TOPOLOGICAL PROPERTIES OF THE SET OF NORM-ATTAINING LINEAR FUNCTIONALS

GABRIEL DEBS, GILLES GODEFROY AND JEAN SAINT RAYMOND

ABSTRACT. If X is a separable non-reflexive Banach space, then the set NA of all norm-attaining elements of X^* is not a w^*-G_b subset of X^* . However if the norm of X is locally uniformly rotund, then the set of norm attaining elements of norm one is w^*-G_b . There exist separable spaces such that NA is a norm-Borel set of arbitrarily high class. If X is separable and non-reflexive, there exists an equivalent Gâteaux-smooth norm on X such that the set of all Gâteaux-derivatives is not norm-Borel.

1. Introduction and examples. Let X be a Banach space equipped with a norm $\|\cdot\|$. Let $S_X = \{x \in X : \|x\| = 1\}$. We denote

$$NA(\|\cdot\|) = \{f \in X^* : f(x) = \|f\| \text{ for some } x \in S_X\}.$$

This set will also be denoted NA if there is no ambiguity on the norm. Similarly, we denote $NA_1(|| \cdot ||) = NA(|| \cdot ||) \cap S_{X^*}$.

Fundamental results of Bishop-Phelps [1] and James [4] assert that NA is always norm-dense X^* , and is equal to X^* exactly when X is reflexive. Since the set

$$F = \{(x, f) \in X \times X^* : ||x||^2 = ||f||^2 = f(x)\}$$

is closed in $(X, \|\cdot\|) \times (X^*, w^*)$, for all separable Banach spaces the set NA($\|\cdot\|$) = $\pi_2(F)$ is w^* -analytic in X^* [5]. It is shown in [5] that this statement is optimal in the sense that for any non-reflexive separable space X, there is an equivalent norm $\|\cdot\|$ such that NA($\|\cdot\|$) is not norm-Borel.

In this work we conduct a further investigation of the topological properties of the set NA. In the simplest cases this set is w^*-F_{σ} . However (Proposition 1) it can be a Borel set of arbitrarily high class. Theorem 3 asserts that if X is separable and non-reflexive, the set NA is not w^*-G_{δ} . However (Theorem 9.1) if $\|\cdot\|$ is locally uniformly rotund (l.u.r.)—it is $x_n \to x$ whenever $\|x_n\| \to \|x\|$ and $\|\frac{x+x_n}{2}\| \to \|x\|$ —then NA₁($\|\cdot\|$) is w^*-G_{δ} , and NA($\|\cdot\|$) is norm- G_{δ} . This shows in particular that one cannot "convexify" a norm without altering the structure of the set NA. However, it is possible to "smooth up" (in the Gâteaux sense) a norm without changing the set NA. It follows that there exists on any separable non-reflexive Banach space an equivalent Gâteaux smooth norm $\|\cdot\|$ such that the set NA₁($\|\cdot\|$) of its Gâteaux derivatives is not norm-Borel (Theorem 9.4).

Received by the editors August 26, 1993.

AMS subject classification: Primary: 46B20; secondary: 04A15.

[©] Canadian Mathematical Society 1995.

For any set S we denote by $S^{<\omega}$ the set of all finite sequences of elements of S. The Cantor set $\{0, 1\}^{\omega}$ is denoted $\mathbf{2}^{\omega}$. Let

$$\mathbb{Q} = \{ \varepsilon \in \mathbf{2}^{\omega} : \exists i_0 \text{ s.t. } \forall i \ge i_0, \ \varepsilon(i) = 0 \}.$$

We will frequently use the following easy consequence of Baire's theorem: if Z is a topological space, $\Phi: \mathbf{2}^{\omega} \to Z$ is a continuous map, and $E \subseteq Z$ is such that $\Phi^{-1}(E) = \mathbb{Q}$, then *E* is not a G_{δ} subset of *Z*.

Before proceeding to the main results, let us present various examples.

EXAMPLES. 1) If the norm $\|\cdot\|$ of a separable space X is strictly convex, then NA($\|\cdot\|$) is w*-Borel [5]. It suffices indeed to observe, in the notation of the introduction, that NA($\|\cdot\|$) = $\pi_2(F)$ is the injective image of a countable union of Polish spaces.

2) If $X = (c_0(\mathbb{N}), \|\cdot\|_{\infty})$, then NA is the set of all elements of $\ell_1(\mathbb{N})$ with finite support, and hence NA is $w^* - F_{\sigma}$ but not norm- G_{δ} . For this latter fact we consider the map $\Phi: \mathbf{2}^{\omega} \to \ell_1(\mathbb{N})$ defined by $\Phi(\varepsilon) = (2^{-i}\varepsilon(i))$ and we observe that $\Phi^{-1}(NA) = \mathbb{Q}$.

3) If $X = (\ell_1(\mathbb{N}), \|\cdot\|_1)$, then

$$NA = \{ u \in \ell_{\infty}(\mathbb{N}) : \exists n \ge 1 \text{ such that } \|u\|_{\infty} = |u(n)| \}$$

hence NA is w^* - F_{σ} . The map $\Phi: \mathbf{2}^{\omega} \to \ell_{\infty}(\mathbb{N})$ defined by

$$\Phi(\varepsilon) = \sum_{i=1}^{+\infty} 2^{-i} \varepsilon(i) \mathbf{1}_{[i,+\infty)}$$

is such that $\Phi^{-1}(NA) = \mathbb{Q}$, and thus NA is not norm- G_{δ} .

4) If $X = (C(K), \|\cdot\|_{\infty})$ where *K* is metrizable and compact, we denote $\{O_n : n \ge 1\}$ a basis of the topology of *K*, and for all $n, k \ge 1$ we let

$$L_n^k = \{x \in O_n : d(x, K \setminus O_n) \ge k^{-1}\}$$

By Tietze's lemma, for all (n, k), (n', k') such that $L_n^k \cap L_{n'}^{k'} = \emptyset$, there is a continuous function in S_X which is 1 on L_n^k and (-1) on $L_{n'}^{k'}$. We denote by $\{f_\ell : \ell \ge 1\}$ the collection of these functions. It is clear that

$$NA = \{ \mu \in \mathcal{M}(K) : \exists \ell \ge 1 \text{ such that } \|\mu\| = \mu(f_{\ell}) \}$$

hence NA is $w^* - F_{\sigma}$. To check that NA is not norm- G_{δ} if K is infinite, we pick $\{k_n : n \ge 0\}$ a convergent sequence of distinct points, and we define $\Phi: \mathbf{2}^{\omega} \longrightarrow \mathcal{M}(K)$ by

$$\Phi(\varepsilon) = \sum_{i=0}^{+\infty} 2^{-i} \varepsilon(i) (\delta_{k_{2i}} - \delta_{k_{2i+1}})$$

we have again that $\Phi^{-1}(NA) = \mathbb{Q}$.

5) We denote

$$B = \Big\{ (x_n) \in c_0(\mathbb{N}) : \sum_{n=0}^{+\infty} x_n^{2n+2} \le 1 \Big\}.$$

The set *B* is the unit ball of an equivalent strictly convex and C^{∞} -smooth norm on $c_0(\mathbb{N})$ ([3]; see [2], Theorem V.1.6). By differentiation, it is easily seen that $\Lambda = (\lambda_n) \in NA$ if and only if there exist $\mu \in \mathbb{R}$, $a = (a_n) \in c_0(\mathbb{N})$ such that

$$\mu\lambda_n = (2n+2)a_n^{2n+1}$$

for all $n \ge 0$, and this is equivalent to

$$\lim_{n \to \infty} |\lambda_n|^{1/2n+1} = 0.$$

This latter condition implies (see [10]) that NA is a complete $F_{\sigma\delta}$ -set.

We conclude this list of examples by showing that NA₁ can be a norm-Borel set of arbitrarily high class. We use the notation Σ_{ξ}^{0} (resp. Π_{ξ}^{0}) for the additive (resp. multiplicative) class of Borel subsets of order ξ (see [6]). With this notation one has: $\Sigma_{2}^{0} = F_{\sigma}$ and $\Pi_{2}^{0} = G_{\delta}$. In the sequel we shall deal with these notions when the dual space X^{*} is equipped with the *w**-topology, or with the norm topology which in general will not be separable.

Let Γ be some fixed Borel class; we denote by $\check{\Gamma}$ the class of all complements of sets in Γ (the dual class), and by $\Gamma \setminus \check{\Gamma}$ the class of all sets in Γ which are not in $\check{\Gamma}$. Let *S* be a subset of some arbitrary topological space *Z*; we shall say that *S* is Γ -complete in *Z* if for any Γ -subset *A* of ω^{ω} there exists a continuous mapping $\phi: \omega^{\omega} \mapsto Z$ satisfying $\phi^{-1}(S) = A$. Notice that since there are $\Gamma \setminus \check{\Gamma}$ subsets in ω^{ω} , if *S* in Γ is Γ -complete in *Z* then necessarily *S* is a $\Gamma \setminus \check{\Gamma}$ subset of *Z*. Conversely by a theorem of Wadge ([13]) if *Z* is a Polish 0-dimensional space then any $\Gamma \setminus \check{\Gamma}$ subset of *Z* is Γ -complete.

We now are ready to prove the following result:

PROPOSITION 1. Let $\xi \ge 2$ be a countable ordinal.

- (a) There exists a Banach space X such that NA(X) is Borel in the w^{*}-topology and $\Sigma_{\varepsilon}^{0} \setminus \Pi_{\varepsilon}^{0}$ in the norm topology.
- (b) There exists a Banach space Y such that NA(Y) is Borel in the w^{*}-topology and $\Sigma_{\varepsilon}^{0} \setminus \Pi_{\varepsilon}^{0}$ in the norm topology.

PROOF. We first observe the simple

FACT 2. $NA(\|\cdot\|) \in \Sigma^0_{\xi}$ (resp. Π^0_{ξ}) if and only if $NA_1(\|\cdot\|) \in \Sigma^0_{\xi}$ (resp. Π^0_{ξ}).

We denote by \mathbb{R}^+_* the open half-line $(0, +\infty)$. Define the map $\psi: (S_X, \|\cdot\|) \times \mathbb{R}^+_* \to (X \setminus \{0\}, \|\cdot\|)$ by $\psi(x, \lambda) = \lambda x$. Fact 2 follows easily from the fact that ψ is a homeomorphism and that $\psi(\mathrm{NA}_1 \times \mathbb{R}^+_*) = \mathrm{NA} \setminus \{0\}$.

We now construct by transfinite induction spaces *X* and *Y* such that in the *w**-topologies NA(*X*) and NA(*Y*) are Borel, and in the norm topologies NA(*X*) is Σ_{ξ}^{0} -complete and NA(*Y*) is Π_{ξ}^{0} -complete. The conclusion of Proposition 1 will then follow from the previous remarks.

We start the construction for $\xi = 2$. By example 2) above, if $X = (c_0(\mathbb{N}), \|\cdot\|_{\infty})$ then NA₁($\|\cdot\|$) is $\Sigma_2^0 (= F_{\sigma})$ but not $\Pi_2^0 (= G_{\delta})$ and NA($\|\cdot\|$) is w^* - F_{σ} . If Y is any space with a separable dual Y^{*} then Y has an equivalent l.u.r. norm $|\cdot|$ with l.u.r. dual norm

320

(see [2], Theorem II.7.1). By Theorem 9 below, $NA_1(|\cdot|)$ is Π_2^0 . Since $|\cdot|^*$ is l.u.r., the w^* and norm topologies agree on S_{X^*} , hence $NA_1(|\cdot|)$ is w^*-G_{δ} , and thus $NA_1(|\cdot|)$ is not w^*-F_{σ} by Theorem 9, hence $NA_1(|\cdot|)$ is not Σ_2^0 since again, the w^* and norm topologies agree on S_{X^*} . Thus $NA_1(|\cdot|)$ is not Σ_2^0 . Since Y^* is separable, any norm-Borel subset of Y^* is w^* -Borel, hence $NA(|\cdot|)$ is w^* -Borel, and Π_2^0 in norm since $NA_1(|\cdot|)$ is. Let us also observe that $NA_1(X)$ is a $\Sigma_2^0 \setminus \Pi_2^0$ subset of a Polish space, and thus is Σ_2^0 -complete. Similarly we see that $NA_1(Y)$ is Π_2^0 -complete.

We treat simultaneously successor and limit ordinals. If (ξ_n) is a sequence of ordinals with $\xi_{n+1} \ge \xi_n$ for all *n*, we let $\xi = \sup\{\xi_n + 1\}$. Let $(X_n, \|\cdot\|_n)$ be such that $\operatorname{NA}(\|\cdot\|_n)$ is *w*^{*}-Borel and $\Sigma_{\xi_n}^0$, and $\operatorname{NA}_1(\|\cdot\|_n)$ is $\Sigma_{\xi_n}^0$ -complete for all *n*. We let

$$Y = \left(\sum \oplus (X_n, \|\cdot\|_n) \right)_2.$$

It is easily seen that $f = (f_n) \in NA(Y)$ if and only if $f_n \in NA(X_n)$ for all *n*. It follows that NA(Y) is *w*^{*}-Borel and Π_{ξ}^0 . Moreover for all $\Sigma_{\xi_n}^0$ subsets A_n of ω^{ω} , there exists $\varphi_n : \omega^{\omega} \to S_{X_n^*}$ continuous such that $\varphi_n^{-1}(NA(X_n)) = A_n$. If we define

$$\Phi: \omega^{\omega} \longrightarrow (S_Y^*, \|\cdot\|)$$
$$x \longmapsto \left(2^{-n}\varphi_n(x)\right)_{n \ge 1}$$

then Φ is continuous and

$$\Phi^{-1}(\mathrm{NA}_1(Y)) = \bigcap_{n \ge 1} A_n.$$

Thus NA₁(*Y*) is Π^0_{ξ} -complete.

If now the Y_n 's are such that NA(Y_n) is w^* -Borel and $\Pi^0_{\xi_n}$, and NA₁(Y_n) is $\Pi^0_{\xi_n}$ -complete, we let

$$X = \left(\sum \oplus (Y_n, \|\cdot\|_n) \right)_1$$

It is easily checked that $f = (f_n) \in NA(X)$ if and only if there exists $n \ge 1$ such that $f_n \in NA(Y_n)$ and $||f_n||_n = \sup\{||f_k||_k : k \ge 1\}$. It follows that NA(X) is w^* -Borel and Σ_{ξ}^0 . Moreover if B_n is a $\Pi_{\xi_n}^0$ subset of ω^{ω} , there exists $\varphi_n : \omega^{\omega} \to S_{Y_n^*}$ continuous such that $\psi^{-1}(NA_1(Y_n)) = B_n$. Now

$$\Psi = (\psi_n): \omega^\omega \longrightarrow S_{X^*}.$$

is such that $\Psi^{-1}(NA_1(X)) = \bigcup_{n \ge 1} B_n$. Hence $NA_1(X)$ is Σ^0_{ξ} -complete.

2. **Main results.** The following statement is the main result of this paper. It answers an implicit question from [5].

THEOREM 3. Let X be a separable non-reflexive Banach space. Then the set NA of all elements of X^* which attain their norm is not a w^*-G_{δ} subset of X^* .

PROOF. We will make use of some classical arguments from Pryce's proof [9] of James' theorem, which we recall for completeness.

- FACT 4. Pick $\delta \in (0, 1)$. There exist (f_n) in B_{X^*} , (x_j) in B_X , such that
- (i) For every $n \ge 1$, $\lim_{j \to 0} f_n(x_j) > \delta$
- (ii) $w^* \lim_{n \to \infty} (f_n) = 0.$

PROOF. Since X is not reflexive we may pick $h \in X^{\perp} \subset X^{***}$ with ||h|| = 1, and then $z \in X^{**}$ with $||z|| \le 1$ and $h(z) > \delta$. If $D = \{f \in B_{X^*} : f(z) > \delta\}$, h belongs to the w*-closure of D in X***. Moreover if $f_{\alpha} \xrightarrow{w^*} h$ in X***, then $f_{\alpha} \xrightarrow{w^*} 0$ in X* since $h \in X^{\perp}$. Finally, z can be approximated pointwise on X* by elements of X. An easy inductive constructive now leads to the conclusion.

FACT 5. Let $C = \operatorname{conv}\{f_n : n \ge 1\}$. For every $f \in C$, $||f|| > \delta$. Indeed pick a w^* -cluster point *t* of the x_j 's. We have $||t|| \le 1$ and $t(f) > \delta$ for all $f \in C$.

FACT 6. Let V be a vector space, $u, v \in V$, $\alpha, \beta > 0$, and $\varphi = V \to \mathbb{R}$ a convex function. Let $w = (\alpha + \beta)^{-1}(\alpha u + \beta v)$. Then

$$\beta^{-1}[\varphi(\alpha u + \beta v) - \varphi(\alpha u)] \ge \alpha^{-1}[\varphi(\alpha w) - \varphi(0)] + \beta^{-1}[\varphi(\alpha w) - \varphi(\alpha u)].$$

PROOF. Since $(\alpha + \beta)w = \alpha u + \beta v$, we have

$$\alpha w = \frac{\alpha}{\alpha + \beta} (\alpha u + \beta v)$$

Using the convexity of φ between $(\alpha u + \beta v)$ and 0 we get

$$\varphi(\alpha w) \leq \frac{\alpha}{\alpha + \beta} \varphi(\alpha u + \beta v) + \frac{\beta}{\alpha + \beta} \varphi(0)$$

hence after multiplication by $\frac{\alpha+\beta}{\alpha\beta}$

$$\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)\varphi(\alpha w)\leq \frac{1}{\beta}\varphi(\alpha u+\beta v)+\frac{1}{\alpha}\varphi(0).$$

The conclusion follows after subtraction of $\beta^{-1}\varphi(\alpha u)$ and reorganization.

FACT 7. With the above notation, if A is a convex subset of V and

$$\inf_{z\in A}\alpha^{-1}[\varphi(\alpha z)-\varphi(0)]>\delta$$

then there is $u \in A$ such that

$$\inf_{v\in\mathcal{A}}\beta^{-1}[\varphi(\alpha u+\beta v)-\varphi(\alpha u)]>\delta.$$

Moreover if V is a topological vector space and φ is continuous, we may pick u from any prescribed dense subset of A.

PROOF. Indeed pick $\varepsilon > 0$ such that

$$\inf_{z\in A}\alpha^{-1}[\varphi(\alpha z)-\varphi(0)]>\delta+\varepsilon$$

by the definition of the infimum, there is $u \in A$ such that

$$\inf_{z\in A}\beta^{-1}[\varphi(\alpha z)-\varphi(\alpha u)]>-\varepsilon$$

and if φ is continuous this *u* may be found within a prescribed dense subset. Fact 6 concludes the proof, since $w = \frac{\alpha u + \beta v}{\alpha + \beta}$ belongs to the convex set *A* whenever *u* and *v* do.

FACT 8. Let *A* be a norm-open convex subset of X^* , let $\alpha_0, \alpha_1, \ldots, \alpha_{n+1} > 0$ and let $g_0, g_1, \ldots, g_{n-1}$ in X^* be such that

$$\inf_{g\in\mathcal{A}}\left\{\left\|\sum_{k=0}^{n-1}\alpha_kg_k+\alpha_ng\right\|-\left\|\sum_{k=0}^{n-1}\alpha_kg_k\right\|\right\}>\alpha_n\delta.$$

Then there exists $g_n \in A$ such that

- (i) $\inf_{g \in A} \{ \| \sum_{k=0}^{n} \alpha_k g_k + \alpha_{n+1} g \| \| \sum_{k=0}^{n} \alpha_k g_k \| \} > \alpha_{n+1} \delta,$
- (ii) $\sum_{k=0}^{n} \alpha_k g_k \in NA$.

PROOF. We define $\varphi: A \to \mathbb{R}$ by $\varphi(g) = ||g + \sum_{k=0}^{n-1} \alpha_k g_k||$. The function φ is convex and continuous on A and by assumption

$$\inf_{g\in A}\alpha_n^{-1}[\varphi(\alpha_n g)-\varphi(0)]>\delta.$$

By Bishop-Phelps' theorem (see [2], Theorem 1.3.1), the set

$$D = A \cap \left\{ -\alpha_n^{-1} \left(\sum_{k=0}^{n-1} \alpha_k g_k \right) + \operatorname{NA}(\|\cdot\|) \right\}$$

is norm-dense in A, and thus by Fact 7 we can find $g_n \in D$ such that

$$\inf_{g\in\mathcal{A}}\alpha_{n+1}^{-1}[\varphi(\alpha_ng_n+\alpha_{n+1}g)-\varphi(\alpha_ng_n)]>\delta$$

and clearly g_n satisfies (i) and (ii).

We now proceed to the proof of Theorem 3. Let (f_n) be the sequence in B_{X^*} provided by Fact 4. We fix a sequence (α_n) of positive numbers such that

(1)
$$\lim_{n\to\infty} \alpha_n^{-1} \left(\sum_{k=n+1}^{+\infty} \alpha_k \right) = 0$$

and for all $p \ge 1$ we let

$$A_p = \operatorname{conv}\{f_{p+k} : k \ge 0\} + 2^{-p}B_{X^*}$$

For showing that NA is not a w^* - G_δ set, it suffices to construct a continuous map $\Phi: \mathbf{2}^\omega \longrightarrow (X^*, w^*)$ such that $\Phi^{-1}(NA) = \mathbb{Q}$.

For any $s \in 2^{<\omega}$,

$$||s|| = \sum_{i \in \text{Dom}(s)} s(i)$$

and $s^* \in \omega^{\leq \omega}$ be the increasing enumeration of $\{i \in \text{Dom}(s) : s(i) = 1\}$. Clearly, s^* has length ||s||. We now define a map

$$G: 2^{<\omega} \longrightarrow (X^*)^{<\omega}$$

such that for any $s \in 2^{<\omega}$ the sequence $G(s) = (g_k^{(s)})_{k < \|s\|}$ is of length $\|s\|$, and such that the following conditions are satisfied

- (i) $s \prec t \Rightarrow G(s) \prec G(t)$,
- (ii) $g_k^{(s)} \in A_{s^*(k)}$ for all $k, 0 \le k < ||s||$,
- (iii) $h_s = \sum_{k=0}^{\|s\|-1} \alpha_k g_k^{(s)} \in \mathbf{NA},$

(iv) $\inf_{g \in A_{\ell(s)}} \{ \|h_s + \alpha_{\|s\|}g\| - \|h_s\| \} > \alpha_{\|s\|}\delta$ with $\ell(s) = s^*(\|s\| - 1) + 1$.

It follows from Facts 5 and 8 that such a construction can be completed. We finally define $\Phi: \mathbf{2}^{\omega} \to X^*$ by

$$\Phi(\varepsilon) = w^* - \lim_n h_{\varepsilon_{\ln}}.$$

It is easily seen that Φ is w^* -continuous (and even norm-continuous at every $\varepsilon \notin \mathbb{Q}$). If $\varepsilon \in \mathbb{Q}$ there is $s \in 2^{<\omega}$ such that $\Phi(\varepsilon) = h_s$ and thus by condition (iii), $\Phi(\varepsilon) \in NA$. We claim that if $\varepsilon \notin \mathbb{Q}$ then $\Phi(\varepsilon) \notin NA$. Indeed by (i) and (ii) we may write

$$\Phi(\varepsilon) = \sum_{n=0}^{+\infty} \alpha_n g_n$$

where $g_n \in A_{p_n}$ for all $n \ge 0$, with $\lim p_n = +\infty$. By condition (iv) we have for all n > 0,

$$\left\|\sum_{k=0}^{n-1} \alpha_k g_k + \alpha_n g_n\right\| > \delta \alpha_n + \left\|\sum_{k=0}^{n-1} \alpha_k g_k\right\|.$$

By (1) we have

$$\left\|\sum_{k=n+1}^{+\infty}\alpha_k g_k\right\| = o(\alpha_n).$$

If there exists $x \in X$ with ||x|| = 1 and $\Phi(\varepsilon)(x) = ||\Phi(\varepsilon)||$, we may write

$$\Phi(\varepsilon)(x) = \left\| \sum_{k=0}^{n} \alpha_k g_k \right\| + o(\alpha_n)$$

> $\delta \alpha_n + o(\alpha_n) + \left\| \sum_{k=0}^{n-1} \alpha_k g_k \right\|$
$$\geq \delta \alpha_n + o(\alpha_n) + \sum_{k=0}^{n-1} \alpha_k g_k(x).$$

It follows that

 $\liminf g_n(x) \geq \delta$

but since $g_n \in A_{p_n}$ with $\lim p_n = +\infty$, we have $\lim g_n(x) = 0$, and this contradiction concludes the proof.

We noticed in Example 1 that $NA(\|\cdot\|)$ is w^* -Borel when $\|\cdot\|$ is strictly convex. We will see now that various convexity assumptions provide sharper conclusions. However it is not so for smoothness assumptions.

324

THEOREM 9. Let $(X, \|\cdot\|)$ be a Banach space. Then

- 1) If $\|\cdot\|$ is locally uniformly rotund (l. u. r.), then NA₁($\|\cdot\|$) is a w^{*}-G_{δ} subset of S_{X^*} , and NA($\|\cdot\|$) is a norm-G_{δ} subset of X^* .
- 2) If X is separable and non-reflexive, then NA_1 is not both a w^* - G_δ and w^* - F_σ subset of S_{X^*} .
- 3) If X is separable and the dual norm $\|\cdot\|^*$ is Gâteaux-differentiable, then NA($\|\cdot\|$) is norm- $F_{\sigma\delta}$.
- 4) If X is separable and non-reflexive, there exists a Gâteaux-differentiable equivalent norm || · || on X, such that NA₁(|| · ||) is not norm-Borel.

PROOF. 1) We start with a statement of independent interest.

LEMMA 10. Let $(X, \|\cdot\|)$ be a Banach space. The following are equivalent:

- *a)* $\|\cdot\|$ *is* l. u. r.
- b) There exists σ : NA₁($\|\cdot\|$) \rightarrow S_X which is w^{*}-to-norm continuous, and such that $\langle f, \sigma(f) \rangle = 1$ for all $f \in$ NA₁($\|\cdot\|$).

PROOF OF LEMMA 10. a) \Rightarrow b): Since $\|\cdot\|$ is in particular strictly convex, every $f \in NA_1(\|\cdot\|)$ attains its norm in a unique $x \in S_X$ and this determines $\sigma(f)$. For a given $\varepsilon < 0$, there is a $\delta > 0$ such that

$$||y|| \le 1$$
, $||\sigma(f) + y|| > 2 - \delta \Rightarrow ||\sigma(f) - y|| < \varepsilon$.

If $g \in NA_1(\|\cdot\|)$ satisfies $g(\sigma(f)) > 1 - \delta$, we have

$$g(\sigma(f) + \sigma(g)) > 2 - \delta$$

and thus $\|\sigma(f) - \sigma(g)\| < \varepsilon$. Hence σ is $(w^* - \|\cdot\|)$ -continuous.

b) \Rightarrow a): Note first that if there exists such a map σ which is only norm-to-norm continuous then the norm $\|\cdot\|$ is strictly convex. Indeed, since NA₁($\|\cdot\|$) is norm-dense in S_{X^*} , we may extend σ to $\tilde{\sigma}$: $S_{X^*} \rightarrow S_{X^{**}}$ by taking $\tilde{\sigma}(f)$ ($f \in S_{X^*} \setminus NA_1(\|\cdot\|)$) a *w*^{*}-cluster point in X^{**} of $\sigma(g)$ ($g \in NA_1(\|\cdot\|)$, $||g - f|| \rightarrow 0$). Then

$$\begin{split} |\langle \tilde{\sigma}(f), f \rangle - 1| &\leq |\langle \tilde{\sigma}(f) - \sigma(g), f \rangle| + |\langle \sigma(g), f - g \rangle| \\ &\leq |\langle \tilde{\sigma}(f) - \sigma(g), f \rangle| + ||f - g|| \end{split}$$

which is less than ε if g is chosen in NA₁($\|\cdot\|$) such that $\|f - g\| < \frac{\varepsilon}{2}$ and $|\langle \tilde{\sigma}(f) - \sigma(g), f \rangle| < \frac{\varepsilon}{2}$. Thus $\langle \tilde{\sigma}(f), f \rangle = 1$ for any f any S_{X^*} .

Since the bidual norm is w^* -l.s.c., $\tilde{\sigma}$ is still norm-to-norm continuous at all points of NA₁($\|\cdot\|$). Indeed, if $f \in NA_1(\|\cdot\|)$, for each $\varepsilon > 0$, there is a $\delta > 0$ such that

$$g \in \mathrm{NA}_1(\|\cdot\|)$$
 and $\|g-f\| > \delta \Rightarrow \|\sigma(g) - \sigma(f)\| \le \varepsilon$.

Then, for any $f_0 \in S_{X^*}$ such that $||f - f_0|| < \delta$, $\tilde{\sigma}(f_0)$ is w^* -cluster point of points $\sigma(g)$ lying in $\sigma(f) + \varepsilon \cdot B_{X^{**}}$. Thus $\tilde{\sigma}(f_0) \in \sigma(f) + \varepsilon \cdot B_{X^{**}}$.

And thus (see [2], Lemma I.4.13) the dual norm is Fréchet-smooth at these points. Now Smulyan's lemma (see [2], Theorem I.1.4) shows that all $x \in S_X$ are strongly exposed and *a fortiori* $\|\cdot\|$ is strictly convex. If $\|\cdot\|$ is not l.u.r. there exist $x \in S_X$, $(x_n) \subset S_X$ and $\varepsilon > 0$ such that $\lim ||x+x_n|| = 2$ and $||x-x_n|| \ge \varepsilon$ for all *n*. Let $f_n \in S_{X^*}$ be such that

$$f_n(x+x_n) = ||x+x_n||.$$

Since $\lim f_n(x + x_n) = 2$, we have $\lim f_n(x) = 1$, hence any w^{*}-cluster point f of $\{f_n\}$ satisfies f(x) = 1. If we let

$$y_n = \frac{x + x_n}{\|x + x_n\|}$$

we have $f_n(y_n) = ||y_n|| = 1$. Since $|| \cdot ||$ is strictly convex, $\sigma(f) = x$ and $\sigma(f_n) = y_n$. But for all $n, ||x - y_n|| \ge \varepsilon/2$, and this contradicts the *w**-to-norm continuity of σ .

We now come back to the proof of 1). We use the notation of Lemma 10. Since NA₁($\|\cdot\|$) is w^* -dense in B_{X^*} , σ has a continuous extension $\bar{\sigma}$ to a w^* - G_{δ} subset Ω of B_{X^*} . Indeed if *E* is a topological space, (*M*, *d*) a complete metric space, and $\sigma = D \rightarrow M$ is a continuous map from a dense subset *D* of *E* to *M*, then σ can be extended to $\Omega = \bigcap_{n\geq 1} O_n$, where O_n is the union of all open subsets *V* of *E* such that

$$\sup \{d(\sigma(x), \sigma(y)) : x, y \in V \cap D\} < n^{-1}.$$

Indeed if $x \in \Omega$, it suffices to let

$$\bar{\sigma}(x) = \lim_{\substack{y \to x \\ y \in D}} \sigma(y)$$

since this limit exists by definition of Ω .

We observe now that $\langle f, \bar{\sigma}(f) \rangle = 1 = \|\bar{\sigma}(f)\|$ for all $f \in \Omega$. It follows that $\Omega \cap S_{X^*} = NA_1(\|\cdot\|)$ and thus $NA_1(\|\cdot\|)$ is w^*-G_{δ} in S_{X^*} .

Since $NA_1(\|\cdot\|)$ is w^*-G_{δ} in S_{X^*} , it is *a fortiori* norm- G_{δ} , hence by Fact 2 $NA(\|\cdot\|)$ is norm- G_{δ} as well. This shows 1).

2) For any Banach space X, S_{X^*} is a G_{δ} -subset of the compact set (B_{X^*}, w^*) and thus (S_{X^*}, w^*) is a Baire space. Hence 2) follows from Baire's theorem and the following.

LEMMA 11. Let X be a separable non-reflexive space. The set NA₁ has an empty interior in (S_{X^*}, w^*) .

PROOF OF LEMMA 11. Let $V \neq \emptyset$ be a w^* -open subset of S_{X^*} . It is easy to construct a convex w^* -open subset U of B_{X^*} such that for all $g \in \overline{U}^{w^*}$, $(||g||^{-1})g \in V$. We will localize to U the construction of the proof of Theorem 3.

There is $f \in U$ with $||f|| = 1 - \eta < 1$. Pick $t \in (f + X^{\perp}) \cap S_{X^{***}}$. It is easily seen that t belongs to the w^* -closure of U in X^{***} . It follows that there exists a sequence (f_n) in U such that

$$\begin{cases} f = w^* - \lim_{n \to \infty} f_n \text{ in } (X^*, w^*) \\ \|g\| > 1 - \eta/2 \text{ for all } g \in \operatorname{conv} \{f_n : n \ge 1\}. \end{cases}$$

These conditions, and Simons' inequality ([11]; see [2], Lemma I.3.7) show that there exists $\lambda_n \ge 0$, with $\sum_{n=1}^{+\infty} \lambda_n = 1$, such that

$$g = \sum_{n=1}^{+\infty} \lambda_n f_n \notin \mathbf{N} A$$

and we have $(||g||^{-1})g \in V \setminus NA_1$. This proves Lemma 11, and 2).

3) Since $\|\cdot\|^*$ is Gâteaux-differentiable, the map $J: X^* \to X^{**}$ defined for all $f \in X^*$ by

$$||J(f)||^2 = ||f||^2 = \langle J(f), f \rangle$$

is norm-to- w^* continuous, and NA($\|\cdot\|$) = $J^{-1}(X)$. If (x_n) is a dense sequence in X, we can write

$$X = \bigcap_{k=1}^{+\infty} \bigcup_{n=1}^{+\infty} B_{X^{**}}(x_n, k^{-1})$$

thus X is $w^* - K_{\sigma\delta}$. Hence NA($\|\cdot\|$) is norm- $F_{\sigma\delta}$ in X^* .

4) By [5], there is an equivalent norm $|\cdot|$ on *X* such that NA($|\cdot|$) is not norm-Borel. Let $\{x_n\}$ be a dense subset of B_X . We define $T: \ell_2(\mathbb{N}) \to X$ by

$$T(\alpha) = \sum_{n=1}^{+\infty} 2^{-n} \alpha_n x_n$$

and we let $K = T(B_{\ell_2})$. The set *K* is convex symmetric and norm-compact. Let $\|\cdot\|$ be the norm whose unit ball satisfies

$$B_X(\|\cdot\|) = B_X(|\cdot|) + K.$$

Since K is compact, we clearly have

$$NA(\|\cdot\|) = NA(|\cdot|)$$

and thus NA($\|\cdot\|$) is not norm-Borel. Since $X \setminus \{0\}$ is homeomorphic to $(S_X \times \mathbb{R}^+_*)$ through $x \mapsto (\|x\|^{-1}x, \|x\|)$ it follows that NA₁($\|\cdot\|$) is not norm-Borel. We now compute the dual norm $\|f\|^*$ of $f \in X^*$. By definition

$$\begin{split} \|f\|^* &= \sup\{|f(x+x')| : |x| \le 1, x' \in K\}\\ &= \sup\{|f(x)| : |x| \le 1\} + \sup\{|f(x')| : x' \in K\}\\ &= |f|^* + \sup\{|f(T(y))| : y \in B_{\ell_2}\}\\ &= |f|^* + \|T^*(f)\|_2. \end{split}$$

Since T^* is one-to-one and $\|\cdot\|_2$ is strictly convex, it follows that $\|\cdot\|^*$ is strictly convex, and thus $\|\cdot\|$ is Gâteaux-smooth.

REMARKS. 1) It follows classically from Smulyan's lemma (see [2], Theorem I.1.4) that if $\|\cdot\|$ is l.u.r. then NA($\|\cdot\|$) is exactly the set of points where $\|\cdot\|^*$ is Fréchet-smooth. This gives an alternative proof of the fact that NA($\|\cdot\|$) is norm- G_{δ} and in fact (by [8]) a special kind of norm- G_{δ} , since its complement is "porous".

2) The proof of Lemma 10 shows that there exists σ : NA₁($\|\cdot\|$) \rightarrow S_X norm-to-norm continuous such that $\langle f, \sigma(f) \rangle = 1$ for all $f \in$ NA₁ if and only if every $x \in S_X$ is strongly exposed in B_X . Note that it follows from [12] (see [2], Theorem IV.3.5) that such a norm has an equivalent l.u.r. norm.

3) If Γ is uncountable, then $\ell_{\infty}(\Gamma)$ equipped with any equivalent norm contains an isometric copy of $\ell_{\infty}(\mathbb{N})$ ([7]), and this copy is 1-complemented since $\ell_{\infty}(\mathbb{N})$ is injective. The set NA($\|\cdot\|_{\infty}$) is not norm-Borel. To show this we pick a non-trivial ultrafilter \mathcal{U} and we consider the norm-continuous map $\Phi: \mathbf{2}^{\omega} \to \ell_{\infty}(\mathbb{N})^*$ such that

$$\Phi(\varepsilon) = \sum_{i\geq 0} 2^{-i} \varepsilon(i) e_i - \delta_{\mathcal{I}}$$

where (e_i) is the canonical basis of $\ell_1(\mathbb{N})$. It is easily seen that $\Phi(\varepsilon) \in \mathbb{N}A$ if and only if there is an *x* in the unit sphere of $\ell_{\infty}(\mathbb{N})$ such that x(i) = 1 for all $i \in A(\varepsilon) :=$ $\{j : \varepsilon(j) = 1\}$ but $\lim_{i,\mathcal{U}} x(i) = -1$, that is if and only if $A(\varepsilon) \notin \mathcal{U}$. Since \mathcal{U} is not Borel in $\mathbf{2}^{\omega}$, it follows that $\ell_{\infty}(\Gamma)$ has no equivalent norm such that NA is norm-Borel if Γ is uncountable.

4) It is easily seen that the weak and norm topologies agree on the unit sphere of $(\ell_1(\mathbb{N}), \|\cdot\|_1)$. Example 3) shows that this condition does not suffice for ensuring that NA₁ is norm- G_{δ} .

We now conclude with

328

QUESTION A. Do there exist strictly convex norms $\|\cdot\|$ such that NA($\|\cdot\|$) is w^* -Borel of arbitrarily high class?

QUESTION B. Does there exist a Fréchet-differentiable norm $\|\cdot\|$ such that NA₁($\|\cdot\|$) is not Borel? Can such a norm be constructed on any non-reflexive space with separable dual?

REFERENCES

- 1. E. Bishop and R. R. Phelps, *A proof that every Banach space is subreflexive*, Bull. Amer. Math. Soc. **67**(1961), 97–98.
- 2. R. Deville, G. Godefroy and V. Zizler, *Smoothness and Renormings in Banach spaces*, Pitman Monographs and Surveys Pure Appl. Math. **64**, Longman Ed., 1993.
- **3.** M. Fabian, D. Preiss, J. H. M. Whitfield and V. Zizler, *Separating polynomials on Banach spaces*, Quart. J. Math. Oxford Ser. (2) **40**(1989), 409–422.
- 4. R. C. James, Weakly compact sets, Trans. Amer. Math. Soc. 113(1964), 129-140.
- 5. R. Kaufman, Topics on analytic sets, Fund. Math. 139(1991), 215–220.
- 6. Y. Moschovakis, Descriptive set theory, North Holland, Amsterdam, 1980.
- 7. J. R. Partington, Equivalent norms on spaces of bounded functions, Israel J. Math. 35(1980), 205-209.
- **8.** D. Preiss and L. Zajicek, *Fréchet differentiation of convex functions in Banach space with separable dual*, Proc. Amer. Math. Soc. **91**(1984), 202–204.
- 9. J. D. Pryce, Weak compactness in locally convex spaces, Proc. Amer. Math. Soc. 17(1966), 148–155.
- 10. J. Saint Raymond, Convergence d'une suite de fonctions, Bull. Sci. Math. 96(1972), 145-150.
- 11. S. Simons, A convergence theorem with boundary, Pacific J. Math. 40(1972), 703–708.

12. S. Troyanski, *On a property of the norm which is close to local uniform convexity*, Math. Ann. **271**(1985), 305–313.

13. W. W. Wadge, Ph.D. thesis, Berkeley, 1984.

Equipe d'Analyse Universite Paris VI Boîte 186 4, Place Jussieu 75252–Paris Cedex 05 France