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PLANE POLOIDAL-TOROIDAL DECOMPOSITION OF
DOUBLY PERIODIC VECTOR FIELDS. PART 1.

FIELDS WITH DIVERGENCE
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Abstract

It is shown how to decompose a three-dimensional field periodic in two Cartesian coor-
dinates into five parts, three of which are identically divergence-free and the other two
orthogonal to all divergence-free fields. The three divergence-free parts coincide with the
mean, poloidal and toroidal fields of Schmitt and Wahl; the present work, therefore, extends
their decomposition from divergence-free fields to fields of arbitrary divergence. For the
representation of known and unknown fields, each of the five subspaces is characterised by
both a projection and a scalar representation. Use of Fourier components and wave coor-
dinates reduces poloidal fields to the sum of two-dimensional poloidal fields, and toroidal
fields to the sum of unidirectional toroidal fields.

1. Introduction

The conservation of mass constrains the velocity field v(x, y, z) of an incompressible
fluid to have zero divergence

„ dvx dvv dvz

The analysis and solution of problems in incompressible fluid mechanics is often
facilitated by using formulations in which this constraint is automatically satisfied.
The best-known examples are the stream-functions for a plane

)iz} (1.1)
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22 G. D. McBain [2]

and axially symmetric flows [10, pages 63, 125-126], (here, in general, \9 is the <p-\mit
vector)

j ^ | (1.2)
Such reformulations are more difficult in three dimensions. For example, deriving

the velocity field from a 'vector potential' [11]

u( jc ,y ,z)=V x 9{x,y,z) (1.3)

eliminates the incompressibility constraint only by introducing another: that the
vector potential itself is divergence-free. Note that the stream-functions in (1.1)—(1.2)
are unique to within an additive scalar constant (independent of the specified two-
dimensional coordinates in each case) whereas any gradient can be added to the vector
potential in (1.3) without changing the velocity. In electrodynamics the 'magnetic
vector potential' of the divergence-free magnetic flux density also has a constraint on
its divergence: the Lorentz condition [8, page 271].

A different approach is the poloidal-toroidal representation [3, page 622]:

i) = ( V x ) 2 ( ^ ) + V x ( r i , ) , (1.4)

where p is the spherical radial coordinate. Encouraged by the success of this formula-
tion in treating divergence-free flows in spherical cavities [13, 25], we are motivated
here to examine the adaptation of the representation to flows in another important
geometry in fluid mechanics: the infinite slot between parallel plane walls. Flows
in this geometry include plane Couette and Poiseuille flow [4, 19, 21] and Rayleigh-
Benard [2, 20, 24] and Waldmann [14, 28, 22] convection. To avoid some of the
analytical difficulties attending unbounded domains, theoretical and numerical treat-
ments of such flows often employ periodic boundary conditions in the directions
parallel to the wall [19, 23, 24, 26], and in the present work too attention is restricted
to doubly periodic vector fields; namely (taking x as normal, see Figure 1)

I»(JC, y,z) = v (x, y + * , z + — — ) (1.5)
\ A: COS y A: sin y /

for all y and z, and x in some interval, say (x0, x\). Doubly periodic (hereafter d.p.)
fields are also useful in studies of heterogeneous media [15].

The analogue of (1.4) for the slot is the poloidal-toroidal representation

+ V x( r i x ) (1.6)

used by Busse [2], Joseph [9, page 235], Moffatt [16, page 21] and Nagata [17];
however, as pointed out by Schmitt and Wahl [23], this is incomplete and a mean field
must be added. This essential difference between the planar and spherical cases is a
consequence of the 'hairy-sphere theorem' [18]: any continuous tangent vector field
on a sphere must have a zero, and so, in particular, any constant field vanishes.

https://doi.org/10.1017/S1446181100009743 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100009743


[3] Plane poloidal-toroidal decomposition 1

2ir/fccos7

23

FIGURE 1. Standard Cartesian unit vectors, a period cell and periodicity angle y.

1.1. Scalar and basis representations A scalar representation of a vector field v is
an expression of the form v = J2i L,s,, where the L, are linear operators independent
of v and the st are scalar fields. A basis representation of a vector field is an expression
of the form v = J3(. c,a,, where the a,- are vector fields independent of v and the c,- are
scalar constants depending on v. In particular, we are interested in representations for
which divergence-free fields are easily identifiable; for example, because some fixed
subset of the scalars s( or coefficients c, vanish.

A familiar and fundamental scalar representation of a vector field is

v = ixvx + \yVy + izvz;

however, this may be inconvenient if the divergence is known to vanish.

1.2. Outline of the paper The plan of the present work is to derive consistent
definitions for the poloidal and toroidal parts of d.p. fields, show that they form
orthogonal subspaces, and then add more subspaces to give a complete orthogonal
decomposition. For each subspace, the projection and a scalar representation are
derived. General basis representations are not derived, since a good choice here
depends on the nature of the problem under consideration and any approximation
scheme that might be employed; however, orthonormal bases are presented in the
example of Section 5.1 for the subspaces of the poloidal and toroidal subspaces that
vanish on the slot walls (corresponding to zero velocity boundary conditions).

The representation derived here, when restricted to divergence-free fields, coincides
with the poloidal-toroidal-mean field representation of Schmitt and Wahl [23]. The
present representation is not restricted to divergence-free fields, but in it the projection
of a vector field onto the divergence-free subspace is as trivial as projecting a point
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onto the xy-plane in Cartesian geometry.
The derivation is inspired by the work of Backus [1] on spherical poloidal and

toroidal vector fields, in that we begin with a Helmholtz decomposition in two di-
mensions (there a spherical surface; here, in Section 2, a vz-period cell) and add a
third normal dimension. The present derivation is simplified, however, by the use of
suitably defined inner products and projections as in Neumann's [27] development of
the geometry of Hilbert space.

2. Doubly periodic plane fields

Though we are primarily interested in three-dimensional vector fields, following
Backus's [1] procedure for spherical poloidal-toroidal decomposition we begin by
examining d.p. fields independent of x.

2.1. Preliminaries

2.1.1. Period cell averages, inner products and norms To discuss the geometry of
the space of d.p. vector fields, we require an inner product [27, page 46]. This allows
us to define orthogonality and so to partition the space in a natural and unambiguous
way. Define

47T2

ksin y cosy rWk si«v r
(r, s)a = — / / r*s dy dz,

47T2 Jo Jo

where * denotes the complex conjugate. Then the plane average of a scalar s over a
period cell can be written as

( * > Q S { 1 , 5 ) Q . (2.1)

For vectors, {«, v)a = (u • v)a = (ux, vx)a + (uy, vy)a + (uz, vz)a.

2.1.2. Projections Corresponding to each subspace of an inner product space is
its orthogonal complement and its projection. Orthogonal sets of projections will be
our principal tool in decomposing vector fields. An operator P is a projector if it is
idempotent (P2/ = P / ) and Hermitian [27, page 77]

{f, Pg) = (P/, g)

(or equivalently (f, Pg) = (P/, Pg)) for all / and g in the space.
Two projections are orthogonal if PQ/" = QP/ = 0 for all / . The identity

operator 1 is a projector, and so is the complement (1 — P) of any projector. Every
projection is orthogonal to its complement.

Note that the scalar period cell average (2.1) is idempotent and Hermitian, and so
is a projection on the space of plane d.p. scalar fields.
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2.1.3. Plane differential operators Backus [1] based his exposition of spherical
poloidal and toroidal vector fields on certain differential operators defined on spherical
surfaces. Here we introduce their plane analogues: the plane gradient of a scalar field
and the plane divergence of a vector field

ds ds dvy dvz
V D J = —iy + —iz and VD • v = —- + —-

dy dz ay dz

and the plane curls of scalars and vectors

ds ds dvz dvy
As = iv H 1, and A • v = .

dz y By dy dz

In hydrodynamics, A\jr gives a velocity field in the yz-plane from its stream-function
[10, page 63] and A • v gives the normal (ix) component of vorticity [10, page 31] of
the velocity field v.

The plane Laplacian of a scalar field is

dy2 d2

but the other combinations vanish:

VD • As = A • Vas = 0. (2.3)

Some other useful identities for d.p. scalar and vector fields are:

(2.4)

= -(As,v)a, (2.5)

D n a D r)D and (2.6)

(VD5, A O D = 0. (2.7)

Equation (2.7) is analogous to (46b) of Backus [1] for spheres; it is essential for the
plane Helmholtz decomposition (Section 2.2, below).

2.1.4. Trigonometric basis for scalar fields The scalar fields

et = exp I -J^\k(lyy cos y + lzz sin y) \ (2.8)

(where the subscript I stands for a pair of integers ly and lz) form an orthonormal basis
for the inner product space of d.p. scalar fields defined in a plane of constant x, that is,

/ x J i . < = « ;
(em,et)a = \

0, otherwise.
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ln/k cos 7 2n/kcos-f

/ n/ks\n~f

(b) /, = 2 / r

FIGURE 2. Wave Cartesian coordinates (k and y as in Figure 1.) For lz = 0, see Figure 1, since then
r)i = y and f< = z.

A field s with | |J | |D = (s, S)Q < oo can be expanded in a Fourier series

00 00

(2.9)
/,=-oo/,=-oo

which converges in the norm. Here and elsewhere J2t will be written to denote a
summation over all integer values of ly and lz.

2.1.5. Wave coordinates Manipulation of the trigonometric basis functions is
facilitated by the introduction of the Cartesian 'wave coordinates'

i\ _ [ cosft sin&1 \y\
Kt\ |_-s in& cosySfJ 1 z | '

where the wave angle fit is defined by Kt cos fit = kly cos y, Kt sin fit = klz sin y and
Kt = k{j} cos2 y + l\ sin2 y) ' . Their unit vectors

= cos fit iy + sin /8<i2 and

= - sin /3| iy + cos

are the standard Cartesian unit vectors rotated through f}t (see Figure 2). This trans-
formation is essentially that used by Squire [26] in his reduction to two dimensions of
the equations governing infinitesimal three-dimensional disturbances to parallel shear
flow.
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The trigonometric basis functions (2.8) become

et = e x p ( V ^ L ^ ) (2.10)

and their derivatives are

(2.11)

Aet = V^\Kteti(l and (2.12)

2.1.6. Poisson equation in the plane To deal with the orthogonal projections
partitioning the space of plane d.p. vector fields in Section 2.2, we require some
results [23] on the Poisson equation

V2H = - / , (2.13)

where both u and / are d.p. Taking the inner product of both sides of (2.13) with a
trigonometric basis function et (2.10) gives KJ{et, u)a = (et, f)a. Thus, provided

(eo, />D = ( / > • = 0, (2.14)

a d.p. solution of (2.13) is

u = - V - 2 / = J^K-2(et, f)aet, (2.15)

a prime being inserted (£' t ) when the term for which ly = lz = 0 is to be omitted
from the summation. While any function u + const, is also a d.p. solution of (2.13),
(2.15) is the only one with zero mean over the period cell. This follows from (2.6)
with s = t equal to the difference of two zero-mean solutions. In general, V~2 is
only a pseudoinverse; however, it is a true inverse if restricted to the subspace defined
by (2.14), which will suffice here.

2.2. Helmholtz decomposition in the plane We are now ready to show that the
space of plane doubly periodic vector fields (that is, those for which vx = 0) can be
decomposed into three orthogonal subspaces: mean fields JiQ, plane gradients BQ

and plane curls $Q. This is analogous to the Helmholtz decomposition in space [10,
page 208]. Each subspace is defined by a projector. Two of the projectors are defined
as differential operators, so for nondifferentiable fields they should be understood as
applying termwise to the Fourier expansion (2.9) via (2.11) or (2.12). Specifically,

i; and
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The pseudoinverse Laplacians are well defined (2.14), by (2.4)-(2.5).
That each P is idempotent and Hermitian and that they are mutually orthogonal

are straightforward consequences of the definitions and rules of Sections 2.1.1-2.1.3,
particularly (2.2)-(2.7). Completeness follows from consideration of the expansion

where (for ly and lz not both zero) P/Ow = (et, vm)aetim + (et, v(l)aeti(l and the
results

Pi?DP/o v = P< aP2 [ ] t = {et, vjaetim and

P^a p«o v = P<D p 5 b « = (et, vK) n eti(t

which imply (P^D + P<2O + P^O)P/D = P,D (P^D + P^D + P^D) = P<D.

3. Doubly periodic space fields

3.1. Preliminaries

3.1.1. Space inner products and averages The inner products and averages of
Section 2.1.1 can be extended to three-dimensional yz-periodic fields [19, Eq. 12]:

{r,s) = (.Xi-xoy
l (r,s)adx,

Jio

(s) = (l,s) and

(«, v) = (u-v) = {ux, vx) + {uy, vy) + {uz, vz).

3.1.2. Space Poisson equation As in the planar case, some of the projections
partitioning the space of space d.p. vector fields require the solution of a Poisson
equation. For d.p. u,f,b0 and b\, consider

V2u = - / and (3.1)

«!,«, = fc/O-.z), 0 = 0,1) (3.2)

or D « U = W > , z ) , 0 = 0 , 1 ) (3.3)

(where D = d/dx) and where

(«>D = if )n = (bo)n = {bi)a = 0. (3.4)
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TABLE 1. Tripartite decomposition of d.p. vector fields.

Space Projection
* Pur-^aU + Pur.

3 P.v = (,, - (vx)D)ix

Scalar representation
av m = U\x

VDl/ = Vt

+ P^D« ? = - r i i -

< = - A T =
< r > D = 0

+ Viy + Wiz, where

- Vas, where

= V x (rix), where

Either Dirichlet (3.2) or Neumann (3.3) end conditions with the zero plane means (3.4)
renders the solution of the space Poisson equation (3.1) unique, as follows from Green's
identity

^, t) -
(Ds,t)aV'

x\ — -̂ o

with s = t equal to the difference of two solutions.
The Fourier components for I ^ 0 (the plane mean component vanishes) of the

solution of (3.1) are

[Ct(H(x - $)wt(x), ft)

where ft = (et, f)a (etc.) and H is Heaviside's step function.
For Dirichlet end conditions (3.2)

sinh/^Oti -x0)Ct = ,

sinh/f<(x-jco) , , . sinh/c<(xi -x)
vt(x) = ^—— and wt(x) =

sinhKOc x)
and wt(x) ^ ,

— x0) sinh/c«(xi — x0)

while for Neumann end conditions (3.3)

Ct = —Kts'mhKt(x\ —x0),

r +cosh*c<(x -x0) , . . -coshKi(xt -x)
v(x) = — — — and w(x) =

KsinnK{x x) and w(x) = .
— x0) KtsinhKt(Xi — x0)

3.2. A tripartite decomposition of d.p. vector fields The Helmholtz decomposition
of d.p. plane vector fields (Section 2.2) can be extended to vector fields with nonzero
normal (x) components as in Table 1. We call the three subspaces mean (^), quasi-
poloidal (£2) and toroidal (&). The completeness and orthogonality of this tripartite

https://doi.org/10.1017/S1446181100009743 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100009743


30 G. D.McBain [10]

decomposition follows from that of the plane Helmholtz decomposition and the simple
treatment of the normal components along with the planarity of the operators involved.
Table 1 also gives a scalar representation for the general member of each subspace,
along with the conditions under which the scalars are unique. In each case, the
definitions by the projection and scalar representation are equivalent.

3.2.1. Divergence in the tripartite decomposition If V • i; = 0, then VD • v = —Dvx

and D(vx)a = 0 by (2.4) and the quasipoloidal projection reduces to

Pgv = (vx - (vx)a)ix + VDV-2Du,

say, with V^W = (vx)a — vx, which is the same as Equation (7) of Schmitt and
Wahl [23] (for divergence-free d.p. fields). They applied a tripartite decomposition
equivalent to P ^ + P& + Pp to divergence-free fields, calling the three parts mean,
poloidal and toroidal. The divergences of these projections of an arbitrary d.p. field
are

= D ( v x ) a = ( V - v ) a , (3.5)

= D ( u , - ( v x ) a ) + V a • v = V - u - ( V - v ) o a n d (3.6)

= 0. (3.7)

Thus, if restricted to divergence-free fields, the tripartite decomposition produces only
divergence-free projections.

4. Quinquepartite decomposition

The Schmitt-Wahl decomposition is adequate for divergence-free fields, but two of
the three projections involved are not divergence-free for arbitrary vector fields, and
so do not permit the definition of, for example, the poloidal part of a field. This is
evident from (3.5) and (3.6).

Here the mean ^ and quasipoloidal 2 subspaces are partitioned with the result
that the space of d.p. vector fields can be decomposed into three mutually orthogonal
divergence-free subspaces (those of Schmitt and Wahl), and two subspaces orthogonal
to each other and to each of the divergence-free subspaces. It is unnecessary to
partition 3', since by (3.7), all its elements are divergence-free. To decompose M
and ^ , we find the condition characterising divergence-free elements, and then the
condition characterising elements orthogonal to all such. Thus

(4.1)
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TABLE 2. Quinquepartite decomposition of d.p. vector fields.

Space

a
Projection
P#v = {vx)ix -

P^v = ({vx)a - (vx))ix

Scalar representation
b =
Vt/
n =

Uix + VL + Wiz
* 7 *•

y V = V W = 0

/ = 0, (N) = 0
?3>v = -V2«f i, + VDD«^, where p = - V 2 ^ , +
V ^ = _(U x _ {Vx)a) + DV-2VD • v (tf)D = 0

= V-2V0 • y (x=xo,Xj)

= -Vff, where s = —VCT
V2CT = - (V • v - (V • !>)D) (a)0 = 0

( C T ) O = 0 a = 0 (j:=xo,jri)
or = 0 (J: = x0, xi)

Sf P$v = —AT, where < = —AT
T = -Vg2A • v (T)D = 0

The subspace 5? is called scaloidal by analogy with usage for the spherical case [6,1].
The subspace Jf contains only no-mean normal fields.

The resulting five subspaces are listed in Table 2. In each case, the projection
given in Table 2 is the only one compatible with the given definition of its space.
In particular, the boundary conditions on the Poisson equations for the poloidal and
scaloidal projections had to be so chosen to ensure that the projection was indeed
idempotent and Hermitian, and that all divergence-free quasipoloidal fields were
poloidal.

The table also lists scalar representations of general members of each space; in each
case, definition of the space as the collection of all possible fields having the given
representation is equivalent to the original definition; further, the scalars are unique.

General solutions of the space Poisson equations in the poloidal and scaloidal
projections were given in Section 3.1.2. Note that if V • v = 0, the space Poisson
equation for the poloidal projection reduces to

V2!!' — —V2V~2^J) — (t) \ } Dl// — — DV~2Aj — (V ) ^ (x — Xn X,)
V ¥ — V VQ \VX \Vx/a), U^f — L I » Q \VX \VX)Q)I \X — •*0)-*l/i

so that <P = —V~2(vx — (vx)D) and the projection reduces again to that of Schmitt
and Wahl [23, Eq. 7], as in Section 3.2.1.

4.1. Proof for the scaloidal subspace The methods used to prove the statements in
Table 2 are similar for each space, so only the proof for scaloidal space is given here.

PROOF. We prove first that the projection Py is Hermitian and then second that 3"
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defined by (4.1), y defined as the class of fields with the given scalar representation,
and y defined by the given projection are equivalent, that is, y c y c y c y .
That P2

y = Py follows from the second part of the proof.
First, Py is Hermitian, since if a and r are the scaloidal scalars for arbitrary d.p.

fields v and w, (P^v, w) = — (Va, w) = (Va, Vr) = (P^v, P^w). We have twice
used the condition that a vanishes at the ends x = x0, x\.

Second,

(1) v € y C £} implies v = — r'\x - Vas where (r)a = (s)a = 0. To prove
v e y , we use the fact that v e J?" ± S? implies P&v = 0. In particular,
ix • Pg>v = — Vgtf' = 0. Therefore, by the uniqueness result of Section 2.1.6, ^ = 0
where

- 2= -(vx - (vx)a) + DV-2Vn • v

"2VD • ( - V D= - ( - r - (-/•>•) + DV"2VD • (-VD5) = -r-Ds

and at x = x0 and*,, D«^ = V-2VQ • (-VDs) = -s. Thus s(x0) = s(xx) = 0 and
r = Ds, that is, v = -Ds - VDs = -Vs. Therefore y e y .
(2) For the typical element of y , P ^ ( - V C T ) = -Vs where

V2s = - ( -V • Va + (V • Vcx)D)

= V2a - (D2a)D - (V2a)D = V2a - 0 - 0 = V2CT,

{s)a = 0 = (<T)D and s(x0) = ^(*i) = 0 = a(x0) — o(x\). Therefore, by the
uniqueness result of Section 3.1.2, s = a and P^(—Vcr) = — Vs = —Va. Thus
y c y . (This also proves that Py is idempotent.)
(3) For arbitrary d.p. v, Pyv — —Va where {a)a = 0 and a(x0) = o(x\) = 0.

Then

P ^ P ^ D = -Daix - Vaa = -Va = Pyv

so y c. £. Also P&PyV = -V^ix + VDD<̂  where

V 2 ^ = - D a + DV"2VD • ( -VDa) = 0,

(tf')a = 0, and at x = x0 and x = xu

D ^ = V-2VD • (-Vaa) = -a = 0.

Therefore, by the uniqueness result of Section 3.1.2, V = 0 and Pg»Py = 0, that is,
y ± &> and y c y .
The scalar representation (Table 2) of a scaloidal field is unique. Say v e y =
-Va = - V i a n d (a)a = (s)a = 0. Then V(s-a) — 0 so that s -a = {s-a)a =
(s)a — {a)a = 0, that is, s = a. •
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4.2. Quinquepartite Fourier decomposition The Fourier projections

Ptv = {et, vx)aeth + {et, v^)aetim + (et, uf,>n«<i<«

commute with each of P^y, Pgg, Py, P& and Py. For ly = lz = 0

P0P^ = P^P0 = P ^ and

while Po is orthogonal to each of Py, Pg> and P& (indeed Po = P^)- For nonzero I,
Pi is orthogonal to P ^ and P® while

, ( 4 . 2 )

+ V^T/fiD^^i,, and (4.3)

J v = PiP^f = P^P«» = -V^Ktrtetiu. (4.4)

Thus each Fourier-scaloidal (4.2) and Fourier-poloidal (4.3) component field is
parallel, and each Fourier-toroidal component field (4.4) normal, to the jcrjt-plane. All
three types of Fourier component field are two dimensional, being independent of &
and ^-periodic, depending on r]t only via et (2.10). A Fourier-poloidal component
can also be written as

so that the expression in the second pair of parentheses is a stream-function for P *̂, v
in the .x^-plane.

5. Discussion and conclusions

5.1. Example: divergence-free field vanishing on |JC | = 1 As an example of
the quinquepartite decomposition of a d.p. divergence-free vector field, consider a
velocity field for an incompressible fluid between the walls x = — 1" and x — 1. The
field v vanishes on the walls.

This implies that the poloidal scalar for the field vanishes along with its x-derivative
at the walls. The monomials {JC"}£L0 form a basis for functions of x on (—1, 1), and
{(1 — x2)2x"}™=0 for the subspace of functions vanishing along with their derivatives
at the end points. Recalling [7] that the ultraspherical polynomials C*0 satisfy

f0, n/m;
n = m,
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where

we find that an orthonormal basis for this subspace is

Stream-lines of real parts of a few poloidal fields of the form ( V x ) 2 ^ / ^ ) with
small n and I are illustrated in Figure 3.

For the toroidal fields, the end condition v(±l) = 0 implies only r (± l ) = 0, so
that an orthonormal basis again consists of weighted ultraspherical polynomials but
with a = 5/2:

(see, for example, [19, Eq. 44], noting that C<o) = pfc-iAa-i/^ w h e r e ^-1/2,0,-1/2)
are Jacobi polynomials). The stream-lines are simply lines of constant x and t]t,
so some toroidal fields are illustrated in Figure 4 by velocity contours in planes of
constant £/.

The vector modes of this section are equivalent to some used previously [19];
however, being expressed in regular Cartesian coordinates has obscured their sim-
ple geometrical properties, namely the two-dimensionality of the poloidal modes
and the unidirectionality of the toroidal modes. This is just as the special three-
dimensional significance of two-dimensional solutions of the Orr-Sommerfeld equa-
tion [5, page 155] only becomes evident after Squire's transformation [26].

5.2. Further properties of the decomposition Figure 4 bears a certain resemblance
to the first row of Figure 3. This is not an accident. It is has been proven elsewhere [12]
that if a three-dimensional velocity field has zero gradient in some direction then the
component of velocity in that direction is constant along vortex-lines (curves parallel
to the curl of the velocity). And, indeed, the curl of any toroidal field is poloidal.

THEOREM 5.1. V x & = &>.

PROOF. The curl of a typical toroidal element (Table 2) is

V x ( - A T ) = -V*ri , + VDDr

which is the most general form of a poloidal field (Table 2). •
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in

FIGURE 3. Stream-lines of poloidal fields with stream-functions — Ktpn(x)sinKtr)i. Here lz = 0, 1,2
by row and n = 0, 1,2 by column; ly = 1 in all; k and y as in Figures 1 and 2. Only stream-lines
corresponding to 'positive' rolls of a single period cell are shown; counterrotating rolls are symmetrically
disposed. Stream-lines lie in the planes f< = 0, n cos ft/Jfc sin y, 2n cos ft/k sin y, as marked by solid
lines. Dashes mark boundaries of two yz-period cells and |-t | = 1.
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,r ;:

01

r ' i

FIGURE 4. Contours of constant velocity of three toroidal fields, n = 0, 1, 2; ly = 1 and /z = 0 in all;
projection and periodicity (k and y) as in Figures 1-3.

For the other subspaces the corresponding results are:

V x P&v = -AV2V 6 &,

V x P^i; = -D(vz)niy +D(u,)Di, e

= 0 and V x P / i i = O .

(5.1)

Theorem 5.1 and (5.1) are analogous to known results for spherical poloidal and
toroidal fields [3, page 623]. That the divergence-free subspaces 5? and */K are
irrotational shows the relation to the Helmholtz decomposition; note, however, that
there are nonzero irrotational members of & and S3, for example,

p = (Vx)2(i, cosh(fcc cos y) cos(ky cos y)}

is an irrotational poloidal field, and any uniform vector field is an irrotational member

5.3. Conclusion The result of the analysis is a decomposition of the space of
arbitrary three-dimensional d.p. vector fields into five subspaces: three divergence-
free, coinciding with those of Schmitt and Wahl [23], and two orthogonal to these and
each other.

Further, one each of these groups of three and two contains only elements constant
in the two periodic directions; these two are the 'mean' subspaces. Of the three
nonmean subspaces, the Fourier decomposition reduces two to the sum of subspaces
containing only two-dimensional vector fields (that is, having two nonzero components
and independent of the third coordinate in an appropriately rotated Cartesian system)
and the other to the sum of subspaces containing only divergence-free unidirectional
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fields. This reduction of a three-dimensional field to a series of two-dimensional fields
should simplify the analysis and solution of three-dimensional vector field problems.

Each of the five subspaces are characterised both by projections and by scalar
representations. In the solution of problems, these should be useful for the reduction
of known and unknown vector fields, respectively.
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