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Abstract

In this paper, a new sparse principal component analysis (SPCA) method, called DCPCA (sparse PCA using a difference
convex program), is introduced as a spectral feature extraction technique in astronomical data processing. Using this
method, we successfully derive the feature lines from the spectra of cataclysmic variables. We then apply this algorithm
to get the first 11 sparse principal components and use the support vector machine (SVM) to classify. The results show
that the proposed method is comparable with traditional methods such as PCA+SVM.

Keywords: astronomical instrumentation, methods and techniques – methods: analytical – methods: data analysis –
methods: statistical

1 INTRODUCTION

Since the inherent size and dimensionality of the data given
by the observation such as the Sloan Digital Sky Survey
(SDSS; York et al. 2000), numerous methods have been
developed in order to classify the spectra in an automatic
way. The principal component analysis (PCA) is among the
most widely used techniques. In Deeming (1964), the PCA
was first introduced to astronomical spectral data processing.
The author investigated the application of PCA in classifying
late-type giants. Connolly et al. (1995) discussed the appli-
cation of PCA in the classification of optical and UV galaxy
spectra. They found that the galaxy spectral types can be
described in terms of one parameter family: the angle of the
first two eigenvectors given by PCA. They also found that
the PCA projection for galaxy spectra correlates well with
star formation rate. Yip et al. (2004b), using PCA, studied
the properties of the quasar spectra from SDSS with various
redshifts.

Schematically, PCA attempts to explain most of the vari-
ation in the original multivariate data by a small number of
components called principal components (PCs). The PCs are
the linear combination of the original variables, and the PC
coefficients (loadings) measure the importance of the cor-
responding variables in constructing the PCs. However, if
there are too many variables, we may not know which vari-
ables are more important than others. In that case, the PCs
may be difficult to interpret and explain. Different meth-

ods have been introduced to improve the interpretability of
the PCs. The sparse principal component analysis (SPCA)
has been proved to be a good solution to this problem.
The SPCA attempts to give the sparse vectors, which will
be used as PC coefficients. In sparse vectors, the compo-
nents that correspond to the non-important variables will
be reduced to zero. Then, the variables which are impor-
tant in constructing PCs will become apparent. Using this
way, the sparse PCA improves the interpretability of the
PCs.

The SPCA method may originate from Cadima & Jol-
liffe (1995), in which the authors attempted to get the
sparse principal components (SPCs) by a simple axis ro-
tation. The following works, such as sparse PCA (SPCA;
Zou, Hastie, & Tibshirani 2006), direct approach of sparse
PCA (DSPCA; d’Aspremont et al. 2007) and greedy search
sparse PCA (GSPCA; Moghaddam, Weiss, & Avidan 2007),
show that the SPCA can be approached in different ways.
In Sriperumbudur, Torres, & Gert (2011), the authors in-
troduced a sparse PCA algorithm, which they called the
DCPCA (sparse PCA using a difference convex program)
algorithm. Using an approximation that is related to the neg-
ative log-likelihood of a Student’s t-distribution, in Sripe-
rumbudur, Torres, & Gert (2011), the authors present a solu-
tion of the generalised eigenvalue problems by invoking the
majorisation–minimisation method. As an application of this
method, a sparse PCA method called DCPCA (see Table 1) is
proposed.
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Table 1. The algorithm of DCPCA.

The algorithm of DCPCA

Require aA: A � bSn
+, ε > 0 and ρ > 0.

1: Choose x(0) � {cX:XTX � 1}
2: ρ

ε
= ρ

log(1+ε−1 )

3: repeat
4: ω(l)

i = (|x(l)
i | + ε)−1

5: if ρ
ε
<2max i |(Ax(l))i |(ω

(l)
i)
−1 then

6: x(l+1)
i = [|(Ax(l) )i|−

ρ
ε
2 ω

(l)
i ]+sign((Ax(l) )i )√∑n

i=1[|(Ax(l) )i|−
ρ
ε
2 ω

(l)
i ]2
+

7: else
8: x(l+1) = 0
9: end if

10: until convergence
11: return x(l)

aA is the covariance matrix.
b Sn

+ is the set of positive semidefinite
matrices of size n × n defined over R.
c X is an n-dimensional column vector.

To classify the spectra accurately and efficiently, various
methods have been introduced to the spectral data processing.
In Zhao, Hu, & Zhao (2005), Zhao et al. (2009), and Liu,
Liu, & Zhao (2006), the authors proposed several methods
of feature lines extraction based on the wavelet transform.
They first applied the wavelet transform to the data set and
then used some techniques including sparse representation
to extract the feature lines of spectra. In Weaver & Torres-
Dodgen (1997), the artificial neural networks (ANN) was
applied in the problem of automatically classifying stellar
spectra of all temperature and luminosity classes. In Singh,
Gulati, & Gupta (1998), the PCA+ANN method was used
in the stellar classification problem. A recently developed
pattern classifier called support vector machine (SVM) has
been used for separating quasars from large survey data bases
(Gao, Zhang, & Zhao 2008).

Compared with PCA, the SPCA method has not been
widely studied in the spectral classification problem. In this
paper, we will apply DCPCA, a recently developed sparse
PCA technique, to extract the feature lines of cataclysmic
variables’ spectra. We will make a comparison between the
sparse eigenvector derived by DCPCA and the eigenvector
given by PCA. We then apply this algorithm to reduce the
dimension of the spectra and then use SVM for classification.
This method (DCPCA+SVM) provides us with a new auto-
matic classification method which can be reliably applied to
a large-scale data set. The practical detail of this method will
be given in Section 4. In the following, the sparse eigenvector
given by DCPCA will be called sparse eigenspectrum (SES)
and the eigenvector given by PCA called eigenspectrum
(ES). The principal component given by SES will be called
SPC.

The paper is organised as follows. In Section 2, we will
give a brief introduction to the sparse algorithm DCPCA. In
Section 3, we will give an introduction to cataclysmic vari-
ables (CVs). In Section 4, DCPCA will be used for feature

extraction and then applied to reduce the dimension of the
spectra to be classified. The advantage of this approach over
the PCA will then be discussed. In Section 5, we consider the
effect of parameter variation and present the practical tech-
nique about the reliable and valid applications of DCPCA.
Section 6 concludes the work.

2 DCPCA: A BRIEF REVIEW

In this section, we will give a brief review of DCPCA for the
sake of completeness. As for detailed description of DCPCA,
as well as its application in the gene data, we refer the reader
to Sriperumbudur, Torres, & Gert (2011).

Let

x = (x1, . . . , xn) ∈ Rn

be an n-dimensional vector. The sparse PCA problem can be
written as

max
x
{xT Ax− ρ‖x‖0 : xT x = 1}, (1)

where ρ is the penalisation parameter and ‖x‖0 denotes the
cardinality of x, i.e., the number of non-zero elements of x.
If ρ = 0, the problem (1) will be reduced to

max
x
{xT Ax : xT x = 1}.

If A is the correlation matrix, this problem is equivalent to
finding the vector of coefficients for the first PC. Thus, sparse
PCA can be considered as a generalised PCA problem.

Problem (1) is a special case of the following sparse gen-
eralised eigenvector problem (GEV):

max
x
{xT Ax− ρ‖x‖0 : xT Bx ≤ 1}, (2)

where A � Sn (the set of symmetric matrices of size n × n
defined over R) and B � Sn

++ (the set of positive definite
matrices of size n × n defined over R). This problem is
NP hard.1 One usual way to overcome this difficulty is to
approximate ‖x‖0 by ‖x‖1. We, however, will approximate
the cardinality constraint ‖x‖0 by ‖x‖ε, which is given by

‖x‖ε =
n∑

i=1

log(1+ |xi|
ε

)

log(1+ 1
ε
)

.

That is,

‖x‖0 = lim
ε→0
‖x‖ε = lim

ε→0

n∑
i=1

log(1+ |xi|
ε

)

log(1+ 1
ε
)

.

1 NP (nondeterministic polynomial) problem is a set of decision prob-
lems with the following property: if a solution to one NP problem is
known, we can verify the correctness of the solution in a polynomial time.
NP-complete problem is the hardest problem in NP. It is a set of decision
problems which are regarded as unsolvable problems by most people in
polynomial time. However, if there is a given solution to one of these prob-
lems, we can verify it in polynomial time. NP-hard problem is a class of
problems that are at least as hard as the NP-complete problem. It may be of
any type: decision problems, search problems, or optimisation problems.
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This approach has been proved to be tighter than the ‖x‖1
approach, see Sriperumbudur, Torres, & Gert (2011). Then,
problem (2) is equivalent to the following problem:

max
x

⎧⎨
⎩xT Ax− ρ lim

ε→0

n∑
i=1

log
(

1+ |xi|
ε

)
log

(
1+ 1

ε

) : xT Bx ≤ 1

⎫⎬
⎭. (3)

It can be approximated by the following approximate sparse
GEV problem:

max
x

⎧⎨
⎩xT Ax− ρ

n∑
i=1

log
(

1+ |xi|
ε

)
log

(
1+ 1

ε

) : xT Bx ≤ 1

⎫⎬
⎭. (4)

Unlike problem (2), problem (4) is a continuous optimisa-
tion problem. It can be written as a difference convex (d.c.)
program, which has been well studied and can be solved
by many global optimisation algorithms (Horst & Thoai
1999).

Let ρε = ρ/log(1+ 1
ε
). We can then reduce the above

problem into the following d.c. problem:

min
x,y

⎧⎨
⎩τ‖x‖2

2 −
[
xT (A+ τ In)x− ρ

ε

n∑
i=1

log(yi + ε)
]

:

× xT Bx ≤ 1,−y ≤ x ≤ y

⎫⎬
⎭ (5)

by choosing an appropriate τ � R such that A + τ In � Sn
+

(the set of positive semidefinite matrices of size n× n defined
over R). Suppose

g((x, y), (z, w)) := τ‖x‖2
2 − zT (A+ τ In)z+ ρ

ε

n∑
i=1

log(ε + wi)

−2(x− z)T (A+ τ In)z+ ρ
ε

n∑
i=1

yi − wi

wi + ε
, (6)

which is the majorisation function of

f (x, y) = τ‖x‖2
2 + ρ

ε

n∑
i=1

log(ε + yi)− xT (A+ τ In)x. (7)

The solution of (7) can be obtained by the following
majorisation–minimisation (M-M) algorithm:

x(l+1) = arg min
x
{τ‖x‖2

2 − 2xT (A+ τ In)x
(l)

+ ρ
ε

n∑
i=1

|xi|
|x(l)

i | + ε
: xT Bx ≤ 1}, (8)

which is a sequence of quadratically constrained quadratic
programs. As an application of this method, the DCPCA
algorithm is proposed.

Briefly, the sparse PCA problem can be considered as a
special case of the generalised eigenvector problem (GEV).
By some approximate techniques, the GEV problem can be
transformed to a continuous optimisation problem (COP)
which can be solved in various ways. In the DCPCA algo-
rithm, the COP is first formulated as a d.c. program. Then

Table 2. The algorithm of
iterative.

The algorithm of iterative

Require: aA0 � Sn
+

1. B0←I
2. For t = 1, . . . , r
(1) Take A←At−1
(2) Running Algorithm 1, return xt
(3) qt←Bt−1xt
(4) At←(I − qtq

T
t)At−1(I − qtq

T
t)

(5) Bt←Bt−1(I − qtq
T

t)
(6) xt ←

xt
‖xt‖

3. Return {x1, . . . , xr{

aA is the covariance matrix.

by the M-M algorithm, a generalisation of the well-known
expectation–maximisation algorithm, the problem is finally
solved.

Using DCPCA, we can get the first sparse eigenvector
of the covariance matrix A, and then obtain the following r
(r= 1, 2, . . . , m− 1), leading eigenvectors of A through the
deflation method given in Table 2.

3 A BRIEF INTRODUCTION TO CATACLYSMIC
VARIABLES

CVs are binary stars. The three main types of CVs are novae,
dwarf novae, and magnetic CVs, each of which has various
subclasses. The canonical model of the system consists of a
white dwarf star and a low-mass red dwarf star, and the white
dwarf star accretes material from the red one via the accretion
disk. Because of thermal instabilities in the accretion disk,
some of these systems may occasionally outburst and become
several magnitudes brighter for a few days to a few weeks at
most.

The spectra of CVs in an outburst phase have obvious
Balmer absorption lines. A typical spectrum of CVs is given
by Figure 1. The observation of 20 CVs and related objects
by Li et al. presented us with the characteristics of the CVs
spectra. They classified the spectra into the following three
groups (Li, Liu, & Hu 1999):

• Spectrum with emission lines, including the hydrogen
Balmer emission lines, neutral helium lines, and ionised
helium lines, sometimes Fe ii lines and C iii/N iii lines.
They are quiet dwarf nova or nova-like variables;

• Spectrum with the H emission lines, whose Balmer
lines are absorption lines with emission nuclear core,
sometimes with neutral helium lines. They are dwarf
nova or nova-like variables in the outburst phase;

• Spectrum with Balmer lines, which have pure absorp-
tion spectra composed of helium lines, or emission nu-
clear in low quantum number of Balmer lines. They are
probably dwarf stars in the outburst phase.
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Figure 1. Spectrum of a cataclysmic variable star.

The observation of the CVs has a long history. Initial stud-
ies concentrated on the optical part of the spectrum. Thanks to
the development of astronomical techniques and instruments,
e.g., multi-fiber and multi-aperture spectrographs, adaptive
optics, etc., it becomes possible for the multi-wavelength
studies of the spectrum to gain the maximum information
about this binary system. From 2001 to 2006, Szkody et al.
had been using SDSS to search for CVs. These studies pro-
vide us with a sample of 208 CVs spectra (Szkody et al. 2002,
2003, 2004, 2005, 2006, 2007), which has the statistical sig-
nificance for the following research.

In the following, we will first apply the DCPCA method to
extract the characteristic lines of these spectra of CVs. Then,
the DCPCA+SVM method will be applied to the automatic
classification of CVs. The results show that this algorithm
can effectively extract the spectral information of the celestial
target, which approves that the method can be applied to the
automatic classification system.

4 EXPERIMENT

4.1 Data preprocessing

The spectral data, each of which has 3,522 feature compo-
nents, have been sky subtracted and flux normalised, and
cover the wavelength range 3,800–9,000 Å. Suppose the
spectral data set is given by

Xn×m =
(

x11, x12, . . . , x1m

. . . . . . . . .
xn1, xn2, . . . , xnm

)
=
(

X1
. . .

Xn

)
,

where Xi (i= 1, . . . , n) represents a spectrum. The covariance
matrix of Xn×m is

Sm×m =
1

n− 1

n∑
i=1

(Xi − X )T (Xi − X ) = (si j),
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Figure 2. Sparsity of the first SES versus parameter ρ by using two different
initial vectors x(0) = x1 and x(0) = x2, where x1 = ( 1√

3,522
, . . . , 1√

3,522
)T

and x2 = ( 1√
1,000

, . . . , 1√
1,000

, 0, . . . , 0)T . Both x(0) satisfy (x(0))Tx(0) = 1.

The red diamond represents the result obtained by using x1, and the blue
diamond represents the result obtained by using x2. This figure shows that the
sparsity will change with the increase of ρ. Moreover, for a given sparsity,
the corresponding ρ will vary with the change of the initial vector x(0). Other
x(0) will lead to a similar conclusion. For simplicity, we will not give any
further discussion on the effect of different x(0).

where

X = 1

n

n∑
i=1

Xi = (xi)

and

si j =
1

n− 1

n∑
t=1

(xti − xi)(xt j − x j).

Taking this covariance matrix as the input matrix of DCPCA,
we will get the first SES of Sm×m. Then, using the iterative
procedure proposed in Mackey (2009) (see Table 2), we are
able to get the other r (r = 1, 2, . . . , m − 1) leading SESs.

Suppose that the SES Yi of length n has r non-zero ele-
ments, then the sparsity of Yi is defined as

h = n− r

n
.

In Algorithm 1 (see Table 1), there are three parameters
to be determined: ε, ρ, and the initial vector x(0). In prac-
tice, for simplicity, we set ε = 0.1 and assume x(0) =
( 1√

3522
, . . . , 1√

3522
)T (such that (x(0))Tx(0) = 1). The param-

eter ρ needs to be determined, since it will affect sparsity
directly (see Figure 2). In practice, we let ρ range from min
|Ax(0)| to max |Ax(0)| with step length

(max |Ax(0)| −min |Ax(0)|)/100,

where min |Ax(0)| and max |Ax(0)| are the minimum and max-
imum values of the column vector |Ax(0)|, respectively. With

PASA, 30, e24 (2013)
doi:10.1017/pas.2012.24

https://doi.org/10.1017/pas.2012.24 Published online by Cambridge University Press

https://doi.org/10.1017/pas.2012.24


Feature Extraction Using DCPCA 5

4,000 5,000 6,000 7,000 8,000 9,000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Wavelength

(a)

4,000 5,000 6,000 7,000 8,000 9,000
−0.1

−0.05

0

0.05

0.1

0.15

Wavelength

(b)

Figure 3. (a) Original spectrum of CVs and (b) feature lines extracted by DCPCA.

these 101 different values of ρ, we could get 101 SESs with
different sparsity. The SESs we used in the following experi-
ments are chosen from these ones. We find that the SES with
the required sparsity lies within these SESs. The dependence
of the sparsity on the parameter ρ is given in Figure 2.

4.2 Feature extraction using DCPCA

PCA has been used with great success to derive the eigen-
spectra for the galaxy classification system. The redshift mea-
surement of galaxies and QSOs has also used the eigenspec-
trum basis defined by a PCA of some QSO and galaxy spectra
with known redshifts. In this section, the DCPCA is first ap-
plied to derive the feature lines of CVs, then to get the SESs
of CVs spectra, which provides a different approach to the
feature extraction procedure. The experiment results show
that this method is effective and reliable. The orientation of
the eigenspectra given in the figures of this section will be
arbitrary.

1. Feature lines extraction. In this scheme, the DCPCA
is applied to derive the feature lines of CVs spectra.
The original spectra and the corresponding feature lines
derived by DCPCA are given by Figure 3. As we can
see, the spectral components around the feature lines
have been extracted successfully, in the meantime, the
remaining components have been reduced to zero.

2. Feature extraction. The sample of CVs spectra data
X208×3,522 we used in this scheme are the 208 spectra ob-
served in Szkody et al. (2002, 2003, 2004, 2005, 2006,
2007). Let S3,522×3,522 be the corresponding covariance
matrix of X208×3,522. We then apply the DCPCA algo-
rithm to S3,522×3,522 to get the SESs.

The first three SESs, and their comparison with the corre-
sponding eigenspectra given by PCA, are given by Figures
4–6. As we have seen from these three figures, the non-
essential parts of the spectra have been gradually reduced
to zero by DCPCA. They illustrate the performance of the
sparse algorithm DCPCA in feature extraction. Four obvious
emission lines, i.e. Balmer and He ii lines, which we used to
identify CVs, have been derived successfully. Thus, the spec-
tral features in the SES given by DCPCA are obvious and can
be interpreted easily. Nevertheless, as shown in Figures 4–6,
it is difficult for us to recognise the features in the PCA eigen-
spectra. This confirms that SES is more interpretable than
ES.

As we have seen, the non-essential parts of the spectra now
are reduced to the zero elements of SESs. However, if there
are too many zero elements in SESs, the spectral features
will disappear. Then, it is crucial for us to determine the
optimal sparsity for the SESs. The optimal sparsity should
have the following properties: the SES with this sparsity
retains the features of the spectra and, at the same time, it has
the minimum number of the non-zero elements.

In order to determine the optimal value of sparsity, we plot
the eigenspectra with different sparsity and then compare
them. As shown in Figure 7, the sparsity of the eigenspectrum
between 0.95 and 0.98 is optimal. If the sparsity is below
0.95, there are still some redundant non-zero elements in the
SES. If the sparsity is above 0.98, some important spectral
features will disappear.

4.3 Classification of CVs based on DCPCA

4.3.1 A review of support vector machine

The SVM, which is proposed by Vapnik and his fellowships
in 1995 (Vapnik 1995) is a machine learning algorithm based
on statistical learning theory and structural risk minimisation
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Figure 4. The first eigenspectra given by PCA and DCPCA. (a) The first eigenspectrum given by PCA; the first SES with sparsity (b) h = 0.0009, (c) h =
0.1911, and (d) h = 0.9609. Panels (a–d) show that the difference between eigenspectra given by PCA and DCPCA gradually becomes apparent. Panels (a)
and (b) can be considered as the same figure (the sum of their difference is less than 0.03). The differences between (a) and (c–d) are apparent. These SESs
are chosen from the 101 SESs obtained by using the method given by Section 4.1.

(Christopher 1998). It mainly deals with two-category clas-
sification problems, and also regression problems. Suppose
that we have a training data set

D = {(xi, yi)|xi ∈ Rm, yi ∈ {−1, 1}, i = 1, . . . , n},

where xi � Rm represents the feature of the data and yi is either
−1 or 1, indicating the class to which the corresponding point
xi belongs. For the linear classification problem, to classify
one group from the other more precisely, SVM finds a linear
separating hyperplane

w · x+ b = 0

with the maximal margin in the feature space. Mathemat-
ically, SVM finds the solution to the following convex

quadratic optimisation problem:

Minimise
1

2
w · w subject to yi(w · xi + b) ≥ 1(i = 1, . . . , n).

We transform it to the corresponding Lagrangian, by intro-
ducing a Lagrange multiplier for each constraint in the above
problem. Then, the previous constrained problem can be ex-
pressed as

min
w,b

max
αi>0

{
1

2
w · w− αi

n∑
i=1

[yi(w · xi + b)− 1]

}
= min

w,b
max
αi>0

W.

(9)

To solve problem (9), we compute the partial derivative of
the above object function W, which leads to w=�n

i = 1αiyixi
and �n

i = 1αiyi = 0. Substituting them into the above object
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Figure 5. The second eigenspectra given by PCA and DCPCA. (a) The second eigenspectrum given by PCA; the second SES with sparsity (b) h = 0, (c)
h = 0.2348, and (d) h = 0.9171. The differences between panels (a) and (b–d) are apparent. The SESs are chosen from the 101 SESs obtained by using the
method given by Section 4.1.

function, we can get the dual of the problem (9):

Maximise L(α) =
n∑

i=1

αi −
1

2

∑
i,j

αiαjyiyj(xi, xj),

subject to 0 ≤ αi ≤ C and
n∑

i=1

αiyi = 0.

Using the kernel trick, we can extend the previous method
to the nonlinear classification problem (Muller et al. 2001).
The resulting algorithm is formally similar, except that ev-
ery dot product is replaced by a nonlinear kernel function
k(x, y) = φ(x)Tφ(y), where φ(x) maps x into a higher di-
mensional space. The kernel function is equivalent to the
distance between x and y measured in the higher dimen-
sional space transformed by φ. This allows the algorithm to

fit the maximum–margin hyperplane in a transformed fea-
ture space. In this paper, we will use the Gaussian kernel
function

k(x, y) = exp

(
−‖x− y‖2

2σ 2

)
.

SVM has been proved to be efficient and reliable in the
object classification. In our experiments, DCPCA is applied
to reduce the size of spectra from 3,522 to 3 sparse PCs and
then SVM is used for an automatic classification. The com-
parison of this method with the related PCA+SVM method
will then be presented.

When we apply SVM to the classification problem, the
parameter σ in the Gaussian kernel function needs to be
determined. In our experiments, for the sake of simplicity, we
make a priori choice of using σ = 1. We will show in Section
4.3.2 that the classification results are almost independent of
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Figure 6. The third eigenspectra given by PCA and DCPCA. (a) The third eigenspectrum given by PCA; (b) the third SES with sparsity (b) h = 0, (c) h
= 0.2641, and (d) h = 0.9645. The differences between panels (a) and (b–d) are apparent. The SESs are chosen from the 101 SESs obtained by using the
method given by Section 4.1.

the value of σ . Since the choice of σ has no direct influence
on our conclusion, this is not discussed further. However, it
is worth noting here that there is extensive literature on how
to choose an appropriate kernel parameter for each particular
data set (Ishida & de Souza 2012).

4.3.2 Classification using SVM

As the PCA method has been used as a dimensionality reduc-
tion tool in spectral classification, we may wonder whether
the DCPCA can be used to accomplish the same task. In this
section, the following two methods will be applied to the
CVs separation problem:

• DCPCA+SVM.
• PCA+SVM.

Table 3. Information
of the spectral data.

Galaxy Star QSO

1,559 3,981 1,278

The spectral data we used are provided by the Data Release 7
of SDSS. The detailed information of these spectra is given in
Table 3. The data set is randomly divided into two equal parts:
D1 and D2. Then, 208 CVs spectra are randomly divided into
two equal parts: C1 and C2. The data D1+C1 will be used
for training and D2+C2 for testing. The final classification
results will be represented by the classification accuracy r,
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Figure 7. The first sparse eigenspectra with various sparsity. The spectral features will disappear if sparsity is above 0.98, while the redundant elements of
the spectrum have not been reduced to zero if sparsity is below 0.95.
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Figure 8. Two-dimensional projection of 208 CV spectra given by (a) PCA and (b) DCPCA.
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Figure 9. Result of DCPCA+SVM. SPC1 represents the first sparse principal component computed with DCPCA, and SPC2 is the second principal
component. The sparsity of the SESs which are applied to get SPC1 and SPC2 is 0.9749. The training set is represented by the red star (CVs), green
circles (non-CVs). The decision boundary of SVM is applied to classify the CVs and non-CVs in the test set. (a) CVs test sample points (blue diamond)
are superimposed to the training set. (b) Non-CVs test sample points (blue dots) are superimposed to the training set. This figure and the following figure
(Figure 11) are merely two-dimensional illustrations to show the projected spread of points. This particular configuration is not used in the classification.

which is defined by

r = Nm

Ns

,

where Nm and Ns denote the number of correctly classified
objects and the total number of objects in the test sample set,
respectively.

1. DCPCA+SVM. In this scheme, the SVM is applied to
the first three dimension data which are obtained by the first
three SESs with various sparsity. We will investigate the
relationship between the classification result and the sparsity

of the SES. We will show that the classification results will
not decrease with the increase of sparsity.

The procedure of the experiment is given in Table 4. The
first two DCPCA-projected dimensions of the CVs spectra
data are given in Figure 8(b). The two-dimensional repre-
sentation of the classification result is given in Figures 9(a)
and (b). For clarity, we will show the CVs and non-CVs in
the test set in two different plots (Figures 9 a and b). We
also plot the decision boundary given by SVM in training.
The objects of the test set located on one side of the deci-
sion boundary will be classified as CVs, and others will be
classified as non-CVs. As we can see, the CVs have been
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Table 4. Experiment using DCPCA+SVM.

Classification using DCPCA+SVM

Require: Training data set A, testing data set A1
1: Use the DCPCA to find the sparse eigenspectra matrix D of A.
2: The low-dimension representation of A is given by B = AD.
3: The low-dimension representation of A1 is given by B1 = A1D.
4: Input B as the training data to train the SVM.
5: Input B1 as the testing data.
6: Return the candidate of the CVs

Table 5. Experiment using PCA+SVM.

Classification using PCA+SVM

Require: Training data set A, testing data set A1
1: Use the PCA to find the eigenspectra matrix P of A.
2: The low-dimension representation of A is given by B = AP.
3: The low-dimension representation of A1 is given by B1 = A1P.
4: Input B as the training data to train the SVM.
5: Input B1 as the testing data.
6: Return the candidate of the CVs

generally well separated in the two-dimensional projected
space. The classification results obtained by using the first
three PCs (including using 1 PC, 2 PCs, and 3 PCs), which
are obtained by the first three SESs with various sparsity, are
shown in Figure 10. From Figure 10, we find that the clas-
sification accuracies have not decreased with the increase of
sparsity. Therefore, we conclude that, while reducing most
of the elements into zero, DCPCA retains the most important
characteristics of the spectra in the SESs.

Four SESs with various sparsity have been used in the
experiment. As shown in Figure 10, the results have not been
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Figure 10. Classification accuracy versus sparsity of the SESs. It shows that
the classification results using four SPCs, which are obtained by the first
four SESs, are similar to those using three SPCs. Thus, the discussion about
the relationship between classification results and the sparsity is limited on
the first three SESs.

improved significantly. Thus, we limit our discussion to the
first three SESs for clarity.

2. PCA+SVM. In this scheme, first, PCA is applied to
reduce the spectral data into 1–11 dimensions, and then
the SVM method is used for automatic classification. The
procedure of the experiment is given in Table 5. The first two
PCA-projected dimensions of the CVs spectra are given in
Figure 8(a). The two-dimensional representation of the clas-
sification results is given in Figure 11, in which the CVs and
non-CVs points in the test set are represented as Figure 9.
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Figure 11. Result of PCA+SVM. PC1 represents the first principal component computed with PCA, and PC2 is the second principal component. The
training set is represented by the red star (CVs) and green circles (non-CVs). The decision boundary of SVM is applied to classify the CVs and non-CVs in
the test set. (a) CVs test sample points (blue diamond) are superimposed to the training set. (b) Non-CVs test sample points (blue dots) are superimposed to
the training set. This figure is merely two-dimensional illustrations to show the projected spread of points. This particular configuration is not used in the
classification.
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Figure 12. Classification results’ comparison between PCA+SVM and DCPCA+SVM. The dot line represents the classification accuracy based on PCA.
Classification accuracies using (a) the first SES with various sparsity, (b) the first two eigenspectra (SESs) with various sparsity, (c) the first three SESs
with various sparsity, and (d) the first four SESs with various sparsity. Panels (a–d) show that the SESs perform similar to eigenspectra in the classification,
though most of the elements in SESs are zero.

The classification accuracies for varying dimensions of fea-
ture vectors are given by Table 6 .

3. Comparison of DCPCA+SVM and PCA+SVM. In this
scheme, we will compare the performance of ES with that of
SES in classification.

First, we perform DCPCA+SVM by using the first four
SESs with various sparsity, and then compare the perfor-
mance with that of PCA+SVM. The comparison of these two
methods is given by Figure 12. Though the DCPCA+SVM
results will vary with the increase of the sparsity, we find
that DCPCA+SVM has separated the CVs with great suc-
cess from other objects, and its performance is comparable
with that of PCA+SVM.

Second, we perform DCPCA+SVM by using the first
11 SESs with the optimum sparsity (the average sparsity
is 0.9781), and then make a comparison with PCA+SVM.

The results are given in Figure 13. We find that
when we use the optimum SESs (SES with the opti-
mum sparsity), DCPCA+SVM performs better than PCA+
SVM.

Figures 12 and 13 show that the performance of
DCPCA+SVM is comparable with that of PCA+SVM. When
we use the optimum SESs (the average sparsity is 0.9781),
DCPCA+SVM performs better than PCA+SVM. Thus, we
conclude that the SESs contain significant amounts of clas-
sification information, especially the optimum SESs. Fur-
thermore, both figures show that the classification accuracies
using more than three SESs are not improved significantly
than using the first three SESs, which is consistent with the
result given in Figure 10.

In order to minimise the influence of random factors,
the experiments have been repeated 10 times, and the
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Table 6. Classification accuracy
of PCA+SVM.

Dimension Classification accuracy

1 0.6232
2 0.9635
3 0.9724
4 0.9690
5 0.9840
6 0.9842
7 0.9873
8 0.9884
9 0.9873

10 0.9898
11 0.9914
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Figure 13. Classification results of DCPCA+SVM and PCA+SVM ob-
tained by using the first 11 PCs. The SPCs used in DCPCA+SVM are
obtained by the optimal SESs (the SESs with the sparsity lie within the
optimum interval). The average sparsity of the first 11 SESs used in experi-
ment is 0.9781. It also shows that the first three SPCs are enough for a good
result, and the classification accuracies are not improved significantly if we
use more than three SPCs.

classification accuracies given above are the average val-
ues. The effect of varying σ in the Gaussian kernel has been
studied (see Figure 14). We find that the classification results
are almost independent of the value of σ .

5 DISCUSSION

Besides the parameters in Algorithm 1, there are three pa-
rameters that need to be determined in our experiment: the
σ in the Gaussian kernel, the optimal sparsity h of the SESs,
and the number of the PCs we used in DCPCA+SVM. As
discussed in Section 4.3.1 and shown in Figure 14, the vari-
ation of σ has no direct influence on the classification result.
So, we set σ = 1 in the experiment. In the DCPCA+SVM
experiment in Section 4.3.2, only the first three SPCs with
various sparsity are utilised, because more SPCs will not im-

prove the classification accuracy significantly, as shown in
Figures 10 and 13.

For the sparsity h of the SES, we find in Section 4.2 that
h whose value is in the range of 0.95–0.98 is optimal. To
verify the conclusion, we will compare the performance
of these SESs in the DCPCA+SVM experiment. Namely,
the SESs with various sparsity will be applied to get the
sparse principal components (SPCs), which will be used in
the DCPCA+SVM experiment, and in turn, the performance
of these SPCs will be utilised to evaluate these SESs. The
SESs are divided into three groups: the SESs with sparsity
between 0.95 and 0.98 (SES1), SESs with sparsity above
0.98 (SES2), and SESs with sparsity lower than 0.95 (SES3).
Then, these SESs will be used in the DCPCA+SVM exper-
iment. The experiment results are shown in Figure 15. We
find that the classification results using SES1 are obviously
better than those using SES2 and SES3, which confirms that
the sparsity between 0.95 and 0.98 is optimal.

Despite DCPCA is reliable in extracting spectral features,
it is worth noting that it may take a long time to determine
a suitable ρ with which we can obtain a required SES. As
shown in Figure 2, the sparsity of the SES depends on the
value of the parameter ρ. However, using the method speci-
fied in Section 4.1, we can get the optimal SES (the sparsity
of which lies within the optimum interval) quickly. Thus,
there is no need to determine the optimum ρ (by which we
can get the optimal SES) in application. Moreover, as shown
in Figure 2, for a given sparsity, the corresponding ρ will
vary with the change of the initial vector x(0). It makes no
sense for us to determine the optimum ρ. Though the vector
x(0) can also affect the final results, we will not discuss it
further for simplicity.

Using the method proposed in Section 4.1, we can ob-
tain 101 different SESs corresponding to each eigenspectrum
given by PCA (i.e., we can obtain 101 SESs with various
sparsity corresponding to the first eigenspectrum of PCA,
101 SESs with various sparsity corresponding to the second
eigenspectrum of PCA, etc.). All SESs used in the experi-
ment and shown in figures are chosen from these SESs. It
is difficult to obtain the SESs with exactly the same spar-
sity. For example, the sparsity of the first optimum SES is
0.9759, while that of the second one is 0.9739. In fact, we will
not have to obtain the SESs with exactly the same sparsity.
We just need to obtain the SESs with the sparsity lying in
some interval, such as the optimum interval 0.95–0.98. Thus,
if we use more than one SES but provide only one sparsity in
the experiment, this sparsity is the average value. For exam-
ple, we used the first 11 optimum SESs in Figure 13 . Since
these optimum SESs possess different sparsity, we only pro-
vide the average sparsity 0.9781 in the figure.

6 CONCLUSION

In this paper, we first demonstrate the performance of the
DCPCA algorithm in the feature lines extraction by applying
it to the CVs spectra data. Then, we present an application
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Figure 14. Classification results of SVM by using first two SESs with various sparsity versus σ in the Gaussian kernel. Sparsity of the first two SESs is
(a) 0.004, (b) 0.5647, (c) 0.9299, and (d) 0.9848. Panels (a–d) show that the classification results are almost independent of σ . The results of using other
numbers of SESs are similar.

of this algorithm in the classification of CVs spectra. In the
classification experiments, we first use the DCPCA to reduce
the dimension of the spectra, and then use SVM to clas-
sify the CVs from other objects. The result comparing with
the traditional PCA+SVM method shows that the reduction
of the number of features used by classifier does not neces-
sarily lead to a deterioration of the separation rate. Compared
with PCA, the sparse PCA method has not been widely ap-
plied in the spectral data processing. Nonetheless, the demon-
strations given here have shown the perspective of the sparse
PCA method in this route. We find that

1. DCPCA is reliable in extracting the feature of spectra.
Compared with the eigenspectra given by PCA, SESs

are more interpretable. Thus, the spectral feature of
CVs can be well described by the SES whose number
of non-zero elements is dramatically smaller than the
number usually considered necessary.

2. Changing σ in Gaussian has no direct influence on our
conclusion.

3. The sparsity of SESs between 0.95 and 0.98 is opti-
mum.

4. When we use SESs with the optimum sparsity (the av-
erage sparsity is 0.9781), DCPCA+SVM will perform
better than PCA+SVM.

5. The parameter ρ has a direct influence on the sparsity of
SES. However, it is not necessary for us to determine the
optimum ρ. Using the method given in Section 4.1, we
can get the optimal SES without any prior knowledge
of the optimal ρ.
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Figure 15. Classification accuracy versus sparsity. The SESs are divided into three groups: SESs with sparsity between 0.95 and 0.98 (SES1), SESs with
sparsity above 0.98 (SES2), and SESs with sparsity below 0.95 (SES3). Then these SESs are utilised to get the SPC groups: SPC1, SPC2, and SPC3.
These SPCs will then be used in the DCPCA+SVM experiment as in Section 4.3.2. (a) The result of SPC1+SVM versus the result of SPC2+SVM, and (b)
the result of SPC3+SVM versus the average result of SPC1+SVM. Panel (a) shows that when the sparsity is above 0.98, the classification result will be
unstable. Panels (a) and (b) show that the classification results using SPC1 are significantly better than those using SPC2 and SPC3. It implies that SES1
performs better than SES2 and SES3 in the classification. For the sake of simplicity, we use the first SPC in the classification. The classification results of
using other numbers of SPCs are similar.
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APPENDIX: PRINCIPAL COMPONENT
ANALYSIS

Consider a data set

S = ( fi j)m×n,

the ith data point of which is

( fi1, ..., fin).

Let f q = 1
m

∑m
i=1 fiq and σ q be the mean and standard deviation of

the qth random variable fq, respectively. Suppose that

Xi = (xi1, . . . , xin)(i = 1, . . . , m),
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where xi j = ( fi j − f j)/σ j and

B = (XT
1 , . . . , XT

m )T .

Then we can show that

C = BT B =
m∑

i=1

XT
i Xi = (Cjk)n×n,

where Cjk = �m
i = 1xijxik is the correlation matrix. Our goal is to

find a normalised vector

a1 = (a11, a12, . . . , a1n)
T

such that the projection of the standardised data on a1 has the
maximum variance. Since the projection of the ith data point Xi on
a1 (the first principal component of Xi) is

Xia1 =
n∑

k=1

xika1k,

then Ba1 is the projection of the standardised data set on a1. We can
prove that the variance of Ba1 is

aT
1 BT Ba1 = aT

1 Ca1.

Our goal is to maximise this value under the constraint aT
1a1 = 1.

Let λmax be the largest eigenvalue of C. According to the Rayleigh–
Ritz theorem, a1 can be obtained by solving

Ca1 = λmaxa1.

Then, a1 is the unitary eigenvector corresponding to λmax. Briefly,
to get the first component that accounts for the largest variance of
the data, we just need to get the unitary eigenvector of the corre-
lation matrix C that corresponding to the largest eigenvalue of C.
Similarly, to give the second component that is orthogonal to the
first component and accounts for the second largest variance of the
data, we just need to get the unitary eigenvector that corresponds
to the second largest eigenvalue of C. The subsequent components
can be obtained in the same way.
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