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Abstract

The variety of quasigroups is universal for varieties of algebras of the most general kind in the
sense that each such variety can be interpreted in a natural way in a suitably chosen subvariety of
quasigroups. More precisely, for any algebra (A, / o , / , , / 2 , • • •) where fo,fi,fi, • • • is an arbitrary finite
or infinite sequence of operations of finite rank, there exists a quasigroup (B, • > and polynomial
operations Fo, F,, F2, • • • over (B, •) such that (A, /„, / , , •••) is a subalgebra of (B, Fo, F,, • • •) satisfying
exactly the same identities. Moreover, if there are only finitely many / 0 , / i , • • •, then (B, •) can be
taken so that its identities are recursive in those of (A,fo,f,, • • •). If (A,fo,f,, • ••> is a free algebra
with an infinite number of free generators, then B can also be taken to coincide with A. This
universal property of quasigroups has a number of consequences for their equational metatheory.

Introduction

A quasigroup is a groupoid in which each of the equations a • x = b and
y • a = b has a unique solution for every pair of elements a and b. Quasigroups
have also been called "non-associative groups" because groups can be character-
ized exactly as those quasigroups whose multiplication is associative. In view of
this it seems reasonable to expect that an attempt to develop a general theory of
quasigroups along the lines of the theory of groups would prove profitable, and
to a certain extent this has been borne out. (More success in this direction
however has been obtained with the theory of loops.) On the other hand, there
exists considerable evidence supporting the somewhat surprising conclusion that
the general theory of quasigroups might have more in common with the theory
of arbitrary groupoids than it has with that of groups. In this paper we shall
attempt to bring this conclusion into sharper focus by proving a result that in a
certain sense establishes the whole of the equational metatheory of algebraic
structures of the most general kind as a part of the equational metatheory of
quasigroups. j

1 The research reported on here was supported in part by the National Science Foundation. ;
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[2] The variety of quasigroups 195

The source of the parallelism between the theories of quasigroups and
arbitrary algebras seems to lie mainly in the strong embedding results that have
been obtained for quasigroups. For example, it is well known that every
cancellation groupoid can be embedded in a quasigroup while the class of
cancellation semigroups embeddable in groups is quite restricted; cf. Mal'cev
(1939). Evans (1951) has shown that every partial loop can be embedded in a
loop and uses this result to show that the general word problem for loops is
solvable. In the same way it can be shown that every cancellation partial
groupoid can be embedded in a quasigroup; thus the word problem for
quasigroups is also solvable. This again is in marked contrast to the situation for
groups. Evans (1971) formulates another criterion under which a partial
groupoid on an infinite universe can be embedded in a loop with the same
universe. Using this result he constructs a number of loops satisfying special
identities, and then uses them to obtain various results about the lattice of loop
varieties. In Bol'bot (1972) a closely related embedding lemma, although not
explicitly formulated, is used to obtain other results on the structure of the lattice
of quasigroup varieties. Finally, in Mal'cev (1966) a third version of the
embedding lemma is used to prove that there exists a finitely based variety of
quasigroups, in fact, commutative loops, whose set of identities is not recursive.
The corresponding problem is still open in the case of groups.

The main result of this paper also assumes the form of an embedding result
— one that in a restricted sense comprehends most of the known results of this
kind for quasigroups. Loosely speaking it says that, if the notion of embedding
one algebraic structure in another is generalized in a certain natural way, then
the variety of quasigroups is universal with regard to embedding all other
varieties in the following sense: every algebraic structure 91 of arbitrary
countable similarity type can be embedded in a quasigroup 93 in a way that
preserves all the identities of 91. More precisely, for any algebra {A,fo,fx,f2, • • •)
where f0, f,, f2, • • • is an arbitrary finite or infinite sequence of operations of finite
rank, there exists a quasigroup (B, •) and polynomial operations Fo, Fu F2, • • •
over (B, •) such that (A,fo,f,, • • •) is a subalgebra of (B,Fo,Fu • • •> satisfying
exactly the same identities. Moreover, if there are only finitely many of the /„,
then (B, •) can be taken so that its identities are recursive in those of
(A,fo,fu • • •); the quasigroup (B, •) can also be chosen so that it fails to satisfy
any finite number of identities specified beforehand, so long as they are not
quasigroup identities. Finally, if (A,/<,,/,, • • •) is a free algebra with an infinite
number of free generators, then B can be taken to coincide with A.

This result has a number of consequences for the equational methatheory of
quasigroups that provide simpler proofs and often considerable generalizations
of many of the known results in this area. Several of these are presented in
Section 3.
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196 Don Pigozzi [3]

The variety of quasigroups is just one of many known examples of varieties
with the universal embedding property described above. Other examples are the
varieties of commutative groupoids and of bisemigroups, that is, algebras with
two independent associative operations. Although loops fail to form a universal
variety, in Section 4 we discuss a partial result that has significant consequences
for their metatheory. A general theory of universal varieties is developed in
Pigozzi (a), (b). In particular, the first paper includes a test for universality that
has wide applicability; although, unfortunately, it does not apply to quasigroups.
Many of the results for quasigroups we shall present here are special cases of
results of the general theory that are proved in detail in Pigozzi (b); in the sequel
this paper shall be referred to by the mnemonic aU'i£3~.

Let T be a fixed but arbitrary set of defining identities for the variety of all
quasigroups. In another paper, Pigozzi (b), we give a proof based on the results
of the present paper that there exists no recursive algorithm for deciding
whether or not a given finite set of identities, when taken together with T, defines
a Schreier variety of quasigroups; a similar result is obtained for the amalgama-
tion property. These results seem to be interesting in light of the fact that, in the
case of groups, it is quite possible that algorithms exist for both these properties;
cf. Neumann and Wiegold (1964) and Neumann (1967), Problem 6 and the
following remark. We refer to the introduction of Pigozzi (b) for a more
complete discussion of this problem.

1. Preliminaries

Our discussion shall be carried on within the context of the general theory
of varieties as that theory is presented in Tarski (1968) and, in somewhat more
detail, in %%?F. We shall explain all notation and terminology unless we are
pretty sure it is commonly understood. But the discussion will be minimal and we
refer the reader to the above mentioned papers for a more detailed exposition.

We shall be dealing with algebraic structures of the most general kind; in
particular, algebras of arbitrary (similarity) type. In constructing the equational
languages of all these various types we shall assume that the operation symbols
are taken from a fixed universe of symbols and that a fixed positive rank has
been assigned to each symbol in advance. Notice that we are excluding from
consideration operation symbols of rank 0, i.e., constant symbols, and hence by
extension algebras which contain distinguished elements. Constants are treated
in Tarski (1968) and aUrSST, but not having to consider them here permits
considerable technical simplification and their exclusion causes no real loss of
generality; in this connection see the remarks immediately preceding Theorem
2.1.
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[4] The variety of quasigroups 197

It proves convenient to identify each similarity type with the set of
operation symbols used in constructing the language of the type. Thus, if / is an
arbitrary type, the set of terms of type I is the set of all strings of symbols one can
form by starting with an infinite set v0, »i, t>2, • • • of variable symbols and
applying the operation symbols of / over and over in a manner consistent with
their ranks. The set of all such terms is denoted by Te,. We use the prefix
notation of Jan Eukasiewicz which allows us to avoid parentheses. For example,
if I = {P, Q} where P and Q are of rank 3 and 2, respectively, then typical
elements of Te, would be v2, Qvxv2, QQPv3QvoVoVoQvoVoVo; for brevity the last
term can be written Q2Pv3(Qvl)2.

The left-most operation symbol of a non-variable term is called its principal
operation symbol. If T = Qa0- • • o-K_,, where K is the rank of Q, then cr0, • • •, <xK ,
are referred to as the principal subterms of T; if Q is binary so that T = Qcrocri,
then we write TL and TR for o-0 and au respectively. We shall write a < r to
indicate that <x is a subterm of T; <r < T means a < r but o-^ r. The length of a
term, in symbols \T\, is just the total number of occurrences of operation and
variable symbols. The set of all variable symbols is denoted by Va. Thus

Va = {v0, vu »2, • • •}.

We also write x, y, and z for vo,vu and v2, respectively. For any term T, Va T
denotes the set of all variable symbols that have at least one occurrence in T.

To indicate that a function / is a mapping from a set A into a set B we shall
write either / : A —» B or / G AB; if A = B, f is called a transformation of A.
Associated with each transformation / of the set Te, of terms is another
transformation /* of 7e7 defined by the conditions that f*v = v if v G Va and

/ * Qo-0 • • • o-K-l = Qfo-0 • • • fo-K-x

for all Q EL I and <T0, • • •, o-K-, G Te,. (In this situation it is understood that K is
the rank of Q.)

The substitution operators are important transformations of terms; there is
one such operator associated with each assignment. By an assignment we mean
any function from a subset of Va into Te,. For any assignment $ and term r we
use SU$T to denote the result of simultaneously replacing each occurrence in T of
a variable v in the domain of <f> by <f>v; SU^T is called a substitution instance of T.
If the domain of <t> is the single variable v and <f>v = a, we write sulr in place of
SU^T. Also, if T is any term and cr0, • • •, cr,,-! any sequence of terms, we shall write
T(O-0, • • -,o-K-i) for the particular substitution instance su^r of T where the
assignment <£ is given by <£»* = o-A for A < K and $tv = iv f ° r a ' l ^ = x.

The equality symbol in all of our languages shall be = , and an equation of
type I is any formula of the form T = a where r,aG Te,. The set of all equations
of type / is denoted by Eq,.
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198 Don Pigozzi [5]

We choose a special binary operation symbol JVf and reserve it exclusively
to denote the multiplication operation of quasigroups. It is well known that the
class of quasigroups forms a variety only when the two division operations are
included along with multiplication as fundamental operations. Thus we also
select two binary operation symbols DL and DR to denote the division operations
and fix them throughout the discussion. We shall denote the similarity type of
quasigroups by T; thus

T = {M,DL,DR}.

Formally then, by a quasigroup we mean any algebra of type T in which the
following four equations are identically satisfied

(la) MxDLxy = y (Ib) MDRyxx = y

(Ila) DLxMxy=y (lib) DRMyxx = y.

Each of the following two equations is easily seen to hold identically in every
quasigroup

(Ilia) DRxDLyx = y (Illb) DLDRxyx = y.

Let X be any class of algebras of the same similarity type /. By the theory of
JK, in symbols 03f, we mean the set of all equations which hold identically in
every member of 3C. If 3K = {21} we write 021 in place of ©X. The theory of the
class of quasigroups shall be denoted by QG. We often write a = e T instead of
(a = r) G ©. If F C Eq,, then the theory generated by F, in symbols 0/[F], is the
theory of the class of models of F; the set F is called a base of 0/[F]. For brevity
we write a = r T in place of o- = e[r] T. Thus QG = 0r[F] where F is the set of
four equations (la), (Ib), (Ila), (lib).

There is a well known purely syntactical characterization of 0;[F] in terms
of F that is due to Garrett Birkhoff. This characterization has many forms; the
one we give here is particularly useful for our purposes. For every F C Te, we
define a binary relation = r on Te, in the following way: for all cr, T G Te, we
have cr = r T iff there exist a i r £ Te,, a » e Va, a <f> G VaTe,, and a pair of terms
£ 17 G Te, such that (£ = T/)G F or (T; = £ ) e F and

a = SU(TT and T = SU"XIT.

where C = su*£ and X =

Then 0/[F] can be characterized as the transitive closure of the relation = r,
i.e., 0,[F] is the set of all equations a- = T such that there exists a sequence of
terms £,,. ••-,£, such that f0 = a, $K = r, and £A = r&*i for all A < K.

A normal-form function for an arbitrary theory 6 of type / is a transforma-
tion / of Te, such that (i) fr = OT for every r G Te,; (ii) r = « <y implies fr = fa
for all T, cr G Te,; (iii) cr < /T implies fa = cr for all o\ T G Te,. A normal-form
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[6] The variety of quasigroups 199

function / for a theory 0 is said to be variable-minimizing if, for each T G Teh

Vafr C Var U {»„}, and fr G {T, W0} if T G Va. It is proved in <W£J, Theorem 2.5.
that every theory @ has a variable-minimizing normal-form function. If the type
of / is finite, / can be taken to be recursive in ©; notice that in this case / and 0
must have the same Turing degree of unsolvability.

Let / and J be arbitrary types. By a definition of I in J we shall mean any
function p: I—> Te, such that, for each Q E I, VapQ C {v0, • • •, ««-i} where K is
the rank of Q. Let p be a definition of / in / and let 21 = (A, Rw)Rej be an
arbitrary algebra of type J where A is the universe of 91 and, for each R G J,
R(") is the fundamental operation of 91 corresponding to R. By the p-transform
of 91 we shall mean the algebra

£rP2l = (A, PMpQ))o e ,

where plw(pQ) is the polynomial operation over 91 of the same rank as Q that is
defined in the natural way by the term pQ. Clearly 2rP2I is of type /. Algebras
are represented by capital German letters and their universes by the corre-
sponding Roman letters.

DEFINITION 1.1. Let J be any type and JC a variety of type J. % is called
universal if, for each countable type I, a definition p of I in J can be found such
that, for each algebra 91 of type I, there exists a 33 E jf( satisfying the following
conditions:

(i) 91 is a subalgebra of £tP33;
(ii) 091 = ®3TrP

s$; i.e., 91 and 5TrP93 satisfy exactly the same identities.
Assume now that I i; finite. If 33 can always be taken so that, in addition to

(j) and (ii),
(iii) 033 is recursive in ©3T and 021 together whenever 91 is a free algebra

over some variety,
then JK is said to be effectively universal.

A theory is universal, or effectively universal, if the variety of all its models
has the property. In the sequel we shall pass back and forth between varieties
and theories without hesitation, using whichever concept is the most convenient
to deal with in each particular context.

If / and / are disjoint types and p is a definition of / in J, then for any pair
of theories 0 and 4> of types / and /, respectively, we define the p-coupling
0%4> of 0 and <1> by the equality

0«P4) = 0 , u 4 0 U <& U {Qv0 • • • »„-, = pQ: QG I}].

Observe that an arbitrary algebra 91 = (A, O<9l))oe/uj of type / U J is a model of
0<gp«l> iff (i) (A, 0< a ))o e , is a model of 0 ; (ii) (A, Q<a)>oe, is a model of 4>; and
(iii) (A, O ^ O E , = £rP(A, Q(a)>oe,.
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200 Don Pigozzi [7]

DEFINITION 1.2. A definition p of I in J is said to be non -overlapping if the
following three conditions hold for every Q G I where K is the rank of Q.

(i) VapO ={eo;"-••,»„-•};
(ii) pQ(fo, • • -, &- i ) ^ <r(Tjo, • • •, TJA-I) for every non-variable a < pP and

all %o, • • •, $,_i, Tj0, • • •, T/A-I £ TeIUJ where P is any operation symbol of I distinct
from O and A is its rank;

(iii) pQ(1jo, • • •, ^K-I) / O"(TJ0, • • •, T/K-I) for every non-variable a < pQ and all
£o, • • •, &-i , T/O, • • -, rjK i £ Te,uj.

It is shown in McNulty (to appear), Theorem 2.9 (v) (see also aU'S3', Lemma
4.22) that, if / contains at least one operation symbol of rank g 2, then for each
countable type / there exists a non-overlapping definition p of / in /. For
example, if I = {P, Q} where P and Q are binary operation symbols, and if we
take

pP = M3x 3MyMy \ pQ = M2xMx 2M2y3,

then it is easy to check that p is a non-overlapping definition of / in {M}.
For the purposes of the following definition, two types / and / ' are said to

be isomorphic if there exists a one-one rank-preserving correspondence between
them.

DEFINITION 1.3. A non-overlapping definition p of I in T is said to be special
if all the following conditions are satisfied.

(i) Let I' = {Q': Q £ /} be a type isomorphic to I but disjoint from it, and let
77 be the definition of I U / ' in T such that, for each Q £ /, TTQ = pQL and
TTQ' = pQR where pQL and pQR are the left- and right-hand principal subterms of
pQ, respectively. Then IT is also non-overlapping.

Let Q be any operation symbol in I and let K be the rank of Q.
(ii) M is the principal operation symbol of each of the terms pQ, pQL, and

PQR.

(iii) pQ contains no subterm of the form DLv^ or DR^v with v £ Va.
(iv) For every non-variable a < pQ we have

for all £o, • • •, £c-i, T/, £ £Tc/ur and for every y which occurs as the left-hand side
of one of the equations (Ia)-(IIIb).

Observe that, for every special non-overlapping definition p, conditions
1.2(i) and 1.3(i) together imply

VapQL = VapQR = VapQ = {»„, • • •, »„-,}

for each Q £ /.
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[8] The variety of quasigroups 201

The particular example of a non-overlapping definition p considered in the
remarks preceding 1.3 is not special. But special non-overlapping definitions are
easy to construct as we see from the proof of the following lemma.

LEMMA 1.4. For every countable type I there exists a special non-overlapping
definition of I in T; moreover it can be taken so that its range is included in Te{M}.

PROOF. Let I' = {Q1: Q £ 1} be a type isomorphic to / but disjoint from it.
By %^F, Lemma 4.22, there exists a non-overlapping definition TT of / U / ' in
{M}. Moreover, from the proof of 4.22 given in %%& it is immediately seen that,
for every Q E / U / ' , nQ has the following property.

(•1) Hff< pQ and cr£ Va, but at least one of the two principal subterms of a is
a variable, then er must be in one of the three forms Mv2, M2v3, or MvMv2.

For each Q E I take

(2) pQ = MTTQTTQ'.

Conditions 1.2(i) and 1.3(i)-(iii) are immediate consequences of the fact v is a
non-overlapping definition of / U / ' in {M}. Consider any non-variable a < pQ
where Q E I and suppose

(3) o-(&, • • • , £ _ , )

where y = y is one of the equations (Ia)-(IIIb). Because the principal operation
symbol of a is necessarily JVf, y = y must be (la) or (Ib). If y = y is (la), then, as
<r contains no occurrence of DL, the right-hand principal subterm of a must be a
variable. From (1) and (3) we could then conclude that for some A < K,

A < K, Mr,DL-qC E {Mil, M2{{, M&M&.

This is clearly impossible, and a similar result is obtained if y = y happens to be
(Ib) instead of (la). Thus 1.3(iv) holds.

To verify 1.2(ii) consider any two distinct Q,PGI of ranks K and A,
respectively, and let a be any non-variable subterm of pP. Assume that for some
£o, • • •, £«-i, T/O, • • •, T/A-I we have

(4) pQ(fo,---,£.-i) = <r(i,o, •••,!?*-.).

If a = pP, then (2) and (4) imply TTQ(^0, •• - ,£,-i)= TTP(TIO, • •-, t?*-i) which
contradicts the fact that IT is non-overlapping. Thus a < trP or <r < irP'. But in
this case (4) together with the non-overlapping property of n implies that a is of
the form Mvu with v, u £ Va. Applying (1) with P in place of Q we get v = u,
and thus finally, from (2) and (4), TTQ($0, • • • ,£,_,) = TTQ'(£O, • • •, &-i). This again

2 This result was first announced in Pigozzi (1973).
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contradicts the fact that IT is non-overlapping, so we conclude that 1.2(ii) holds.
Condition 1.2(iii) is verified in the same way. Thus the lemma is proved.

The special non-overlapping definitions constructed in the preceding proof
are probably the simplest available. Others can be found however that are more
complicated but have additional properties that prove to be useful for various
purposes. For example the special non-overlapping definitions obtained in the
following lemma are used in Pigozzi (b) to prove that there exists no recursive
algorithm for deciding whether or not a given finite set of equations to type T
defines the variety of groups when (Ia)-(IIb) are adjoined.

LEMMA 1.5. Let I be any countable type and let P be a binary operation
symbol not contained in I. Let GR be the theory of groups of type T, i.e., the theory
generated by (Ia)-(IIb) together with the associative law M2xyz = MxMyz.

There exists a special non-overlapping definition p of I U {P} in T such that
pP = GR X.

PROOF. Let / ' and TT be as in the proof of 1.4 and assume P& I'. For each
O G / take pQ as in (2) and take

pP = M2I>lxMx2M2yiMyMy2MDRMx2M2y1MyMy2.

The proof that all the conditions of 1.2 and 1.3 are satisfied is straightforward; we
shall omit the details. Also it is easy to check that pP=GRX.

2. Main Lemma

The central lemma of this paper, from which all our results follow, has a
purely combinatorial character. Among other things it says that, for each
countable similarity type /, there exists a definition p of / in T (in fact in {M})
such that, for every theory 0 of type /, the process of p-coupling © with QG
does not lead to any new identities of type /, i.e.,

We prove this result by constructing a normal-form function for Q^pQG which
when restricted to equations of type / becomes a normal-form function for ©.
But this normal-form function has additional properties which make it a
powerful tool in studying the properties of the polynomial embedding of
arbitrary algebras in quasigroups. The particular method of construction we use
results from combining methods of Evans (1951) and the author <%gj".

In order to simplify our combinatorial arguments we shall assume, as
indicated in the Preliminaries, that all operation symbols under consideration
are of positive rank. This amounts to no real loss of generality since constant
unary operations can in a natural way be interpreted as operations of rank 0.
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[10] The variety of quasigroups 203

More precisely, given an arbitrary theory @ of type /, the constant symbols of /
(relative to @) will be identified with those unary operation symbols Q of / such
that @ contains the equation Qx = Qy.

THEOREM 2.1. Assume I is any countable type disjoint from T and © any
arbitrary consistent theory of type I. Assume also that p is a special non-
overlapping definition of I in T. Then there exists a transformation m of TeIuT

satisfying all of the following conditions.
(i) m is a normal-form function for Q^pQG.
(ii) m restricted to 7e7 is a normal-form function for ©.

(iii) Consider any r, r'£ Tet and assume that Var U Var' C{v0, • • •, »K-i}-
Let <x0, • • •, ov-i be a sequence without repetitions of terms in Te,ur such that, for
each A < K, m<xA = crA and <xA is either a variable, or has its principal operation
symbol in T. Then

W(T(O-0, • • •,a.-t)) = m(T'(a0, • -,o-K ,)) iff mr = mr''.

In addition, if I is finite, then

(iv) m is recursive in @.

Before beginning the proof we introduce some useful notions of a rather
technical nature. Consider an arbitrary term T £ 7e,u r and a sequence
0o, • • -,o-K-, of disjoint occurrences of subterms of T. We shall want to have
available a canonical method for replacing the ak in T by variables so as to
obtain a new term r' with the property that T can be retrieved from T' by
substituting terms for variables in the usual way. The most convenient way to do
this is to enlarge our language by adjoining a new variable for each of the old
non-variable terms in Tie/ur. Let Va+ be the set of variables with these new
variables adjoined, and let ^ be a one-one recursive function from Va* onto
Teiur such that \v = v for each v £ Va; x IS assumed to be fixed throughout
the whole discussion. Let Tet denote the set of all terms of type / that possibly
contain occurrences of new variables as well as old on^s; let TeT be the set of all
T ETet such that for each v £ Va+, if v < T, then either \v £ Va (and hence
\v = v) or the principal operation symbol of xv is contained in T. The following
lemma is now immediate.

(1) Let T S Teiur. Then there exists a unique o- £ Te*{* such that T = suxo:

Let

@+ = {o-(u0, • • •, «„_,) = T(U 0 , • • •, ««-i): a = TBS and u0, • • •, MK_, £ Va+}.

Clearly @+ is a theory of type / in the extended language such that @+ D Eq, =
©. Furthermore @+ is obviously recursively isomorphic to 0. As was mentioned
in the Preliminaries it is proved in aH%?F, Theorem 2.5, that there exists a
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variable-minimizing normal-form function for @+ that is recursive in ©+ in case /
is finite. Let / be one such function which we assume to be fixed throughout the
discussion. Notice that, since / is variable-minimizing, it becomes a normal-form
function for @ when restricted to 7e,. Finally, let / be the transformation of
Te,UT whose value at each T G Te;ur is given by

JT = SUxf(T

where a is the unique term in TeV such that T = suxa.
We are now ready to construct the transformation m of Te,UT whose

existence is asserted in the statement of 2.1. Let p be any special non-
overlapping definition of / in T. For each Q £ / w e shall write

pQ = MpQLpQR.

Observe that, because p is both special and non-overlapping, both pQL and pQR

contain at least one occurrence of eA for each A less than the rank of Q. The
transformation' m is defined by recursion on the length of terms. If T G Va, then
we take mr = r. Assume | T | > 1. The definition of mr separates into six cases
which we shall later show to be mutually exclusive.

CASE 1: m *T = cr(£, 17) where a = y is one of the six quasigroup identities
(Ia)-(IIIb) given in the Preliminaries. Take mr = 17.

CASE 2: m*r = DLpQL(ij0, • • •, £K-i)/Q£o • • • &-i where Q is some operation
symbol of I and K is the rank of Q. Take mr = pOR(^0, • • •, £<-i).

CASE 3: m*r = DR(fQgo • • • f,-i)pOR(£0, • • •, £«-i) where Q is some opera-
tion symbol of I and K is the rank of Q. Take mr = pQL(ij0, • • •, ^K-I).

CASE 4: m*r = pQ(fj0, • • •, ^«-i) where Q is some operation symbol of I and
K is the rank of Q. Take mr =

CASE 5: m*r = Qg0- • • f«-i where Q G / and K is the rank of Q. Take
mr = fm * r.

CASE 6: None of the five previous cases apply. Take mr = m*r.

To show that m is well defined we must first show that the six cases are
mutually exclusive. Assume first of all that Case 1 applies so that m *T = CT(TJ, £)
where a = y is one of the six identities (Ia)-(IIIb).

Suppose Case 2 also applies so that

(2) m*r = DLpQL(Zo, • • ; & /

Then cr = y must be either (Ha) or (Hlb). In the first case we would have
m*T = DLrfMrj^, a n d h e n c e 17 = pQL(t;o, • • -,^-i) a n d

(3)
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Let Q£o • • • £«-i = suxy with y G TeT- Then fQ^0 • • • £<-i = sujy. It follows that
fy G Va+ since, by (3), the principal operation symbol of /Q£o • • • &-i is M. Thus

(4) /Q£o' • • &-i « & for some A < K.

But £A =S pQL(^o, • • •, £«-i) since p is special ; combining this with (3) and (4) we
obtain a contradiction. Therefore, cr = y must be (Illb) and hence m*r =
DLDRrj^r]. Together with (2) this implies that DRr\C = PQL(€O, • • •, £«-i) which is
impossible since pQL has M as its principal operation symbol by 1.3(ii). Thus
Cases 1 and 2 cannot simultaneously apply and by symmetry neither can Cases 1
and 3.

It is also not possible for Cases 1 and 4 to apply simultaneously since Case 4
implies that M is the principal operation symbol of m*r and both its principal
subterms, but this is obviously not possible in Case 1. Finally, again considering
the principal operation symbol of m*r we see that Cases 1 and 5 are mutually
exclusive. Similar considerations easily lead to the conclusion that each of the
Cases 2, 3, and 4 exclude the remaining five cases.

To complete the argument that m is well defined we must show that, for
each of the six cases, when a particular case applies the value of mr is uniquely
determined. In Cases 5 and 6 this is obvious. In Case 1 it amounts to showing
that if a and ar' are the left-hand sides of distinct equations among (Ia)-(IIIb),
then <T(£, TJ) / <x'(£', 17') for all £, 17, £', 17' G Te/UT. But this non-equality is easily
checked. For instance, considering the equations (la) and (Ib) we have a(i;, 17) =
M^DL^r] and o-'(f', TJ') = MDRTJ'^ '^ ' ; then <r(£ T/) = cr'(£', TJ') implies the obvi-
ous contradiction DLDRr\'^'j] = £'.

To show that mr is uniquely defined if Case 2 applies it clearly suffices to
show that, for each Q G / and all £0, • • •, £«-i G Te,ur, pQ(ij0, • • •, £<-i) and hence
PQR(£O, • • •, £< 1) are uniquely determined by pQL($o, • • -,f«_i). This result
however follows immediately from the assumption that the definition TT defined
in 1.3(i) is non-overlapping. By symmetry mr is uniquely defined in the event
Case 3 applies, and the non-overlapping property of p also leads immediately to
the conclusion that tm is uniquely determined in the event of Case 4. This
completes the demonstration that m is well defined. Also it is not difficult to see
that, when I is finite, m is recursive in /, and hence also in 0 since / is taken to be
recursive in ©. This verifies condition 2.1(iv).

We now turn to the task of verifying the first three conditions of the
conclusion of 2.1. This will be done in a sequence of lemmas, 2.2 through 2.9. In
these lemmas /, 0, and p are assumed to be as in the statement of 2.1, / is a
variable-minimizing normal-form function for 0+, recursive in 0 in case / is
finite, and m is constructed from / and p by Cases 1-6.

LEMMA 2.2. Consider any Q G I and let K be the rank of Q. Then for any
a < pQ we have
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for all £o, • • •, £<-i G Te,UT such that m£A = & /or a// A < K.

PROOF, by induction on the length of a. If a- is a variable, the result is
obvious. Assume

cr = Ry8

with RGT. Let

(5) r = <r(£0, • • •, &_,) = Ry(?0, • • •, £,-,)«(&, • • •, £,-.).

By the induction hypothesis we have m*r = T.
In the definition of mr Case 1 cannot apply because of 1.3(iv). Suppose Case

2 applies so that

(6) T = D L P P L ( T ) O , • • •, TJx-i)fPT)o • • • T)A_i

for some P G J. Then from (5)we get y(£0, • • •, &-i) = pPL(vo, • • •, T?A-I). By 1.3(i)
this is impossible unless y is a variable; but, by 1.3(iii), y cannot be a variable
since R = DL by (5) and (6). Hence, Case 2 cannot apply, and by symmetry,
neither can Case 3.

Case 5 is excluded because the principal operation symbol of a is in T, and
Case 4 is excluded because p is non-overlapping. Thus Case 6 applies and we
have BIT = m*T = T as was to be shown.

LEMMA 2.3. cr < mr implies ma- = <J for all O-,TG TetuT-

PROOF, by induction on the length of T. The desired result clearly holds if
T £ Va, and we assume that T = Pir0 • • • irK-\ for some P <E I U T. Then

(7) m *T = PmTr0 • • • mtrK-\.

If Case 1 applies, then a < mvx for A E {0,1}, and hence ma = a by the
induction hypothesis. If Case 2 applies, then

(8) m *r = DLpQL(£0, • • -, £,-,)/O6. • • • £,-,

and

(9) o-<pO«(&, •••,&-!).

From (7), (8), and 1.3(i) (see the remark immediately following 1.3) we have
fA < OTTTO for each A < K. Hence, by the induction hypothesis, m& = fA for every
such A. The desired conclusion ma = a now follows immediately from (9) and
2.2. By symmetry we obtain the same result if Case 3 applies.

S\yppove YW« ttoft Cast 5 appfes so thai ? \v> {!) \s conlamed w\ f.

(10) WT -fm*r = sujy
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where y is the unique term in TeT such that m *r = suxy. By (7) we have that,
for each v E Va y, there exists a A < « such that xv ^ m'n'*- Hence by the
induction hypothesis and the fact that / is variable-minimizing we get

(11) m\v = xv f°r all v G Vafy.

From (10) we have that a< sujy; thus either a < \v for some v E Vafy, or
a = suxcr' for some a' < fy. In the first case we have ma = a by (11) and the
induction hypothesis; in the second case the same result can be obtained, using
(11), by a simple induction on the length of a'.

Finally, we assume that Case 4 holds. Then m*r = pQ(£o, • • •, £«-i). Thus,
since m£A = £A for all A < K by (7) and the induction hypothesis, we can also
apply Case 5 and get

rrn = mOfo • • • £,-i = sujy

where Q£o • • • £<-i = suxy with y £ Te^+. The argument now proceeds as in the
treatment of Case 5. This completes the proof of the lemma.

LEMMA 2.4. msu^r = msMm.«r for every r £ Te,Ur and every <j> £ v"TeIKJT.

PROOF, by induction on the length of T. If T £ Va, then, by 2.3, m SM^T =
m<j>T = mm<f>T = m 5Mm.*T. Let T = QTT0 • • • irK-\. Then m *su4,r =

QmSU+TTO• • • mS«*TTK_I = Qmsum.4,ir0•• • msum.^vK-, = m*sum.<,r. The equality

= msw,,.^ now follows directly from the definition of m.

LEMMA 2.5. m(pQ(£0, • • •, &_,)) = mQ£0 • • • ^ - i for all Q £ / and

PROOF. By 2.3 and 2.4 we assume without loss of generality that
for all A < K. Then by 2.2 we have

Thus by Cases 4 and 5 we have that

LEMMA 2.6. msu^T = fsum^T for all T £ Te7 and <̂> £ Vfl7e,ur.

PROOF, by induction on the length of r. Before starting the proof we show
that

(12) fmo- = mo- for all a £ Te,UT-

To see this observe that, if the principal operation symbol of ma is in /, then by
Case 5 and 2.3 we have
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ma = mma = fm *ma = fma;

otherwise we get finer = ma directly from the definition of /.
If T G Va, then, by (12), msu^r = mcf>r = fm<f>r — fsum.4,T. Assume that T

has length 2 or more. Then the principal operation symbol of su^r is in /, and
thus Case 5 applies in the definition of msu^r. Hence by the induction hypothesis
we have

= fm*su4,T = ff*sum.^,T.

Since / is a variable-minimizing normal-form function, it is easy to check that
ff*sum.^T = fsum.,t,T. This completes the proof of the lemma.

LEMMA 2.7. For all £, 17, £ £ Te,u r such that mi; = £, mrj = 17, and m£ = £
the following three conditions are equivalent:

(r) mM{r1 = {;
(ri) mDL(;C = 17;

(iii) mDRCf) = £

PROOF. We shall only prove the equivalence of (i) and (ii); the equivalence
of (i) and (iii) will follow by symmetry.

Assume that (i) holds and observe that m*M£i\ - M£TJ by hypothesis. In
the evaluation of mAffrj the cases that can apply are Case 1 with a = y either
(la) or (Ib), and Cases 4 and 6. We consider each case separately.

Case l-(Ia). Then Mgrj = MJjDLJj£ so that DL££ = 17, and thus (ii) holds since
mr\ = 17 by hypothesis.

Case l-(Ib). Then M£T/ = MDRCw so that £ = DR£-q. Then DL& =

DLDRC^C- Hence since

(13) m*DM = DL&

holds by assumption, Case l-(IIIb) applies in the evaluation of mDL{;£, and thus
we again get (ii).

Case 4. Then for some Q £ / and £0, • • •, £«-i £ TetUT we have

(14)

and £ = mMgr] = fQtjo • • • &-i. Then

Thus, since (13) holds, Case 2 applies in the evaluation of mDL(;£, and, by (14),
mDL|f = PQR(£<>, • • -, &-0 = •>?, so (ii) holds again.

Case 6. £ = mAffij = M^TJ. Thus D L ^ = bL£M£r\. Hence Case l-(IIa) holds
in the definition of mDL^rj, and once again we get (ii).

This proves that (i) implies (ii), and the implication in the opposite direction
is proved analogously; we shall omit the details.
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LEMMA 2.8. Let a = y be any one of the four equations (Ia)-(Hb). Then for
all £, £ £ Tc/ur we have

PROOF. Because of 2.3 and 2.4 we can assume that m£ = £, m | = £ Suppose
o- = y is (la) so that cr(£ £) = M£DL££. Let m D t ^ = TJ. Then using 2.4 and 2.7(i),
(ii) we get

as desired. The proofs for the other three equations are similar.

LEMMA 2.9. The following two conditions are equivalent for all r, T' G Te/UT:
(i) T = * T ' where <& = ®%QG;
(ii) mr = WIT'.

PROOF. It is a simple matter to prove by induction on the length of T that
BIT = 4,T for all T £ Te,ur. This shows that (ii) implies (i).

To prove the implication in the opposite direction it suffices in view of the
characterization of the relation = * described in the Preliminaries to prove that
T = rV implies mr = mr' where F is the set consisting of the equations (Ia)-(IIb),
all of the equations of 0, and the definitions Qv0- • • i>«-i = pQ for all Q 6 l
Suppose that T = rr ' . Then there exist a T 6 Te,UT, a v £ Va, an assignment
<£ E y"Te,UT, and an equation tr = a' such that either (<r = cr') £ F or
(a' = o-)er, and

T = SU"(TT and T' = SU{TT where i = su^cr and £' = su+cr'.

Thus, by Lemmas 2.4-2.6, 2.8, and the fact that / is a normal-form function for
@+, we have

rnr = msuv
m(7r = msu^ir = mr'.

This proves the lemma.
Lemmas 2.3 and 2.9 together show that m is a normal-form function for

O^pQG. From 2.6 we get that m coincides with / on Te,. Hence 2.1(ii) holds.
Finally? to see that 2.1(iii) also holds, consider any T, T' £ Tet and cr0, • • •, crK-i £
TeIUT satisfying the hypothesis of 2.1(iii). Clearly mr = mr' implies
m(r(o-0, • • •, o-K-i)) = m(T'((To, • • -, <r«-i)). To prove the implication in the oppo-
site direction let v, TT' £ Te*i be obtained from r, r', respectively, by simultane-
ously replacing all occurrences of v0; • • •, e«-i by x~xa-0;- • •, x'io-K-1, respectively.
Then we have

(15) T(<TO, • • •, <TK_I) = suxir, r'{a0, • • •, o-K_,) = suxir'.

https://doi.org/10.1017/S1446788700017791 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700017791


210 Don Pigozzi [17]

Since cr0, • • •, o-K_, are distinct by hypothesis, the variables x~l°~o,'• • •, X~'<rK-i are
distinct from one another. Thus

(16) mir = mn' implies rm = rm'.

Furthermore, by hypothesis the a0, • • -,o-«-i are either variables or have their
principal operation symbols in T, and mcrx = crA for all A < K. This immediately
gives n, n' E. TeY'• Hence, by the definition of /,

(17) fsuxTT = suxfir; fsuxv' = suxfn'.

When combined with Lemma 2.6, conditions (15) and (17) show that the equality
mr(o-0, • • ,o-K-x) = mT'(a0, • •,aK-l) implies suxfir = suxfir'. But, since / is
variable-minimizing, fv, fir' £ Tet* because n, ir' G Tel*. Thus from (1) and 2.6
we conclude that

mir = fir = fir' = mv';

hence mr = rm' by (16). Therefore, 2.1(iii) holds and the proof of Theorem 2.1 is
complete.

3. Applications

In this section we apply Theorem 2.1 to obtain the universal embedding
results for quasigroups discussed in the Introduction. We then state without
proof a number of consequences of this universal property of quasigroups that
are established in aU.%?F for universal varieties in general. We also outline the
proof of a certain improved version of 2.1 and discuss briefly its consequences.
The section closes with some remarks on the possibility of extending the results
of this paper to certain subvarieties of quasigroups.

For any variety 3C and any positive cardinal a we take $T<,3f to be the free
algebra of J{ with a generators. In our first theorem we make use of the fact the
larger of any two cardinals a and /3 coincides with their union a U )3. The first
infinite cardinal is denoted by to.

THEOREM 3.1. Let I be any countable type and assume that p is a special
non-overlapping definition of I in T. Then for every variety d( of type I there exists a
variety i£ of quasigroups such that

for every positive cardinal a. Moreover, if Us finite, then 0 if'is recursive in 05if.

PROOF. Let @ be the theory of JC. Clearly we can assume that @ is
consistent. We also assume for simplicity that a S a> and thus that a U m = to;
the proof for an arbitrary cardinal is analogous. Let
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and take if to be the variety of all models of <I>. Clearly QG C <1> so i? is a variety
of quasigroups. Notice also that by 2.1(iii) we have

(1) <i> is recursive in ©

if / is finite.
Let M be the variety of all models of B^PQG. The theory Q^QG is the

extension of <$> obtained by adjoining the definition Qv0 • • • »«-̂ i = pQ for each
Q £ I. Thus any algebra 31 E !£ can be made into an algebra in M by adjoining,
as the fundamental operations corresponding to the operation symbols Q of /,
the polynomials over 91 denned by the terms pQ; furthermore, every element of
M can be obtained in this way. It is now easy to see that

(2)

(3) 2rp SR br ̂ tJVL = <R b, faj

where JRbr^ t^ and ffi b, ̂ taM,- the T- and I-reducts of ??rrâ <, are the algebras
of type T and I respectively that are obtained from ^x^M by disregarding all
fundamental operations except those corresponding to symbols'in T and /.

It is well known how to construct the free algebras of a variety by means of a
normal-form function for the theory of the variety; indeed, free groups and rings
are usually constructed in this way. Thus we can use the normal-form function m
given in 2.1 to construct $T~M- Let

(4) «

The elements of 91, which are also the elements of ^x^M, are taken to be the
m-closed terms of type/ U T, that is,

A ={T: r e Te,UT, mr = r).

For every Q (EI and all $0, • •-,£,_,£ A we have Q<H)(&, • • •,£,_,) =
mOfo • • • £,_i. Let X be the set of all m-closed terms in Te/ u r which are either
variables or have their principal operation symbol in I. Clearly X generates 91
and condition 2.1(iii) says that a relation can hold in 91 between elements of X
just in case it holds identically in every member of JK. Therefore, since X is of
cardinality to, we have that 91 is isomorphic to $r«,3iT. The conclusion of the
theorem now follows directly from (l)-(4).

THEOREM 3.2. The variety of quasigroups is effectively universal.

PROOF. Let I be any countable type and let 91 be an algebra of type /.
Assume first of all that / is finite and 91 is a free algebra over some variety 3if, say

(5) 91 s frc*X.

We assume without loss of generality that
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(6) 09T = ©X.

Let p be any special non-overlapping definition of / in {M}; such a p exists by
1.4. Then by 3.1 there exists a variety !£ of quasigroups such that t£x9%xa!£' =
%raU~3>C and ©i? is recursive in ©3if. Take

Then it follows immediately from (5) and (6) that all three of the conditions of 1.1
hold (with ©3T replaced by QG in 1.1 (hi)).

We now drop the assumption that I is finite and 21 is free. To complete the
proof we must find a quasigroup 33 satisfying conditions 1.1 (i), (ii).

Let / be a type disjoint from / and consisting exclusively of unary operation
symbols, in fact, one such symbol Pa for each a €= A. Let A C Eq} be the set of all
the equations

QP^x • • • Pa;_,x = Pbx

where Q £ /, a0, • • •, aK-u b G A, and Q(n)(a0, • • •, a«-i) = b. For each finite V C A
let / r be the set of all Pa which occur in at least one member of F, and let 3(r be
the variety of type I U Jr consisting of all models of

©91 U F U {Pax - Pay: Pa G / r } .

Clearly we have

(7) ©3Tr n Eq, = 091.

Since I L)Jr is countable, there exists for each finite F C A a special
non-overlapping definition irr of / U / r in {M}. Furthermore, it is clear that these
definitions can be chosen so that they all coincide on J; let p denote this common
restriction to /. By 3.1 there exists for each finite FCA a variety «2"r of
quasigroups such that

(8) %X«Xr = Z

Observe that from (7) and (8) we get

(9) ©91 = ©£rP ^xj£r for each finite F C A.

Let if be the least upper bound, in the lattice of quasigroup varieties, of the S£r

for all finite F C A. It follows from (9) that

(10) ©9l = 0£rP3i^2>.

It is clear that every finite partial subalgebra of 91 can be isomorphically
embedded in 3i b/SrJ^r for a suitably chosen finite FCA. Thus, by (8), each
such finite partial subalgebra is isomorphically embeddable in the p-transform of
a model of Z£. Applying the compactness theorem of first-order predicate logic
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we conclude finally that there exists a S £ i ? satisfying condition l.l(i); in view
of (10) it follows automatically that l.l(ii) is also satisfied. This completes the
proof of the theorem.

A result somewhat stronger than 3.2 can be obtained. Consider the new
notion of an effective universal variety that is obtained from 1.1 by deleting the
condition "whenever 31 is a free algebra over some variety" in the statement of
l.l(iii). As indicated in the Introduction, the variety of quasigroups is effectively
universal in this stronger sense. This result however cannot be obtained directly
from 3.1, or even 2.1. The reason for this stands out rather clearly in the proof of
3.2. In order to obtain an isomorphic embedding of an arbitrary algebra 31 in a
definitional transform of some quasigroup by means of 3.1 alone, we are
required to interpret the elements of 31 as (constant unary) polynomials in some
relatively free quasigroup 93. Consequently, the theory of identities of 93 must
necessarily include an interpretation of the word problem for 31. Thus, in
general, the theory of identities of 93 cannot be recursive in the corresponding
theory of 31 since, for example, it is easy to construct an 31 such that the latter
theory is recursive while the word problem for 31 in unsolvable.

The difficulty can be overcome by extending our basic lemma 2.1. It is useful
to think of this extension as a kind of parametrized version of 2.1. Although the
version we now describe is not the most general one available, it suffices for the
purpose at hand. Compare Theorem 4.20 of ^WSST.

Let 7, @, and p be as in the hypothesis of 2.1. Let 31 be any model of 0. For
each a & A let Pa be a new unary operation symbol and let J and A be defined
as in the proof of 3.2. Let

0 a = ®,UJ[® U A U {Pax = Pay: a G A }],

QGi = 0ru>[<?G U{Pax = Pay: a e A}].

Finally let pa be the extension of the definition p to I U J that is obtained by
setting pPa - Pax for each a E A. Then we can conclude that there exists a
transformation m of Te,UTUj satisfying conditions 2.1(i)-(iv) with 1,0, p, and QG
replaced respectively by I L)J, 0 a , p«, and QG9. In addition, the following
condition is satisfied provided I is finite.

(v) m restricted to TeiUT is recursive in 0 .

The proof of this result is a straightforward modification of that of 2.1.
In ''U'gSr a number of results about universal and effectively universal

varieties are obtained. We shall state several of them here for quasigroups
without proof and refer the reader to the corresponding theorems in

THEOREM 3.3. There exist a continuum number of universal varieties of
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quasigroups any two of which have only trivial one-element quasigroups in 
common. 

S e e T h e o r e m 3.9 of Ψ3~. 

T H E O R E M 3 .4 . For each recursively enumerable degree of unsolvability 8 
there exists a variety Ζ of quasigroups defined by a single equation such that 0Ζ is 
of degree 8. Furthermore, Ζ can be taken so that 8 is also the degree of the set of all 
e £ &Ζ such that | Va e | = l . 2 

F o r arbitrary ef fect ive ly universal var ie t ies this result is e s tabl i shed in 
T h e o r e m 3 .10 of Ψ'^Η'. T h e fo l l owing interes t ing c o n s e q u e n c e of this result w a s 
p o i n t e d o u t by B o o n e and R o g e r s (1966) ; s e e tytStT, T h e o r e m 3 .11 . 

T H E O R E M 3 .5 . Let Γ be the set of all e ≥ EqT such that 
(i) every model of e is a quasigroup, and 

(ii) 0 T [ E ] IS decidable. 

Then Γ is a maximal X^-set in the Kleene-Mostowski hierarchy. In particular, Γ 
fails to be recursively enumerable.2 

S o m e of the results o b t a i n e d in ΨΖΕΓ  are e s tab l i shed on ly for a special class 
of universal"variet ies — the so -ca l l ed normal universal, or n-universal, var iet ies . 
M o s t of t h e s e results , h o w e v e r , are essent ia l ly c o n s e q u e n c e s only of the 
f o l l o w i n g p r o p e r t y of an arbitrary n -un iversa l variety i£: for e a c h c o u n t a b l e type 
/ there ex is t s a def ini t ion p of / in the t y p e / of £β such that the conc lus ion of 
T h e o r e m 2.1 h 6 l d s with QG and T r ep laced by © I ? and J, respect ive ly . In 
particular, the proof s of these results g i v e n in <%G£T can wi th little difficulty b e 
modi f i ed so as t o apply to the variety of quas igroups . S o m e results of this kind 
are f o r m u l a t e d in t h e nex t t w o t h e o r e m s . T h e first o n e , T h e o r e m 3.6 , further 
descr ibes the re la t ionsh ip b e t w e e n the structures of the free a lgebras %xa£ and 
}^ΥΠΖ  d i s c u s s e d in T h e o r e m 3 . 1 . Cf. T h e o r e m 5.2 of ΨΨ. 

Let I, p, a n d Ζ b e as in the s t a t e m e n t of 3 . 1 . It is easy to s e e that the 
particular var ie ty £β c o n s t r u c t e d in the proof of 3 .1 is t h e largest o n e poss ib le 
sat isfying the c o n c l u s i o n of the t h e o r e m in the s e n s e that it inc ludes every variety 
wi th this p r o p e r t y as a subvar ie ty . W e d e n o t e this particular variety Z£ by πΖ. It 
f o l l o w s eas i ly f rom 3.1 t o g e t h e r wi th its proof that , for any pos i t ive cardinal a, 
any o n e - o n e m a p p i n g from the free g e n e r a t o r s of ^υΰΖ o n t o the free generators 
of 1$υΰ(πΖ)  can b e e x t e n d e d to an i s o m o r p h i s m from $υΰΖ in to $xpΨ«(πΖ ). In 
t h e f o l l o w i n g t h e o r e m w e shall ident i fy ^υΰΖ wi th its i s o m o r p h i c i m a g e in 

T H E O R E M 3.6 . Let I be any countable type and assume p is a special 
οξο-overlapping definition of I in T. Let Ζ be any variety of type I and a any 
positive cardinal. Then for each subalgebra 21 of ^υΰΖ there exists a subquasi-
group Τ of the relatively free quasigroup  ^ i „ ( P 3 I F ) such that Β Ο FrJK = A. 
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This theorem plays a principal role in the proof that there does not exist a
recursive algorithm for deciding whether or not a given finite set of equations
defines, together with the equations (Ia)-(IIb), a Schreier variety of quasi-
groups. This result is established in Pigozzi (b). The analogous result for the
amalgamation property is also established there; it depends on the next theorem
which corresponds to Theorem 5.3 of aU.%?f.

Let 9if be an arbitrary variety and let p be a special non-overlapping
definition of the type / of ^ in T. It is easily seen that the p-transform £rp

becomes the object map of a functor from p9iT into 9ST when these two varieties
are considered as categories in the natural way. It is well known that the functor
£rp possesses a left-adjoint. A construction of this left-adjoint is given in aU.%?F
where it is denoted by Uip, the universal inverse p-transform.

THEOREM 3.7. Assume I, p, and 3£ are as in Theorem 3.6, and assume
21,93 E JC. If 21 is a subalgebra of 93, then ltip2l is isomorphic to a subalgebra of
Utp93. More generally, if h: 21—»93 is an isomorphism, then so is

where h is the image of h under the functor Uip.

COROLLARY 3.8. Let I,p, and 3C be as in 3.6. If pX has the amalgamation
property, then so does JK.

Our final theorem is easily seen to be a generalization of Theorem 2.1, and
we shall only outline its proof since it is an extension of the proof of 2.1.

THEOREM 3.9. Assume F is any finite set of equations of type T that fail to be
in QG. Then there exists a finitely based extension 3> ofQG satisfying the following
conditions.

(i) $ and e are mutually inconsistent for each e £ F .
(ii) Let I be any countable type. Then there exists a definition p of I in T such

that, for each theory @ of type I, there exists a transformation m of TeIur satisfying
conditions 2.1(i)-(it>) with QG replaced everywhere by <I>.

PROOF. We shall assume that F consists of a single equation yo= ju the
argument in the general case is more complicated in details but presents no
essentially new difficulties. We also assume without loss of generality that for
I* = 0 , 1 .

(11) y^^Qc 8 implies | y M | s | S | for all 5 G Ter.

Let A be the largest natural number p, such that the variable tv occurs in
either y0 or yt. Let S,P0,--, P* be operation symbols distinct from each other
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and from the symbols in T and such that S is of rank 4 and Po, • • •, P\ are all of
rank 1. Let

and let TT be a special non-overlapping definition of / in {Af} having the
following two properties:

(12) yo{rrPo(x ) , • •• , vPk (x)) * yi(nP0(x ) , • •• , »PA (x));

for each countable type / disjoint from / there exists a definition p of / in {M}
such that p U v is a special non-overlapping definition of / U / in {M} and

(13) \(pUir)Q\>\yo\, |y,| for every QGIUJ.

That such a definition IT exists follows without difficulty from Lemma 1.4.
Let

(14) 80 = yo(irP0(x), • • •, irP,{x)), S, = y,(nP0(x), • • •,irPA(x)),

and let «I> be the theory of quasigroups generated by (Ia)-(Hb) together with the
equations

irPAx)= irPAy) for ti=0,--;\,

irS{x;x,y,z) = y, and T T 5 ( 5 0 , S , , J , Z ) = Z.

It is clear that <£ and 50 = 5] are mutually inconsistent, so (i) holds. Let / be any
countable type disjoint from T; we assume without loss of generality that / is
also disjoint from / . Let p be any special non-overlapping definition of / i n {M}
such that p U 7T is a special non-overlapping definition of / U J in {M} satisfying
(13). Finally, let © be any consistent theory of type /. We shall construct a
transformation m satisfying the conclusion of (ii).

The construction of m follows closely the construction given in the proof of
2.1. In particular, we begin by choosing a variable-minimizing normal-form
function for the extended theory @+. Observe that by (11) we have:

(15) for all $, 7] £ TeT, <r(£ TJ) ̂  y0, -y, for every a G TeT such that a = y is one
of the equations (Ia)-(IIIb)

The transformation m is constructed by recursion on the length of
T £' TeIuT- mr = r if r E Va. Assume | T | > 1. The definition now separates into
fifteen cases. The first five cases are identical to Cases 1-5 of the proof of 2.1.

CASE 6: m*r = irP^) for some n ^ A. Take mr = TTPM(X).

CASE 7: m*r = •DL(7rP(,)L(£)7r/>,.(x) for /A ̂  A. Take mr = (TTP»)R(£).

CASE 8: m*r = DRTTP^(X)(TTP^)R(^) for fiSA. Take mr = (vP»)L(£).
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CASE 9: m*r = TTS(££ TJ,£). Take mr = TJ.

CASE 10: m *T = DLTTSL(£ £ 17, f )TJ. Take mr = TTSR (£ £ 17, f).
CASE 11: m *T = DRTJ(TTSR(£ £ 17, £))• Take mr = irSt(£ £ 17, f).
CASE 12: m *T = irS(80, 8U TJ, £)• Take mr = £
CASE 13: m*r = DLTTSL(80, St, 17, £)£. Take BIT = 7rSR(S0, 81,17, f).
CASE 14: m *T = DR£(TTSR(8O, 8,, 17, £)). Take mT = 7rSL(50, «,, 17, f )•
CASE 15: None of the first fourteen cases apply. Take mr = m*r.

The demonstration that m is well defined by these conditions follows closely
the corresponding demonstration in the proof of 2.1. In particular it relies
heavily on the fact that p U TT is a special non-overlapping definition. The only
real novelty occurs in showing that Cases 9 and 12 (also Cases 10 and 13 and
Cases 11 and 14) cannot simultaneously apply; this of course depends on the fact
that 50, S, are distinct terms by (12) and (14).

The proof that m is a normal-form function for 0 ^ ^ is also very similar to
the proof of the same result in 2.1 with 4>= QG. Lemmas 2.2-2.8 and their
proofs transfer mutatis mutandis to the present case. The proof of 2.9 however
requires that we show the following hold for all £, TJ, £ GTe/UT:

(16) m(7rPM(£))= m(TTP,,(TJ)) for all M A ,

(17) m

(18) m

The proofs of (16) and (17) are straightforward, and the proof of (18) depends on
the fact that m80 = 80, mSi - Si. But these equalities are easily proved using (13)
and (15); in particular, observe that, because of (13) and the non-overlapping
property of p U TT, no substitution instance of any (p U v)Q with ( ? £ / U / can
occur as a subterm of 80 or 5, unless it is one of the terms nP^(x) that were
substituted for the variables in y0, y\ to form S0,Si.

Lemma 2.9 is now proved in the same way as before and this immediately
gives 2.1(i) (with QG replaced by <I>). Conditions 2.1(ii)-(iv) now follow easily as
in the proof of 2.1; we omit the details. This completes the proof of the theorem.

Theorem 3.1 can now be improved by requiring that every non-trivial
quasigroup in the variety SB fail to satisfy identically each member of any finite
set of non-identities of quasigroups given in advance (additional restrictions
must be put on the definition p however). Analogous improvements of
Theorems 3.2-3.8 are readily formulated. As an immediate corollary of the
improved version of 3.2 we get the following theorem originally proved by
Bol'bot (1972).

THEOREM 3.10. Let L be any finite set of proper subvarieties of the variety of
all quasigroups. Then there exists a continuum number of equationally complete
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quasigroup varieties 'X such that X (~) J£ contains only one-element quasigroups for
each 5 £ L

Theorems 3.9 and 3.10 also hold for all normal universal varieties, in
particular, commutative groupoids and bisemigroups.

In our final remarks we would like to discuss the possibility of extending the
results of this paper to important subvarieties of quasigroups. The most natural
one to consider is that of loops; a loop is a quasigroup which satisfies the identity

DLxx = DRyy.

The variety of loops is not universal since, like all varieties each of whose
members includes a one-element subalgebra, all constant unary polynomials
over an arbitrary loop are identical. However, as should be expected, loops do
inherit some universal-like properties from quasigroups. For example, we know
that loops are universal for non-constant multi-unary algebras in the sense that
Theorem 2.1 continuous to hold after the following changes are made in its
statement: (I) / is restricted so as to contain only operation symbols of rank 1;
(II) @ contains no equation of the form r(x)= a(y); (HI) QG is replaced
everywhere by the theory of loops. The proof of the modified version of 2.1
follows pretty closely the proof of the original.

This partial result allows some of the consequences of 2.1 given in Section 3
to be extended to loops; this applies in particular to Theorems 3.4 and 3.5. We
have not systematically investigated the universal properties of loops, however,
and we think this would be an interesting problem to consider.

The variety of commutative groupoids is known to be universal and we
think that it is very probable that the same is true of commutative quasigroups.
The result for commutative groupoids is obtained in CU,%?F, Theorem 4.25. The
method of proof differs considerably from that of Theorem 3.2, but it seems
likely that the two proofs can be combined to give the universality of commuta-
tive quasigroups.

A quasigroup is totally symmetric if its three fundamental operations of
multiplication, left-division, and right-division all coincide. These quasigroups
form an important subvariety of quasigroups but we have not investigated their
universal properties and have no feeling at all as to how extensive they may be.
Bol'bot (1967) has shown, however, that there exists a continuum number of
equationally complete varieties of totally symmetric quasigroups.

The variety of groups fails to be universal in a very strong sense. For it
appears that even the weakest kind of universal property implies the existence of
a continuum number of complete subvarieties, but it is well known that there
exist only countably many complete group varieties. As to be expected the
associative law seems to be highly destructive of universal properties, and thus it
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would be particularly interesting to investigate the universal properties of a
variety of quasigroups, such as Moufang loops, which satisfy a quasi-associative
identity. We have not as yet done any work in this direction.
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