∗(s)

)γ1

+ β2γ1γ3(s − K)

α(γ2 − γ1)(γ3 − γ2)

(
x

g∗(s)

)γ2

+ β3γ1γ2(s − K)

α(γ1 − γ3)(γ3 − γ2)

(
x

g∗(s)

)γ3

(3.15)

for 0 < g∗(s) < x ≤ s and s > K . Then, by applying condition (3.14) we find that
condition (2.14) implies that the function g∗(s) solves the following (first-order nonlinear)
ordinary differential equation:

g′(s) = g(s)

γ1γ2γ3(s − K)

× β1γ2γ3(γ2 − γ3)(s/g(s))γ1 − β2γ1γ3(γ1 − γ3)(s/g(s))γ2 + β3γ1γ2(γ1 − γ2)(s/g(s))γ3

β1(γ2 − γ3)(s/g(s))γ1 − β2(γ1 − γ3)(s/g(s))γ2 + β3(γ1 − γ2)(s/g(s))γ3

(3.16)

for s > K , with γi = βi + α, i = 1, 2, 3, where the βis are the roots of (3.5).
Observe that if, in addition, σ = 0 holds, then we can put C3(s) ≡ 0 in (3.4) and (3.6),

and omit condition (2.13) which in turn implies condition (3.13). Thus, by solving the system
(3.11)–(3.12) using straightforward calculations, we find that the solution of the system (2.9)–
(2.11) is given by

V (x, s; g∗(s)) = β1γ2(s − K)

α(γ1 − γ2)

(
x

g∗(s)

)γ1

− β2γ1(s − K)

α(γ1 − γ2)

(
x

g∗(s)

)γ2

(3.17)

for 0 < g∗(s) < x ≤ s and s > K . Then, by applying condition (3.14) we find that condition
(2.14) implies that the function g∗(s) solves the differential equation

g′(s) = g(s)

γ1γ2(s − K)

(
β1γ2(s/g(s))γ1 − β2γ1(s/g(s))γ2

β1(s/g(s))γ1 − β2(s/g(s))γ2

)
(3.18)

for s > K , with γi = βi + α, i = 1, 2, where β1 and β2 are given by (3.7). Note that in this
case we have β3 < 0 < β2 < −α < 1 − α < β1 so that γ3 < α < γ2 < 0 < 1 < γ1 with
γi = βi +α, where βi, i = 1, 2, 3 are the roots of (3.5). Thus, by means of standard arguments
it can be shown that the right-hand sides of (3.16) and (3.18) are positive, so that the function
g∗(s) is strictly increasing on (K, ∞).

Let us define h∗(s) = g∗(s)/s for all s > K and set h = lim infs→∞ h∗(s) and h̄ =
lim sups→∞ h∗(s). In order to specify the solutions of (3.16) and (3.18), which coincide with
the optimal stopping boundary g∗(s), we observe that from (3.15) and (3.17) it follows that
(2.18) directly implies

β1γ2γ3(γ3 − γ2)h
−γ1 + β2γ1γ3(γ1 − γ3)h̄

−γ2 + β3γ1γ2(γ2 − γ1)h̄
−γ3

= β1γ2γ3(γ3 − γ2)h̄
−γ1 + β2γ1γ3(γ1 − γ3)h

−γ2 + β3γ1γ2(γ2 − γ1)h
−γ3

= β1γ2γ3(γ3 − γ2)a
−γ1∗ + β2γ1γ3(γ1 − γ3)a

−γ2∗ + β3γ1γ2(γ2 − γ1)a
−γ3∗ (3.19)
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when σ > 0 and

β1γ2h̄
−γ1 − β2γ1h

−γ2 = β1γ2h
−γ1 − β2γ1h̄

−γ2 = β1γ2a
−γ1∗ − β2γ1a

−γ2∗ (3.20)

when σ = 0, where a∗ is uniquely determined by (5.10) and (5.12) under K = 0, respectively.
Then, using the fact that h∗(s) = g∗(s)/s ≤ a∗ for s > K and thus h ≤ h̄ ≤ a∗ < 1, from
(3.19) and (3.20) we obtain h = h̄ = a∗. Hence, we find that the optimal boundary g∗(s) should
satisfy the property

lim
s→∞

g∗(s)
s

= a∗, (3.21)

which gives a condition at ∞ for (3.16) and (3.18). By virtue of the results on the existence
and uniqueness of solutions for first-order ordinary differential equations, we may therefore
conclude that condition (3.21) uniquely specifies the solutions of (3.16) and (3.18), which
correspond to the problem given by (2.4). Taking into account (3.15) and (3.17), we also note
that from inequalities (2.16) it follows that the optimal boundary g∗(s) satisfies the properties

g∗(K+) = 0 and g∗(s) ∼ A∗(s − K)1/γ1 under s ↓ K (3.22)

for some constant A∗ > 0, which can also be determined by means of condition (3.21).

3.3. The subcase of positive jumps

Let us now consider the subcase of positive jumps, i.e. α = 1/θ > 1. If, in addition, σ > 0
holds then, by solving the system (3.8), (3.12), and (3.13) using straightforward calculations,
we find that the solution of the system (2.9)–(2.11) and (2.13) is given by

V (x, s; g∗(s))

= β1(s − K)(β2β3(γ2 − γ3)s
αf∗(s) + β3γ3(s/g∗(s))γ2 − β2γ2(s/g∗(s))γ3)

β2β3(γ2 − γ3)(s/g∗(s))γ1 − β1β3(γ1 − γ3)(s/g∗(s))γ2 + β1β2(γ1 − γ2)(s/g∗(s))γ3

×
(

x

g∗(s)

)γ1

+ β2(s − K)(β1β3(γ3 − γ1)s
αf∗(s) − β3γ3(s/g∗(s))γ1 + β1γ1(s/g∗(s))γ3)

β2β3(γ2 − γ3)(s/g∗(s))γ1 − β1β3(γ1 − γ3)(s/g∗(s))γ2 + β1β2(γ1 − γ2)(s/g∗(s))γ3

×
(

x

g∗(s)

)γ2

+ β3(s − K)(β1β2(γ1 − γ2)s
αf∗(s) + β2γ2(s/g∗(s))γ1 − β1γ1(s/g∗(s))γ2)

β2β3(γ2 − γ3)(s/g∗(s))γ1 − β1β3(γ1 − γ3)(s/g∗(s))γ2 + β1β2(γ1 − γ2)(s/g∗(s))γ3

×
(

x

g∗(s)

)γ3

(3.23)

for 0 < g∗(s) < x ≤ s, where the function f∗(s) is given by

f∗(s) = − 1

s − K

∫ ∞

s

V (z, z; g∗(s))
zα+1 dz (3.24)

for s > K . Then, by applying conditions (3.10) and (3.14) we find that conditions (3.2)
and (2.14) imply that the functions f∗(s) and g∗(s) solve the following system of nonlinear
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(first-order) ordinary differential equations:

f ′(s) = − f (s)

s − K
+

β1β2β3f (s)((γ2 − γ3)(s/g(s))γ1 − (γ1 − γ3)(s/g(s))γ2 + (γ1 − γ2)(s/g(s))γ3)

s(β2β3(γ2 − γ3)(s/g(s))γ1 − β1β3(γ1 − γ3)(s/g(s))γ2 + β1β2(γ1 − γ2)(s/g(s))γ3)
+

β3γ3(γ1 − γ2)(s/g(s))γ1+γ2 − β2γ2(γ1 − γ3)(s/g(s))γ1+γ3 + β1γ1(γ2 − γ3)(s/g(s))γ2+γ3

sα+1(β2β3(γ2 − γ3)(s/g(s))γ1 − β1β3(γ1 − γ3)(s/g(s))γ2 + β1β2(γ1 − γ2)(s/g(s))γ3)

(3.25)

and

g′(s) = g(s)

s − K
×

β3γ3(γ1 − γ2)(s/g(s))γ1+γ2 − β2γ2(γ1 − γ3)(s/g(s))γ1+γ3 + β1γ1(γ2 − γ3)(s/g(s))γ2+γ3

β3(γ1 − γ2)(s/g(s))γ1+γ2 − β2(γ1 − γ3)(s/g(s))γ1+γ3 + β1(γ2 − γ3)(s/g(s))γ2+γ3
×

β2β3(γ2 − γ3)(s/g(s))γ1 − β1β3(γ1 − γ3)(s/g(s))γ2 + β1β2(γ1 − γ2)(s/g(s))γ3

η2η3(γ2 − γ3)(s/g(s))γ1 − η1η3(γ1 − γ3)(s/g(s))γ2 + η1η2(γ1 − γ2)(s/g(s))γ3 − ρf (s)sα

(3.26)

for s > K , with ηi = βiγi and γi = βi + α, i = 1, 2, 3, where the βis are the roots of (3.5)
and ρ = β1β2β3(γ1 − γ2)(γ1 − γ3)(γ2 − γ3).

In order to specify the solution of (3.25), by virtue of the inequalities given in (2.16) and
using (5.13) we find that the function f∗(s), given in (3.24), should satisfy the property

lim
s→∞ f∗(s)sα = γ2(γ3 − 1)

(γ2 − γ1)(β1(γ3 − 1)a
γ1∗ − β3(γ1 − 1)a

γ3∗ )

+ γ3(γ1 − 1)

(γ3 − γ2)(β2(γ1 − 1)a
γ2∗ − β1(γ2 − 1)a

γ1∗ )

+ γ1(γ2 − 1)

(γ1 − γ3)(β3(γ2 − 1)a
γ3∗ − β2(γ3 − 1)a

γ2∗ )
, (3.27)

where a∗ is uniquely determined by (5.14) under K = 0. Hence, from (3.9) and (3.24) it
therefore follows that (3.27) gives a condition at ∞ for (3.25).

Observe that if, in addition, σ = 0 and α = 1/θ > 1 holds with r − δ − λθ/(1 − θ) < 0,
then we can put C3(s) ≡ 0 in (3.4) and (3.6) and omit condition (2.14) which in turn implies
condition (3.14). Thus, by solving the system (3.11)–(3.13) using straightforward calculations,
we find that the solution of the system (2.9)–(2.11) and (2.13) is given by

V (x, s; g∗(s)) = γ2(s − K)

γ2 − γ1

(
x

g∗(s)

)γ1

− γ1(s − K)

γ2 − γ1

(
x

g∗(s)

)γ2

(3.28)

for 0 < g∗(s) < x ≤ s and s > K . Then, by applying condition (3.10) we find that condition
(3.2) implies that the function g∗(s) solves the differential equation

g′(s) = g(s)

γ1γ2(s − K)

(
β2γ2(s/g(s))γ1 − β1γ1(s/g(s))γ2

β2(s/g(s))γ1 − β1(s/g(s))γ2

)
(3.29)

for s > K , with γi = βi +α, i = 1, 2, where β1 and β2 are given by (3.7). Note that in this case,
under σ > 0, we have β3 < −α < 1 − α < β2 < 0 < β1 so that γ3 < 0 < 1 < γ2 < α < γ1
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with γi = βi + α, i = 1, 2, 3, where the βis are the roots of (3.5), while, under σ = 0 and
r − δ − λθ/(1 − θ) < 0, we have β2 < −α < 1 − α < β1 < 0 so that γ2 < 0 < 1 < γ1
with γi = βi + α, i = 1, 2, where β1 and β2 are given by (3.7). Thus, by means of standard
arguments it can be shown that the right-hand sides of (3.16) and (3.18) are positive, so that the
function g∗(s) is strictly increasing on (K, ∞).

Let us recall that h = lim infs→∞h∗(s) and h̄ = lim sups→∞h∗(s) with h∗(s) = g∗(s)/s
for all s > K . In order to specify the solutions of (3.26) and (3.29), which coincides with the
optimal stopping boundary g∗(s), we observe that from the expressions (3.23) with (3.27) and
(3.28) it follows that (2.18) directly implies that

(γ2 − γ3)h̄
−γ1 − (γ1 − γ3)h

−γ2 + (γ1 − γ2)h
−γ3

β2β3(γ2 − γ3)h
−γ1 − β1β3(γ1 − γ3)h

−γ2 + β1β2(γ1 − γ2)h
−γ3

= (γ2 − γ3)h
−γ1 − (γ1 − γ3)h̄

−γ2 + (γ1 − γ2)h̄
−γ3

β2β3(γ2 − γ3)h̄−γ1 − β1β3(γ1 − γ3)h̄−γ2 + β1β2(γ1 − γ2)h̄−γ3

= (γ2 − γ3)a
−γ1∗ − (γ1 − γ3)a

−γ2∗ + (γ1 − γ2)a
−γ3∗

β2β3(γ2 − γ3)a
−γ1∗ − β1β3(γ1 − γ3)a

−γ2∗ + β1β2(γ1 − γ2)a
−γ3∗

(3.30)

when σ > 0, and (3.2) yields

γ2h̄
−γ1 − γ1h

−γ2 = γ2h
−γ1 − γ1h̄

−γ2 = γ2a
−γ1∗ − γ1a

−γ2∗ (3.31)

when σ = 0, where a∗ is uniquely determined by (5.14) and (5.16) under K = 0, respectively.
Then, using the fact that h∗(s) = g∗(s)/s ≤ a∗ for s > K and thus h ≤ h̄ ≤ a∗ < 1, from
(3.30) and (3.31) we obtain h = h̄ = a∗. Hence, we find that the optimal boundary g∗(s) should
satisfy (3.21) which gives a condition at ∞ for (3.26) and (3.29). By virtue of the results on the
existence and uniqueness of solutions for systems of first-order ordinary differential equations
(see also the arguments in [15, pp. 655–656]), we may therefore conclude that conditions
(3.27) and (3.21) uniquely specify the solution of the system (3.25), (3.26), and (3.29), which
corresponds to the problem given by (2.4). Taking into account (3.23) and (3.28), we also note
that from the inequalities in (2.16) it follows that the optimal boundary g∗(s) satisfies (3.22)
for some constant A∗ > 0, which can be determined by means of condition (3.21).

3.4. The value function on the set C′

Observe that the above arguments show that, started at the point (x, s) ∈ C′, the process
(X, S) can be stopped optimally only after it passes through the point (K, K). Thus, using
standard arguments based on the strong Markov property it follows that

V∗(x, s) = U(x; K)V∗(K, K)

for all (x, s) ∈ C′ with V∗(K, K) = lims↓K V∗(K, s), where we set

U(x; K) = Ex[e−rθ∗ ]

and

θ∗ = inf{t ≥ 0 | Xt ≥ K}.
Here Ex denotes the expectation under the assumption that X0 = x for some 0 < x ≤ K .
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By means of straightforward calculations based on solving the corresponding boundary-
value problem (see also [2], [3], and [19]) it follows that when α = 1/θ < 0 holds, we have

U(x; K) =
(

x

K

)γ1

, (3.32)

with γ1 = β1 + α, where if σ > 0 then β1 is the largest root of (3.5), while if σ = 0 then β1 is
given by (3.7). It also follows that when α = 1/θ > 1 holds, we have

U(x; K) = β1γ2

α(γ1 − γ2)

(
x

K

)γ1

− β2γ1

α(γ1 − γ2)

(
x

K

)γ2

, (3.33)

with γi = βi + α, where if σ > 0 then β1 and β2 are the two largest roots of (3.5), while if
σ = 0 and r − δ − λθ/(1 − θ) < 0 then β1 and β2 are given by (3.7).

4. Main result and proof

In this section, using the facts proved above, we formulate and prove the main result of the
paper.

Theorem 4.1. Let the process (X, S) be given by (2.1)–(2.3). Then the value function of the
optimal stopping problem, (2.4), has the structure

V∗(x, s) =

⎧⎪⎨
⎪⎩

V (x, s; g∗(s)) if g∗(s) < x ≤ s and s > K,

U(x; K)V∗(K, K) if 0 < x ≤ s ≤ K,

s − K if 0 < x ≤ g∗(s) and s > K,

(4.1)

with V∗(K, K) = lims↓K V∗(K, s), and the optimal stopping time has the structure

τ∗ = inf{t ≥ 0 | Xt ≤ g∗(St )}, (4.2)

where the functions V (x, s; g∗(s)) and U(x; K), as well as the increasing boundary g∗(s) ≤
a∗s < s for s > K satisfying g∗(K+) = 0 and g∗(s) ∼ A∗(s − K)1/γ under s ↓ K (see
Figure 1), are specified as follows.

(i) If σ > 0 and θ < 0 then V (x, s; g∗(s)) is given by (3.15), U(x; K) is given by (3.32), and
g∗(s) is uniquely determined from the differential equation (3.16) and condition (3.21),
where γi = βi +1/θ, i = 1, 2, 3 and the βis are the roots of (3.5), while a∗ is the unique
solution of (5.10) under K = 0.

(ii) If σ = 0 and θ < 0 then V (x, s; g∗(s)) is given by (3.17), U(x; K) is given by (3.32), and
g∗(s) is uniquely determined from the differential equation (3.18) and condition (3.21),
where γi = βi + 1/θ, i = 1, 2 and β1 and β2 are given by (3.7), while a∗ is the unique
solution of (5.12) under K = 0.

(iii) If σ > 0 and 0 < θ < 1 then V (x, s; g∗(s)) is given by (3.23), U(x; K) is given by
(3.33), and g∗(s) is uniquely determined from the system of differential equations (3.25)
and (3.26) and conditions (3.27) and (3.21), where γi = βi + 1/θ, i = 1, 2, 3 and the
βis are the roots of (3.5), while a∗ is the unique solution of (5.14) under K = 0.

(iv) If σ = 0 and 0 < θ < 1 with r − δ − λθ/(1 − θ) < 0 then V (x, s; g∗(s)) is given by
(3.28), U(x; K) is given by (3.33), and g∗(s) is uniquely determined from the differential
equation (3.29) and condition (3.21), where γi = βi + 1/θ, i = 1, 2 and β1 and β2 are
given by (3.7), while a∗ is the unique solution of (5.16) under K = 0.
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Figure 1: A computer drawing of the optimal stopping boundary g∗(s).

Proof. In order to verify the assertions stated above, it remains to show that the functions
given in (4.1) and (2.4) coincide and that the stopping time τ∗ given in (4.2), with the boundary
g∗(s) specified above, is optimal. For this, let us denote by V (x, s) the right-hand side of (4.1).
In this case, by means of straightforward calculations and the assumptions above, it follows
that the function V (x, s) solves the system (2.9)–(2.11), and the smooth-fit condition (2.13)
is satisfied when either σ > 0 or r − δ − λθ/(1 − θ) < 0 holds, while the normal-reflection
condition (2.14) is satisfied when either σ > 0 or r − δ −λθ/(1 − θ) > 0 holds. Hence, taking
into account the fact that the function V (x, s) is continuous and the boundary g∗(s) is assumed
to be continuously differentiable for all s > K , by applying the change-of-variable formula
[26, Theorem 3.1] to e−rtV (Xt , St ) we obtain

e−rtV (Xt , St ) = V (x, s) +
∫ t

0
e−ru(LV − rV )(Xu, Su) 1(Xu �= g∗(Su), Xu �= Su) du

+
∫ t

0
e−ruVs(Xu−, Su−) dSu −

∑
0<u≤t

e−ruVs(Xu−, Su−)�Su + Mt,

(4.3)

where the process (Mt)t≥0 given by

Mt =
∫ t

0
e−ruVx(Xu, Su) 1(Xu �= g∗(Su), Xu �= Su)σXu dBu

+
∫ t

0

∫ ∞

0
e−ru(V (Xu−eθy, Xu−eθy ∨ Su−) − V (Xu−, Su−))(µ(du, dy) − ν(du, dy))

(4.4)
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is a local martingale with respect to Px,s , a probability measure under which the process (X, S)

defined by (2.1)–(2.3) starts at (x, s) ∈ E. We remark that, when σ > 0, the smooth-fit
condition (2.13) holds, so that there is no local time term in (4.3). Note that when σ = 0 and
r − δ − λθ/(1 − θ) = 0, the indicators in (4.3) and (4.4) can be set to one. Observe that
when either σ > 0 or θ < 0, the process S increases only continuously, so that the sum with
respect to �Su in (4.3) is equal to 0; the integral with respect to dSu is also equal to 0 as at
the diagonal {(x, s) ∈ E | x = s} we assume (2.14). When σ = 0 and 0 < θ < 1 with
r − δ − λθ/(1 − θ) < 0, the process S increases only by jumping; thus, in (4.3), the integral
with respect to dSu is deleted by the sum with respect to �Su.

Using straightforward calculations and the arguments from the previous section, it can be
verified that (LV − rV )(x, s) ≤ 0 for all (x, s) ∈ E such that x �= g∗(s) and x �= s. Moreover,
by means of standard arguments it can be shown that the function V (x, s) is increasing in
both variables and, thus, property (2.12) holds and together with (2.10) and (2.11) yields
V (x, s) ≥ (s−K)+ for all (x, s) ∈ E. Observe that from (2.1) it is seen that, when either σ > 0
or r −δ−λθ/(1−θ) �= 0, the time spent by the process X at the diagonal {(x, s) ∈ E | x = s}
and at the boundary g∗(s) is of Lebesgue measure 0. Thus, in these cases the indicators
appearing in (4.3) and (4.4) can also be ignored. Hence, from (4.3) it therefore follows that the
inequalities

e−rτ (Sτ − K)+ ≤ e−rτ V (Xτ , Sτ ) ≤ V (x, s) + Mτ (4.5)

hold for any finite stopping time τ with respect to the natural filtration of X.
Let (τn)n∈N be an arbitrary localizing sequence of stopping times for the process (Mt)t≥0.

Taking the expectation with respect to Px,s in (4.5), by means of the optional sampling theorem
(see, e.g. [16, Chapter I, Theorem 1.39]) we obtain

Ex,s[e−r(τ∧τn)(Sτ∧τn − K)+] ≤ Ex,s[e−r(τ∧τn)V (Xτ∧τn , Sτ∧τn)]
≤ V (x, s) + Ex,s[Mτ∧τn ]
= V (x, s)

for all (x, s) ∈ E. Hence, letting n tend to ∞ and using Fatou’s lemma, for any finite stopping
time τ we find that the following inequalities are satisfied for all (x, s) ∈ E:

Ex,s[e−rτ (Sτ − K)+] ≤ Ex,s[e−rτ V (Xτ , Sτ )] ≤ V (x, s). (4.6)

By virtue of the fact that the function V (x, s) together with the boundary g∗(s) satisfy the
system (2.9)–(2.12) and taking into account the structure of τ∗ given in (4.2), it follows, from
(4.3), that the following equalities hold for all (x, s) ∈ E and any localizing sequence (τn)n∈N

of (Mt)t≥0:

e−r(τ∗∧τn)(Sτ∗∧τn − K)+ = e−r(τ∗∧τn)V (Xτ∗∧τn , Sτ∗∧τn) = V (x, s) + Mτ∗∧τn . (4.7)

Observe that by virtue of (2.15) and (2.16), and taking into account the integrability of jumps of
the process X, applying the same arguments as in [30, pp. 635–636] and using the independence
of the processes B and J in (2.1), it can be shown that the following property holds for all
(x, s) ∈ E:

Ex,s

[
sup
t≥0

e−r(τ∗∧t)Sτ∗∧t

]
= Ex,s

[
sup
t≥0

e−r(τ∗∧t)Xτ∗∧t

]
< ∞,

where the variable e−rτ∗Sτ∗ is bounded on the set {τ∗ = ∞}. We also note that, by using the
asymptotic behavior of g∗(s) at ∞, it can be verified that Px,s[τ∗ < ∞] = 1 for all (x, s) ∈ E.
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Hence, letting n tend to ∞ and using conditions (2.10) and (2.11), we can apply the Lebesgue
dominated convergence theorem for (4.7) to obtain

Ex,s[e−rτ∗(Sτ∗ − K)+] = V (x, s)

for all (x, s) ∈ E, which together with (4.6) directly implies the desired assertion.

Remark 4.1. Observe that when σ = 0 and θ < 0 the smooth-fit condition, (2.13), fails to
hold. This property can be explained by the fact that, in this case, leaving the continuation
region g∗(s) < x ≤ s, the process X can pass through the boundary g∗(s) only by jumping.
Such an effect was earlier observed and explained in [27, Section 2] and [28] by solving other
optimal stopping problems for jump processes.

Remark 4.2. Note that when σ = 0 and 0 < θ < 1 with r − δ − λθ/(1 − θ) < 0 the normal-
reflection condition, (2.14), fails to hold. This property can be explained by the fact that, in
this case, the process X can hit the diagonal {(x, s) ∈ E | x = s} only by jumping.

According to the results of [1], we may conclude that the properties described in Remarks 4.1
and 4.2 appear because of the finite intensity of jumps and the exponential distribution of jump
sizes of the compound Poisson process J .

5. Conclusions

In this section we give some concluding remarks and present an explicit solution to the
optimal stopping problem which is related to pricing the perpetual American floating-strike
lookback option.

5.1. Some comments

We have considered the two-dimensional American fixed-strike lookback option optimal
stopping problem in a jump-diffusion model with infinite time horizon. In order to be able
to derive nonlinear (first-order) ordinary differential equations for the optimal boundary that
separates the continuation and stopping regions, we have let the jumps of the driving compound
Poisson process be exponentially distributed. We have proved that, under certain relationships
on the parameters of the model, the optimal boundary can be determined as a component of the
solution of a two-dimensional system of nonlinear ordinary differential equations. This is in
contrast with the structure of solutions of optimal stopping problems for maxima of continuous
diffusion processes, where the optimal boundaries are determined by one-dimensional nonlinear
ordinary differential equations. We have also derived some special conditions which uniquely
specify the solution corresponding to the initial optimal stopping problem in the family of
solutions of the related system of differential equations. The existence and uniqueness of
such a solution is obtained by means of standard methods of first-order ordinary differential
equations.

Note that the arguments presented above show that the structure of the optimal exercise
time in the American fixed-strike lookback option problem does not change under exten-
sions of the driving process from Brownian motion to a compound Poisson process with
mixed-exponentially distributed jumps as well as to a more general Lévy process. The same
phenomenon holds in the case of standard American put and call as well as Russian option
problems; see, e.g. [2], [3], [20], and [21]. We also remark that, from the arguments above, it
can be seen that the following structural properties of the solution should be observed under
certain extensions of the considered jump-diffusion model. If the driving compound Poisson
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process had only negative mixed-exponential jumps, then the nonlinear (first-order) ordinary
differential equation for the optimal exercise boundary would remain one-dimensional. In
contrast to this case, if the driving process had positive or both-sided mixed-exponential jumps,
then the dimension of the system of nonlinear ordinary differential equations for the boundary
would increase to one plus the number of independent positive exponential jump components in
the given mixture. If the driving process had jumps of more general probability distribution or
were even a more general Lévy process, then the solution of the free-boundary problem would
not be determined in a closed form and the boundary would be characterized only by nonlinear
integral equations.

In the rest of the paper we derive a solution to the perpetualAmerican floating-strike lookback
option problem in the jumps-diffusion model, (2.1)–(2.3). In contrast to the fixed-strike case,
by means of the change-of-measure theorem, the related two-dimensional optimal stopping
problem can be reduced to an optimal stopping problem for a one-dimensional strong Markov
process, (St/Xt )t≥0, which explains the simplicity of the structure of the solution in (5.9)–
(5.16); see [31] and [4] for a solution of the problem in the continuous model case.

5.2. Formulation of the floating-strike problem

Let us now consider the optimal stopping problem

W∗(x, s) = sup
τ

Ex,s[e−rτ (Sτ − KXτ )
+], (5.1)

where the supremum is taken over all stopping times τ with respect to the natural filtration of X.
The value of (2.4) coincides with an arbitrage-free price of a perpetual American floating-strike
lookback option (or ‘partial lookback’ as it is called in [5]) with the strike price K > 0. Note
that for the continuous case, in which σ > 0 and θ = 0, the problem given by (5.1) was solved
in [4]. It is also seen that if σ = 0 and 0 < θ < 1 with r − δ − λθ/(1 − θ) ≥ 0 then Xt = St

for all t ≥ 0 and, thus, the optimal stopping time in (5.1) is trivial. By means of the same
arguments as above (see also [4]) it can be shown that the optimal stopping time in (5.1) has
the structure

σ∗ = inf{t ≥ 0 | Xt ≤ b∗St }. (5.2)

In order to find analytic expressions for the unknown value function W∗(x, s) from (5.1) and
the unknown boundary b∗s from (5.2), we can formulate the following free-boundary problem:

(LW)(x, s) = rW(x, s) for bs < x < s, (5.3)

W(x, s)|x=bs+ = s(1 − Kb) (continuous-fit condition), (5.4)

W(x, s) = (s − Kx)+ for 0 < x < bs, (5.5)

W(x, s) > (s − Kx)+ for bs < x ≤ s, (5.6)

where (5.4) plays the role of the instantaneous-stopping condition and, in addition, we have

Wx(x, s)|x=bs+ = −K if either σ > 0 or r − δ + ζ < 0 (smooth-fit condition), (5.7)

Ws(x, s)|x=s− = 0 if either σ > 0 or r − δ + ζ > 0 (normal-reflection condition), (5.8)

satisfied for all s > 0. Note that, by virtue of the structure of (5.1) and (5.2), it is easily seen that
b∗ ≤ 1/K . Recall that for the continuous case, in which σ > 0 and θ = 0, the free-boundary
problem (5.3)–(5.8) was solved in [4].
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5.3. Solution of the floating-strike problem

Following the schema of arguments from the previous section and using straightforward
calculations, it can be shown that when σ > 0 and α = 1/θ < 0 the solution of system
(5.3)–(5.7) takes the form

W(x, s; b∗s) = β1((1 − α)γ2γ3 + α(γ2 − 1)(γ3 − 1)Kb∗)s
α(1 − α)(γ2 − γ1)(γ1 − γ3)

(
x

b∗s

)γ1

+ β2((1 − α)γ1γ3 + α(γ1 − 1)(γ3 − 1)Kb∗)s
α(1 − α)(γ2 − γ1)(γ3 − γ2)

(
x

b∗s

)γ2

+ β3((1 − α)γ1γ2 + α(γ1 − 1)(γ2 − 1)Kb∗)s
α(1 − α)(γ1 − γ3)(γ3 − γ2)

(
x

b∗s

)γ3

(5.9)

for 0 < b∗s < x ≤ s, and from condition (5.8) it follows that b∗ solves the equation

β1(γ1 − 1)((1 − α)γ2γ3 + α(γ2 − 1)(γ3 − 1)Kb)

(γ2 − γ1)(γ1 − γ3)bγ1

+ β2(γ2 − 1)((1 − α)γ1γ3 + α(γ1 − 1)(γ3 − 1)Kb)

(γ2 − γ1)(γ3 − γ2)bγ2

= β3(γ3 − 1)((1 − α)γ1γ2 + α(γ1 − 1)(γ2 − 1)Kb)

(γ3 − γ1)(γ3 − γ2)bγ3
, (5.10)

while, when σ = 0 and α = 1/θ < 0, the solution of system (5.3)–(5.6) takes the form

W(x, s; b∗s) = β1((1 − α)γ2 + α(γ2 − 1)Kb∗)s
α(1 − α)(γ1 − γ2)

(
x

b∗s

)γ1

− β2((1 − α)γ1 + α(γ1 − 1)Kb∗)s
α(1 − α)(γ1 − γ2)

(
x

b∗s

)γ2

(5.11)

for 0 < b∗s < x ≤ s, and from condition (5.8) it follows that b∗ solves the equation

bγ1−γ2 = β2(γ2 − 1)

β1(γ1 − 1)

(
(1 − α)γ1 + α(γ1 − 1)Kb

(1 − α)γ2 + α(γ2 − 1)Kb

)
. (5.12)

It can be shown that when σ > 0 and α = 1/θ > 1, the solution of system (5.3)–(5.6) and
(5.8) takes the form

W(x, s; b∗s) = β1(γ3 − 1)(γ2 − (γ2 − 1)Kb∗)bγ1∗ s

(γ2 − γ1)(β1(γ3 − 1)b
γ1∗ − β3(γ1 − 1)b

γ3∗ )

(
x

b∗s

)γ1

+ β2(γ1 − 1)(γ3 − (γ3 − 1)Kb∗)bγ2∗ s

(γ3 − γ2)(β2(γ1 − 1)b
γ2∗ − β1(γ2 − 1)b

γ1∗ )

(
x

b∗s

)γ2

+ β3(γ2 − 1)(γ1 − (γ1 − 1)Kb∗)bγ3∗ s

(γ1 − γ3)(β3(γ2 − 1)b
γ3∗ − β2(γ3 − 1)b

γ2∗ )

(
x

b∗s

)γ3

(5.13)
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for 0 < b∗s < x ≤ s, and from condition (5.7) it follows that b∗ solves the equation

β1(γ1 − 1)(γ3 − 1)(γ2 − (γ2 − 1)Kb)

(γ2 − γ1)(β1(γ3 − 1)bγ1 − β3(γ1 − 1)bγ3)

+ β2(γ1 − 1)(γ2 − 1)(γ3 − (γ3 − 1)Kb)

(γ3 − γ2)(β2(γ1 − 1)bγ2 − β1(γ2 − 1)bγ1)

= β3(γ2 − 1)(γ3 − 1)(γ1 − (γ1 − 1)Kb)

(γ3 − γ1)(β3(γ2 − 1)bγ3 − β2(γ3 − 1)bγ2)
, (5.14)

while, when σ = 0 and α = 1/θ > 1 with r − δ − λθ/(1 − θ) < 0, the solution of system
(5.3)–(5.6) takes the form

W(x, s; b∗s) = (γ2 − (γ2 − 1)Kb∗)s
γ2 − γ1

(
x

b∗s

)γ1

− (γ1 − (γ1 − 1)Kb∗)s
γ2 − γ1

(
x

b∗s

)γ2

(5.15)

for 0 < b∗s < x ≤ s, and from condition (5.7) it follows that b∗ solves the equation

bγ1−γ2 = β2

β1

γ2(γ1 − 1) + (γ1 − γ2(γ1 − 1))Kb

γ1(γ2 − 1) + (γ2 − γ1(γ2 − 1))Kb
. (5.16)

Summarizing the facts proved above, we formulate the following result.

Theorem 5.1. Let the process (X, S) be defined by (2.1)–(2.3). Then the value function of the
problem given by (5.1) takes the structure

W∗(x, s) =
{

W(x, s; b∗s) if b∗s < x ≤ s,

s − Kx if 0 < x ≤ b∗s,

and the optimal stopping time is explicitly given by (5.2), where the function W(x, s; b∗s) and
the boundary b∗s ≤ s/K for s > 0 are specified as follows.

(i) If σ > 0 and θ < 0 then W(x, s; b∗s) is given by (5.9) and b∗ is the unique solution of
(5.10), where γi = βi + 1/θ, i = 1, 2, 3 and the βis are the roots of (3.5).

(ii) If σ = 0 and θ < 0 then W(x, s; b∗s) is given by (5.11) and b∗ is the unique solution of
(5.12), where γi = βi + 1/θ, i = 1, 2 and β1 and β2 are given by (3.7).

(iii) If σ > 0 and 0 < θ < 1 then W(x, s; b∗s) is given by (5.13) and b∗ is the unique solution
of (5.14), where γi = βi + 1/θ, i = 1, 2, 3 and the βis are the roots of (3.5).

(iv) If σ = 0 and 0 < θ < 1 with r − δ − λθ/(1 − θ) < 0 then W(x, s; b∗s) is given by
(5.15) and b∗ is the unique solution of (5.16), where γi = βi + 1/θ, i = 1, 2 and β1 and
β2 are given by (3.7).

Theorem 5.1 can be proved by means of the same arguments as used in the proof of
Theorem 4.1, above.
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