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TOPOLOGICAL PROPERTIES OF THE SET 
OF NORM-ATTAINING LINEAR FUNCTIONALS 

GABRIEL DEBS, GILLES GODEFROY AND JEAN SAINT RAYMOND 

ABSTRACT. If X is a separable non-reflexive Banach space, then the set NA of all 
norm-attaining elements of X* is not a w*-G^ subset of A*. However if the norm of X'\s 
locally uniformly rotund, then the set of norm attaining elements of norm one is w^-G^. 
There exist separable spaces such that NA is a norm-Borel set of arbitrarily high class. 
If Xis separable and non-reflexive, there exists an equivalent Gâteaux-smooth norm on 
X such that the set of all Gâteaux-derivatives is not norm-Borel. 

1. Introduction and examples. Let X be a Banach space equipped with a norm 
|| • | | . L e t & = {xeX: \\x\\ = 1}. We denote 

NA(|| - ||) = {fer:f(x)= 11/11 for some x G Sx}. 

This set will also be denoted NA if there is no ambiguity on the norm. Similarly, we 
denote NA,(||. ||) = N A ( | | . | | ) n 5 ^ . 

Fundamental results of Bishop-Phelps [1] and James [4] assert that NA is always 
norm-dense A*, and is equal to X" exactly when X is reflexive. Since the set 

F = {(*,/) GXxT: \\x\\2 = \[f\\2 =f(x)} 

is closed in (X, || • ||) x (X*, w*), for all separable Banach spaces the set N A(|| -\\) = ir2(F)\s 
w*-analytic in X* [5]. It is shown in [5] that this statement is optimal in the sense that for 
any non-reflexive separable spaceX, there is an equivalent norm || • || such that NA(|| • ||) 
is not norm-Borel. 

In this work we conduct a further investigation of the topological properties of the set 
NA. In the simplest cases this set is w*-Fa. However (Proposition 1) it can be a Borel 
set of arbitrarily high class. Theorem 3 asserts that if X is separable and non-reflexive, 
the set NA is not w*-Gs. However (Theorem 9.1) if || • || is locally uniformly rotund 
(l.u.r.)—it is xn —> x whenever \\xn\\ —> ||x|| and | | ^ | | —• ||x||—then NAi(|| • ||) is 
w*-Gs, and NA(|| • ||) is norm-G^. This shows in particular that one cannot "convexity" a 
norm without altering the structure of the set NA. However, it is possible to "smooth up" 
(in the Gâteaux sense) a norm without changing the set NA. It follows that there exists 
on any separable non-reflexive Banach space an equivalent Gâteaux smooth norm || • || 
such that the set NAi(|| • ||) of its Gâteaux derivatives is not norm-Borel (Theorem 9.4). 
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For any set S we denote by S<UJ the set of all finite sequences of elements of S. The 
Cantor set {0,1}W is denoted 2". Let 

Q = {E £ 2U : 3/o s.t. V/ > z0, e(0 = 0}. 

We will frequently use the following easy consequence of Baire's theorem: if Z is a 
topological space, 0:2^ —> Z is a continuous map, and E Ç Z is such that O 1 (£) = Q, 
then £ is not a G<$ subset of Z. 

Before proceeding to the main results, let us present various examples. 

EXAMPLES. 1) If the norm || • || of a separable space X is strictly convex, then 
NA(|| • ||) is w*-Borel [5]. It suffices indeed to observe, in the notation of the introduction, 
that NA(|| • |D = KI{F) is the injective image of a countable union of Polish spaces. 

2) If X = (c0(N), || • ||oo), then NA is the set of all elements of £i(N) with finite 
support, and hence NA is w*-Fa but not norm-G^. For this latter fact we consider the 
map <D: 2U —> £j(N) defined by O(e) = (2_/e(/)) and we observe that 0_ ,(NA) = Q. 

3) I fX= (£i(N),|| - ||i),then 

NA = {u e £oo(N) : 3/1 > 1 such that \\u\loo = \u(n)\} 

hence NA is w*-Fa. The map 0>:2U —> 4o(N) defined by 

+oo 

O(e) = X;2-,e(01[/,+oo) 

is such that cp_1(NA) = Q, and thus NA is not norm-G^. 
4) IfX — (C{K), || • ||oo) where K is metrizable and compact, we denote {On : n > 1} 

a basis of the topology of K, and for all n, k > 1 we let 

Lk
n = {xe On : d(x,K\On) > AT1} 

By Tietze's lemma, for all («,&), (nf,kf) such that Lk
n n Z,*', = 0, there is a continuous 

function in Sx which is 1 on Lk and (— 1) on Lk
n,. We denote by {fi : £ > 1} the collection 

of these functions. It is clear that 

N A - { / i E M(K) : 3£ > 1 such that ||/x|| = fi(ft)} 

hence NA is w*-Fa. To check that NA is not norm-G^ if K is infinite, we pick {kn : n > 0} 
a convergent sequence of distinct points, and we define 0:2^ —> f̂ f(AT) by 

+oo 

we have again that O"1 (NA) = 0. 
5) We denote 

( +°° i 

B= (x„)Gco(N):E^"+ 2<l • 
1 n=0 ' 
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The set B is the unit ball of an equivalent strictly convex and (f^-smooth norm on co(N) 
([3]; see [2], Theorem V. 1.6). By differentiation, it is easily seen that A = (À„) G NA if 
and only if there exist \i G R, a = (a„) G co(N) such that 

H\n = (2n + 2)a2
n

n+l 

for all n > 0, and this is equivalent to 

lim \Xn\
l/2n+{ = 0. 

n—->oo 

This latter condition implies (see [10]) that NA is a complete F^-set. 
We conclude this list of examples by showing that NAi can be a norm-Borel set of 

arbitrarily high class. We use the notation X9 (resp. n?) for the additive (resp. multi
plicative) class of Borel subsets of order £ (see [6]). With this notation one has: X̂  = Fa 

and rtj = G&. In the sequel we shall deal with these notions when the dual space X* is 
equipped with the w*-topology, or with the norm topology which in general will not be 
separable. 

Let T be some fixed Borel class; we denote by f the class of all complements of sets 
in r (the dual class), and by r \ f the class of all sets in r which are not in f. Let S 
be a subset of some arbitrary topological space Z; we shall say that S is T-complete in 
Z if for any T-subset A of uf3 there exists a continuous mapping </>: UJU \—> Z satisfying 
4>~](S) — A. Notice that since there are F \ t subsets in a/'', if S in Y is T-complete in Z 
then necessarily S is a F \ f subset of Z. Conversely by a theorem of Wadge ([13]) if Z 
is a Polish 0-dimensional space then any L \ f subset of Z is T-complete. 

We now are ready to prove the following result: 

PROPOSITION 1. Let £ > 2 be a countable ordinal 
(a) There exists a Banach space X such that NA(X) is Borel in the w*-topology and 

S? \ IT? in the norm topology. 
(b) There exists a Banach space Y such that NA(F) is Borel in the w*-topology and 

Z? \ IT? in the norm topology. 

PROOF. We first observe the simple 

FACT 2. NA(|| • ||) G Y.\ (resp. U\) if and only if NAi(|| • ||) G Y\ (resp. n°). 

We denote by R+ the open half-line (0,+oo). Define the map i/r. (Sx, \\ • ||) x ^ - ) 
(X\ {0}, || • ||) by I/;(JC, A) = Ax. Fact 2 follows easily from the fact that ip is a homeo-
morphism and that V (̂NAi xR+) = NA \{0}. 

We now construct by transfinite induction spaces X and Y such that in the w*-topolo
gies NA(X) and NA(K) are Borel, and in the norm topologies NA(Z) is Z9-complete 
and NA(7) is n^-complete. The conclusion of Proposition 1 will then follow from the 
previous remarks. 

We start the construction for £ = 2. By example 2) above, if X = (co(N), || • ||oo) 
then NAi (|| • ||) is Y?2 (= Fa) but not n^ (= Gb) and NA(|| • ||) is w*-Fa. If Y is any space 
with a separable dual Y* then Y has an equivalent l.u.r. norm | • | with l.u.r. dual norm 
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(see [2], Theorem II.7.1). By Theorem 9 below, NAj (| • |) is Yl®. Since | • |* is l.u.r., the 
w* and norm topologies agree on Sx*, hence NAi(| • |) is w*-Gè, and thus NAj(| • |) is not 
w*-Fa by Theorem 9, hence NAj (| • |) is not S^ since again, the w* and norm topologies 
agree on Sx*. Thus NAj(| • |) is not Z .̂ Since F is separable, any norm-Borel subset of 
F is w*-Borel, hence NA(| • |) is w*-Borel, and IT̂  in norm since NAj(| • |) is. Let us 
also observe that NAj (X) is a Y^ \ I\\ subset of a Polish space, and thus is ZSJ-complete. 
Similarly we see that NAi(F) is n^-complete. 

We treat simultaneously successor and limit ordinals. If (£w) is a sequence of ordinals 
with £n+l > in for all n, we let £ = sup{£„ + 1}. Let (Xn, || • \\„) be such that NA(|| • \\„) 
is w*-Borel and Z^, and NAi(|| • \\„) is Z^-complete for all n. We let 

^=(E©(^ II-y^-
it is easily seen that/ = (fn) G NA(7) if and only iff„ £ NA(X„) for all n. It follows that 

NA(7) is w*-Borel and IT .̂ Moreover for all Z^ subsets An of uf, there exists (pn: uf —+ 

Sx*n continuous such that <p~l (NA(A^)) = An. If we define 

<t>:uf^(Srr,\\-\\) 

*~(2-V„(*))^, 

then O is continuous and 

O-I(NA,(F)) = r v -
A7>1 

Thus NAi(K) is n°-complete. 
If now the 7w's are such that NA(y„) is w*-Borel and II? , and NAi(F„) is 11° -com

plete, we let 

* = ( E © ( U H I « ) ) , -

It is easily checked that/ = (fn) G NA(X) if and only if there exists n > 1 such that 
/„ £ NA(F„) and \\fn\\n = sup{||/i||* : * > U- It follows that NA(Z) is w*-Borel and 
Z?. Moreover ifBn is a 11^ subset of cJ^, there exists ip„: uf —> Sr„* continuous such that 

^ - ' ( N A K ^ ^ . N o w 

is such that H1"1 (NAKX)) = U>i Bn. Hence NAi(X) is Z°-complete. • 

2. Main results. The following statement is the main result of this paper. It answers 
an implicit question from [5]. 

THEOREM 3. Let X be a separable non-reflexive Banach space. Then the set NA of 
all elements ofX* which attain their norm is not a w*-Gs subset ofX*. 

PROOF. We will make use of some classical arguments from Pryce's proof [9] of 
James' theorem, which we recall for completeness. 
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FACT 4. Pick 8 G (0, 1 ). There exist (f„) in Bx*, (xj) in Bx, such that 
(i) For every n > 1, \\m/fn(Xj) > 8 

(ii) w* - l im,^) = 0. 

PROOF. Since X is not reflexive we may pick h G X1 C A™ with ||/z|| = 1, and 
then z eX*"" with ||z|| < 1 and h(z) > <5. If D = {/ G Bx* :f(z) > <$}, h belongs to the 
w*-closure of D in A™. Moreover \ffa -^ /z in A***, then/, -^ 0 in JT since /z G X1. 
Finally, z can be approximated pointwise on X" by elements of X. An easy inductive 
constructive now leads to the conclusion. 

FACT 5. Let C = conv{/ : « > 1}. For every/ G C, \\f\\ > 8. 
Indeed pick aw* -cluster point /of the x/s. We have \\t\\ < 1 and/(/) > 8 for al l / G C. 

FACT 6. Let V be a vector space, w, v G F, a,/? > 0, and </? = K —> R a convex 
function. Let w = (a + /3)_1 (aw + /3v). Then 

/3_1[(^(aw + /?v) — (/?(aw)] > al[ip(aw) — <£>(0)] + /3~1[< (̂a:vv) — </?(aw)]. 

PROOF. Since (a + (3)w = au + /3v, we have 

a 
-(au + Pv). 

a + p 
Using the convexity of (p between (au + fiv) and 0 we get 

a ji 
ip(aw) < ——<p(au + pv) + ——-</?(0) 

a + p a + p 
hence after multiplication by ^ 

- + -)^(aw) < - ^ ( a « + /3v) + - ^ ( 0 ) . 
a p / p a 

The conclusion follows after subtraction of f3~x if (au) and reorganization. 

FACT 7. With the above notation, if A is a convex subset of V and 

mfa-*[ip(az)-u>(0)] >8 
z^A 

then there is u G ^ such that 

inf /T ! [ip(au + /3v) - <K«w)] > 8. 
veA 

Moreover if F is a topological vector space and <p is continuous, we may pick u from 
any prescribed dense subset of A. 

PROOF. Indeed pick e > 0 such that 

inf a"1 [if(az) - ip(0)] > 8 + e 
zeA 
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by the definition of the infimum, there is u G A such that 

inf/3 [y(ttz) — tp(au)] > —£ 
zeJ 

and if ip is continuous this u may be found within a prescribed dense subset. Fact 6 
concludes the proof, since w = ™%V belongs to the convex set A whenever u and v do. 

FACT 8. Let A be a norm-open convex subset of A ,̂ let aro, oc\,..., an+\ > 0 and let 

go,g\,...,gn-\ in X* be such that 

(\\n~l 
mfA \\Y, atëk + <X„g 
geA\ "k=o 

"~l in 
E<**g* > M -
A=0 " j 

Then there exists gn £ A such that 

(i) infgG4{|| E?=0 <**g* + «/i+igll - II E/U a ^ l l } > a«+i^ 
00 £ /U a *g*eNA. 

PROOF. We define (̂ :̂ 4 —> Rby (/9(g) = ||g + E^o akgk\\- The function (/? is convex 
and continuous on A and by assumption 

Ma~l[(f(ang)-if(0)] >S. 
geA 

By Bishop-Phelps' theorem (see [2], Theorem 1.3.1), the set 

Z) = ^ n { - a - , f Ê û f ^ ) + N A ( | | . | 

is norm-dense in A, and thus by Fact 7 we can find gn G D such that 

inf an+] [<p(angn + an+\g) ~ <p(a„gn)] > 6 
geA 

and clearly gn satisfies (i) and (ii). 
We now proceed to the proof of Theorem 3. Let (fn) be the sequence in Bx* provided 

by Fact 4. We fix a sequence (a„) of positive numbers such that 

(1) l ima;1 £ ak)=0 

and for all p > 1 we let 

yk=n+\ 

Ap = conv{fp+k:k>0} + 2^Bx*. 

For showing that NA is not a w*-Gs set, it suffices to construct a continuous map O: 2^ 
(^*, w*) such that O ! (NA) = Q. 

For any s G 2<a;, 

Nl= £ *(0 
/eDom(.v) 

https://doi.org/10.4153/CJM-1995-017-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-017-3


324 G. DEBS, G. GODEFROY AND J. SAINT RAYMOND 

and s* G uo<UJ be the increasing enumeration of {/ G Dom^) : s{i) — 1}. Clearly, s* has 
length ||s||. We now define a map 

G:2K (AT 

such that for any s G 2<LJ the sequence G(s) = (gk )k<\\s\\ is of length \\s\\, and such that 
the following conditions are satisfied 

(i) s -< t => G(s) < G{t\ 
(ii) gf^As,{k)ÏOX2i\\k^<k<\\sl 

(iii) hs = E E " 1 <**g£} G NA, 
(iv) infgG4av){||^ + a H g | | - \\hs\\) > aH6 with l(s) = s*(\\s\\ - 1) + 1. 

It follows from Facts 5 and 8 that such a construction can be completed. We finally define 
0:2^ -» X" by 

O(e) = w* - lim/zer . 

It is easily seen that O is w*-continuous (and even norm-continuous at every s <£ Q). If 
£ G Q there is s G 2<CJ such that O(e) = /^ and thus by condition (iii), 0(e) G NA. We 
claim that if e fi Q then O(e) ^ NA. Indeed by (i) and (ii) we may write 

+oo 
O(e) = J ] a„g„ 

«=o 

where gw G ^ for all « > 0, with \impn = +oo. By condition (iv) we have for all n > 0, 

i i W - l n-\ 
I ] «itgA; + tt„g„ 
k=0 

> ban + 
k=Q 

By (1) we have 
+oo 

I ] Otkgk 
k=n+\ 

Q(a„). 

If there exists x G Xwith \\x\\ = 1 and 0(e)(x) = ||0(e)||, we may write 

<&(£)(*) Z>*g* 
>t=o 

+ o(aw) 

..«-I 
>£a w +o(a , , )+ £ a * g * 

n-\ 

It follows that 

> 8an + o(aw) + X] ockgk(x). 
£=0 

liminfg„(x) > <5 

but since gn G ^ w with \\mpn — +oo, we have limg„(x) = 0, and this contradiction 
concludes the proof. • 

We noticed in Example 1 that NA(|| • ||) is w*-Borel when || • || is strictly convex. We 
will see now that various convexity assumptions provide sharper conclusions. However 
it is not so for smoothness assumptions. 
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THEOREM 9. Let (X, || • ||) be a Banach space. Then 

1) If\\- || is locally uniformly rotund (I. u. v.), then NAi(|| • ||) is a w*-G$ subset of 
Sx*, and NA(|| • \\) is a norm-Gs subset ofX*. 

2) IfXis separable and non-reflexive, then NA \ is not both a w*-G$ and w*-Fa subset 
of Sx*. 

3) IfXis separable and the dual norm \\ • ||* is Gâteaux-differentiable, then NA(|| • ||) 
is norm-F^. 

4) IfXis separable and non-reflexive, there exists a Gâteaux-differentiable equiva
lent norm || • || on X, such thatNA\(\\ • ||) is not nor m-B or el. 

PROOF. 1) We start with a statement of independent interest. 

LEMMA 10. Let (X, || • \\) be a Banach space. The following are equivalent: 
a) || • || is 1. u.r. 
b) There exists a: NAi(|| • ||) —> Sx which is w*-to-norm continuous, and such that 

{f,*(/))= I for all f eNA}(\\.\\). 

PROOF OF LEMMA 10. a) => b): Since || • || is in particular strictly convex, every 
/ G NAi(|| • ||) attains its norm in a unique x £ Sx and this determines a(f). For a given 
e < 0, there is a 8 > 0 such that 

IMI < 1, hif) +y\\ >2-6^ \\a(f) -y\\ < e. 

If g G NAi(|| • ||) satisfies g(o(f)) > 1 -<5, we have 

g(o(f) + o(g))>2-b 

and thus \\o(f) — v(g)\\ < £• Hence a is (w* — || • ||)-continuous. 
b) =̂> a): Note first that if there exists such a map a which is only norm-to-norm 

continuous then the norm || • || is strictly convex. Indeed, since NA|(|| • ||) is norm-dense 
in Sx>, we may extender to â:Sx> —> Sx>* by taking â(f) (f G 5^.\NAi(||-||)) a w*-cluster 
point in A - of a(g) (g G NA,(|| • ||), \\g -f\\ — O). Then 

\(à(f)J) -l\<\(ô{f)- o(g)J)\ + \{°(g),f-g)\ 

<\{ô(f)-o(g)J)\ + W-g\\ 

which is less than e if g is chosen in NA|(|| • ||) such that \\f — g\\ < § and 
|(<?(/) - a(g),f)\ < f. Thus (0(f),f) = 1 for any/any Sx>. 

Since the bidual norm is w*-l.s.c, â is still norm-to-norm continuous at all points of 
NAi(|| • ||). Indeed, if /G NAi (|| • ||), for each e > 0, there is a<5 > 0 such that 

gGNA,( | | . | | ) and | | g - / | | > 5 => \\a(g) - a(f)\\ < e. 

Then, for a n y / G Sx* such that \\f — / | | < 5, â(fo) is w*-cluster point of points a(g) 
lying in a(f) + e • Bx**. Thus â(fo) G a(f) + e • Bx**-
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And thus (see [2], Lemma 1.4.13) the dual norm is Fréchet-smooth at these points. 
Now Smulyan's lemma (see [2], Theorem 1.1.4) shows that all x G Sx are strongly ex
posed and a fortiori || • || is strictly convex. If || • || is not l.u.r. there exist x G Sx, (xn) C Sx 

ande > 0 such that lim ||JC+JC;I|| = 2 and \\x — JC„|| > e for all n. Le t / G Sx* be such that 

fn(x+Xn) = \\x + X„\\. 

Since l\mfn(x + xn) = 2, we have \\mfn(x) = 1, hence any w*-cluster point/ of {fn} 
satisfies/*) = 1. If we let 

x + xn 

\\x + xn\\ 

we have/(y«) = \\yn\\ = 1- Since || • || is strictly convex, a(f) = x and a(fn) = yn. But 
for all n, \\x — yn\\ > e/2, and this contradicts the w*-to-norm continuity of a. • 

We now come back to the proof of 1). We use the notation of Lemma 10. Since 
NAi(|| • ||) is w* -dense in Bx*, o has a continuous extensions to aw*- Ĝ  subset Q ofBx*. 
Indeed if E is a topological space, (M, d) a complete metric space, and a = D —> M is a 
continuous map from a dense subset D of £ to M, then a can be extended to Q = f\> I On •> 
where On is the union of all open subsets V of E such that 

sup{^/(cr(x),cr(y)) :x,y e VnD) <n~K 

Indeed if x G Q, it suffices to let 

â(x) = lim a(y) 

since this limit exists by definition of Q. 
We observe now that (f, 6(f)) = 1 = \\â(f)\\ for a l l / G Q. It follows that Q n &* = 

NAi(|| ' ||) and thus NAi(II • ||) is vv*-Gè inSV*. 
Since NAi(|| • ||) is w*-G^ in 5^*, it is a fortiori norm-G^, hence by Fact 2 NA(|| • ||) 

is norm-Go- as well. This shows 1). • 
2) For any Banach space X, Sx* is a G^-subset of the compact set (Bx*, w*) and thus 

(Sx*, w*) is a Baire space. Hence 2) follows from Baire's theorem and the following. 

LEMMA 11. Let X be a separable non-reflexive space. The set NAi has an empty 
interior in (Sx*, w*). 

PROOF OF LEMMA 11. Let V ^ 0 be a w*-open subset of Sx* - It is easy to construct 
a convex w*-open subset U of Bx* such that for all g G £/"'*, (||g||_1)g G K. We will 
localize to U the construction of the proof of Theorem 3. 

There i s / G U with | / | | = 1 - ?/ < 1. Pick t G (f + X1) n S****. It is easily seen that 
/ belongs to the w*-closure of U in X***. It follows that there exists a sequence (fn) in U 
such that 

f=w*- limw_»oo/w in (X*,w*) 
\\g\\ > 1 - i]/2 for all g G conv{/ : « > ! } . 
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These conditions, and Simons' inequality ([11]; see [2], Lemma 1.3.7) show that there 
exists Xn > 0, with E ^ A„ = 1, such that 

+oo 

g = E V» i NA 
n=\ 

and wehave(||g||~')g G F \ N A | . This proves Lemma 11, and 2). • 
3) Since || • ||* is Gâteaux-differentiable, the map J: X* —> X"* denned for a l l / G X* 

by 

\\m\2 = 11/112 = (mf) 
is norm-to-w* continuous, and NA(|| • ||) = J~\X). If (xn) is a dense sequence inX, we 
can write 

+oo +oo 

k=\n=\ 

thusXis w* — Kab. Hence NA(|| • ||) is norm-F^ inX*. m 
4) By [5], there is an equivalent norm | • | on X such that NA(| • |) is not norm-Borel. 

Let {xn} be a dense subset of Bx- We define T: ̂ (N) —> Xby 
+oo 

and we let AT = T(Bi2). The set AT is convex symmetric and norm-compact. Let || • || be 
the norm whose unit ball satisfies 

#KIHI) = 2WH)+*. 

Since K is compact, we clearly have 

NA(|| • ||) = NA(| • |) 

and thus NA(|| • ||) is not norm-Borel. SinceX\ {0} is homeomorphic to (Sx x R*) through 
x y—> (||x||_1x, ||*||) it follows that NAi(|| • ||) is not norm-Borel. We now compute the 
dual norm \\f\\* off G X*. By definition 

\\f\\* = sup{\f(x + x')\:\x\<l,x'eK} 

= sup{[/-(x)| : \x\ < l} + sup{|/-(x')| :x'eK} 

= \f\*+Sup{\f(T(y))\:y£Be2} 

= \f\* + \\r(f)\\2. 

Since T* is one-to-one and || • H2 is strictly convex, it follows that || • ||* is strictly convex, 
and thus || • || is Gâteaux-smooth. • 

REMARKS. 1 ) It follows classically from Smulyan's lemma (see [2], Theorem 1.1.4) 
that if || • || is l.u.r. then NA(|| • ||) is exactly the set of points where || • ||* is Fréchet-smooth. 
This gives an alternative proof of the fact that NA(|| • ||) is norm-G^ and in fact (by [8]) 
a special kind of norm-G^, since its complement is "porous". 
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2) The proof of Lemma 10 shows that there exists a: NAi(|| • ||) —» Sx norm-to-norm 
continuous such that (/, a(f)) — 1 for a l l / G NAi if and only if every x <G Sx is strongly 
exposed in BX- Note that it follows from [12] (see [2], Theorem IV.3.5) that such a norm 
has an equivalent l.u.r. norm. 

3) If r is uncountable, then £oo(0 equipped with any equivalent norm contains an 
isometric copy of ^ ( N ) ([7]), and this copy is 1-complemented since £oo(N) is injective. 
The set NA(|| • ||oo) is not norm-Borel. To show this we pick a non-trivial ultrafilter U 
and we consider the norm-continuous map 0:2U —> ^oo(N)* such that 

/>o 

where (<?,) is the canonical basis of £i(N). It is easily seen that O(e) G NA if and only 
if there is an x in the unit sphere of £oo(^) such that x(i) — 1 for all / G A{e) := 
{/' : £(J) = 1} but lim, wx(0 = — 1, that is if and only ifA(s) $ 11. Since 11 is not Borel 
in 2U, it follows that £oo(0 has no equivalent norm such that NA is norm-Borel if T is 
uncountable. 

4) It is easily seen that the weak and norm topologies agree on the unit sphere of 
(^i(N), || • ||i). Example 3) shows that this condition does not suffice for ensuring that 
NAi is norm-Gè. 

We now conclude with 

QUESTION A. Do there exist strictly convex norms || • || such that NA(|| • ||) is w*-
Borel of arbitrarily high class? 

QUESTION B. Does there exist a Fréchet-differentiable norm || • || such that NAi (|| • ||) 
is not Borel? Can such a norm be constructed on any non-reflexive space with separable 
dual? 
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