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Abstract

We analyse the steady-state operation of a continuous flow bioreactor in which the
biochemical reaction is governed by noncompetitive substrate inhibition (Andrews
kinetics). A generalized reactor model is used in which the well-stirred bioreactor and
the idealized membrane bioreactor are special cases. As generic properties of systems
subject to substrate inhibition have been obtained by other authors, we discuss reaction
engineering features specific to Andrews kinetics.
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1. Introduction

A continuous stirred flow bioreactor is a well-stirred vessel containing microorganisms
(X) through which a substrate (S ) flows at a continuous rate. The microorganisms
grow in the vessel through the consumption of the substrate to produce more
microorganisms and products. Unused substrate, microorganisms and products flow
out of the reactor at the same rate at which the feed is admitted. In membrane
bioreactors, a permeable membrane is used which physically retains microorganisms
inside the reactor whilst allowing the substrate and products to leave. Entrapping the
microorganisms in this manner increases their concentration and results in a greater
conversion of the substrate. This allows for a more rapid and efficient process.

The standard way to model the specific growth rate of microorganisms (µ) growing
on a limiting substrate is to use the Monod model. This is given by

µ(S ) =
µmS

Ks + S
.
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In this equation, µm is the maximum value of the specific growth rate, obtained in the
limit as S →∞, and Ks is the Monod constant, the substrate concentration at which
the specific growth rate obtains half its maximum value. The Monod model is an
increasing function of the substrate concentration: the more substrate available, the
quicker the microorganisms grow.

For processes subject to substrate inhibition, the specific growth rate is an increasing
(decreasing) function at low (high) values of the substrate concentration, that is,

dµ
dS

>0 if S < S cr,

<0 if S > S cr.
(1.1)

In this equation, S cr is the value of the substrate concentration at which substrate
inhibition “sets in”, that is, the transition point at which the specific growth rate
changes from an increasing function of the substrate concentration to a decreasing
function of the substrate concentration.

Substrate inhibition is common in aerobic fermentation processes, the biological
treatment of industrial wastewaters and wastes, and when the substrate is toxic to the
microorganism. A simple modification to the Monod model which is widely used to
represent growth kinetics subject to substrate inhibition is the Andrews model [1]

µ(S ) =
µmS

Ks + S + S 2/KI
. (1.2)

In the Andrews model,
S cr =

√
KI KS .

Note that in equation (1.2) the parameters µm and Ks no longer have any intrinsic
kinetic meaning. Recent examples of biological process that have been identified as
being governed by Andrew kinetics include the removal of diethylketone from aqueous
solution by an Arthrobacter viscosus culture [4], the dechlorination of water containing
high concentrations of tetrachloroethene by two dechlorinating biomass strains [7] and
the growth of of the oleaginous fungus Mortierella isabellina upon sweet sorghum
extract [5].

2. Equations and literature review

In Section 2.1 we give equations for the concentration of microorganisms and
substrate within a perfectly stirred, well-aerated bioreactor. In Section 2.2 the
equations are scaled. In Section 2.3 we provide a literature review.

The parameter β, 0 ≤ β ≤ 1, defines the reactor configuration. The cases β = 0 and
β = 1 represent an idealized membrane reactor and a well-stirred reactor, respectively.
The case 0 < β < 1 includes: a non-idealized membrane reactor; a fixed-bed biological
process with a large recirculation rate and with biomass detachment; a perfusion
bioreactor incorporating cell bleed; and a well-stirred reactor, attached to a settling
unit.
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2.1. The dimensional model The model equations are

V
dS
dt

= F(S 0 − S ) −
µ(S )
αs

VX, (2.1)

V
dX
dt

= −βFX + µ(S )VX − VkdX. (2.2)

The specific growth rate is given by by the Andrews model (1.2) and we also define
the residence time

τ =
V
F
. (2.3)

In these equations the dependent variables S and X denote the concentration of
substrate and microorganisms, respectively, whilst the independent variable t denotes
time. The other parameters are: F, the flow rate through the reactor; KI , the substrate
inhibition constant; Ks, the Monod parameter; S 0, the concentration of substrate in the
feed; V , the volume of the reactor; kd, the decay coefficient of the microorganisms; αs,
the yield factor (the ratio of the increase in the “concentration” of the microorganisms
to the corresponding decrease in the “concentration” of the substrate); β, the
reactor configuration parameter; µm, a kinetic parameter; and µS , the specific
growth rate. The units of the terms appearing in equations (2.1)–(2.3) are defined
in Appendix A. Monod kinetics are recovered in the limit as the substrate inhibition
constant (KI) becomes infinite.

For a specific biological culture and a particular set of environmental conditions,
the parameters KI , KS , kd, αs and µmax are fixed. The parameters that can be varied are
S 0 and τ. The main experimental control parameter, that is, the primary bifurcation
parameter, is the residence time τ.

2.2. The dimensionless model By introducing the dimensionless variables defined
in Appendix A, the dimensional model (2.1)–(2.2) can be written in the dimensionless
form

dS ∗

dt∗
=

1
τ∗

(S ∗0 − S ∗) −
S ∗X∗

1 + S ∗ + γS ∗2 , (2.4)

dX∗

dt∗
= −

β

τ∗
X∗ +

S ∗X∗

1 + S ∗ + γS 2 − k∗dX∗, (2.5)

where the parameter groups are defined in Appendix A. A low value for the
dimensionless substrate inhibition parameter γ indicates that the biomass is not
sensitive to substrate inhibition. The initial conditions associated with equations (2.4)
and (2.5) must be physically meaningful: S ∗(t∗ = 0) ≥ 0 and X∗(t∗ = 0) ≥ 0.

From now on we assume that the dimensionless residence time, the dimensionless
feed concentration, the dimensionless substrate inhibition constant and the reactor
parameter are all strictly positive (τ∗ > 0, S ∗0 > 0, γ > 0 and β > 0, respectively).
The case β = 0 is not considered because if β = 0 then the steady-state substrate
concentration is independent of the residence time.
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Finally, we note that the maximum value of the function

µ(S ∗) =
S ∗

1 + S ∗ + γS ∗2

occurs when
S ∗ = S ∗cr = γ−1/2 (2.6)

and is given by

µ(S ∗)max =
1

1 + 2
√
γ
. (2.7)

2.3. Literature review Andrews [1] investigated the model (2.1)–(2.2) in a flow
reactor (β = 1) with the assumption that the microorganisms do not die (kd = 0).
The steady-state solution along the no-washout branch and the critical value of the
residence time at which the washout solution loses stability were both identified.
Andrews noted that at a fixed value for the residence time an increase in the feed
concentration of the inhibitory substrate may result in process instability: the no-
washout solution branch loses stability, whilst the washout solution branch gains
stability.

Bush and Cook [2] investigated (2.1)–(2.2), replacing the Andrews function by a
general inhibition function µ(S ) satisfying (1.1). They showed that when there are
two steady-state solutions with substrate components 0 < S 1 < S 2 < S 0, the steady-
state solutions corresponding to S 1 and S 2 are stable and unstable, respectively.
Furthermore, there are no steady-state solutions with purely imaginary eigenvalues.
These results apply to the case 0 < β < 1 and kd , 0.

For the case β = 1 and kd = 0, Bush and Cook reduced the system to a single
differential equation and characterized the global behaviour of the model. (This
reduction is possible when β = 1 and kd = 0 as all solutions converge to a one-
dimensional manifold.) They explained how shock overloading, a temporary
large increase in the feed concentration followed by a return to the normal input
concentration, and shock underloading, a temporary large decrease in the feed
concentration followed by a return to the normal input concentration, can lead to
system failure.

The model (2.1)–(2.2) has been generalized in the mathematics literature to a
system of N microorganisms competing for a substrate [3, 9–11, 13]. These papers
consider a general class of specific growth-rate functions which include monotone
increasing functions and uptake functions exhibiting substrate inhibition. It is
assumed that along the no-washout solution branch there are at most two solutions
with substrate component satisfying 0 < S 1 < S 2 < S 0. The primary goal of these
investigations is to establish that at most one species survives. This result, the
principle of competitive exclusion, is established by constructing an appropriate
Lyapunov function. It is usually not stated whether inhibition functions commonly
used in chemical engineering satisfy the conditions required in the construction of the
Lyapunov function.
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The initial work on this problem is due to Butler and Wolkowicz [3], who
considered the case β = 1, kd = 0. Their work has been extended to the case of distinct
removal rates (equivalent to 0 < β ≤ 1, kd > 0) by Wolkowicz and Lu [13] and Li [9].
The model with distinct removal rates has been extended to include a time delay in the
nutrient conversion process [12] and to the case when the yield, αs in equation (2.1),
is a function of the substrate concentration [10, 11].

Fiedler and Hsu [6] developed a higher-dimensional Bendixson–Dulac type
exclusion principle, establishing conditions excluding (positive) periodic solutions in
the chemostat with a single nutrient and N competing species. Their results apply
to both the cases of equal and unequal removal rates. The growth-rate functions are
allowed to be non-monotone, although some conditions are required.

Although much is known about the general behaviour of systems subject to
substrate inhibition, there has been little discussion about the specific behaviour when
the Andrews growth rate law (1.2) is used. The aim of this paper is to investigate
the steady-state behaviour of a biological process subject to Andrews inhibition in a
generalized bioreactor model.

3. Results

The global behaviour of the system (2.4)–(2.5) is discussed in Section 3.1. In
Section 3.2 the steady-state solution branches are given and the condition for the no-
washout solution branch to be physically meaningful is stated. The local stability
of the steady-state solutions is determined in Section 3.3. In Section 3.4 asymptotic
solutions are presented for the cases of residence times just above the washout value
(τ∗ − τ∗tr� 1) and large residence times (τ∗� 1).

3.1. Global behaviour In this section we state some global results regarding the
system (2.4)–(2.5). For this system the region R defined by

0 ≤ S ∗ ≤ S ∗0, 0 ≤ X∗ ≤
S ∗0
M
− S ∗, M = min(1, β + k∗dτ

∗),

is positively invariant [13, Lemma 2.1]. This means that if an initial condition is either
inside or on the boundary of the region R then the corresponding solution of the system
cannot leave this region for all values of time with t∗ ≥ 0. Furthermore, the invariant
region is exponentially attracting for physically meaningful solutions starting outside
the invariant region [13, Lemma 2.1]. Thus from now on we are free to only consider
initial conditions within the invariant region.

The system (2.4)–(2.5) cannot have limit-cycle solutions. This is shown using
Dulac’s test [8, Ch. 3, Exercise 23] using the function ρ = 1/(S ∗X∗). As noted in
Section 2.3, Bush and Cook [2] showed that the model (2.1)–(2.2) with a general
specific growth rate satisfying (1.1) cannot have a steady-state solution with purely
imaginary eigenvalues, that is, a Hopf bifurcation cannot occur. Our result showing
the non-existence of limit cycles provides an alternative proof of this for the specific
choice of the Andrews inhibition model (1.2).
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In Appendix B we identify conditions under which it is guaranteed that

lim
t∗→∞

X∗ = 0.

In particular, this is always true if the decay parameter is sufficiently high:

k∗d ≥ kd,max,1 =
1

1 + 2
√
γ
.

Consequently, from now we assume that

k∗d =
1

1 + 2
√
γ
< 1. (3.1)

3.2. Steady-state solution branches In this section we find the steady-state
solutions of the system (2.4)–(2.5) and characterize when they are physically
meaningful.

The steady-state solutions are given by

washout branch: (S ∗, X∗) = (S ∗0, 0),

no-washout branch: (S ∗, X∗) =

(
Ŝ ∗,

S ∗0 − Ŝ ∗

β + k∗dτ
∗

)
, (3.2)

where Ŝ ∗ is given by

Ŝ ∗ =
b ±
√

b2 − 4ac
2a

, a = (β + k∗dτ
∗)γ, b = (1 − k∗d)τ∗ − β, c = (β + k∗dτ

∗).

(3.3)

In Appendix C we show that solutions of (3.3) are only positive for

τ∗ ≥ τ∗max =
(1 + 2

√
γ)β

1 − (1 + 2
√
γ)k∗d

.

Before discussing the structure of the steady-state diagram we list a few useful
observations.

(i) From (3.2) the no-washout branch is only physically meaningful when 0 < Ŝ ∗ <
S ∗0.

(ii) When τ∗ = τ∗max we have b2 − 4ac = 0 and (3.3) has exactly one solution,

Ŝ ∗1 = γ−1/2.

(iii) When τ∗ > τ∗max we have b2 − 4ac > 0 and (3.3) has two solutions. We denote
these by Ŝ ∗+ and Ŝ ∗−, corresponding to the positive and negative square root sign
in (3.3).
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(iv) Differentiating (3.3), we obtain

dŜ ∗

dτ
=
βγ

2a2

[
1 ±

b
√

b2 − 4ac

]
.

Thus for τ∗ > τ∗max the solution branch Ŝ ∗+ is an increasing function of the
residence time, whilst the solution branch Ŝ ∗− is a decreasing function of the
residence time.

(v) From (3.3) the value of the residence time at which Ŝ ∗ = S ∗0 is

τ∗ = τ∗tr =
β(1 + S ∗0 + γS

2

0)

S ∗0 − (1 + S ∗0 + γS ∗2

0 )k∗d
.

Note that the denominator of this expression is positive as by assumption

k∗d <
S ∗0

1 + S ∗0 + γS ∗2

0

.

We show in Appendix D that, when they are physically meaningful, τ∗tr ≥ τ
∗
max

with equality only when γ = 1/S ∗
2

0 .

Assuming that inequality (3.1) holds, it follows from our preceding remarks that
there are two generic steady-state diagrams and one non-generic steady-state diagram.
These are described as follows:

Case 1. Ŝ ∗1 = γ−1/2 > S ∗0 (generic). The solution branch Ŝ ∗+ is never physically
meaningful as Ŝ ∗+ > Ŝ ∗1 > S ∗0. The solution branch Ŝ ∗− is not physically meaningful
for τ∗max < τ

∗ < τ∗tr as over this parameter range Ŝ ∗− > S ∗0. The solution branch Ŝ ∗−
is physically meaningful for τ∗ > τ∗tr as we have S ∗− < S ∗0. There is a transcritical
bifurcation at τ∗ = τ∗tr, where the solution branch S ∗− intersects the washout solution
branch, and a non-physical limit point at

(S ∗, X∗, τ∗) =

(
γ−1/2,

S ∗0 − γ
−1/2

β + k∗dτ
∗
max

, τ∗max

)
.

Case 2. Ŝ ∗1 = γ−1/2 = S ∗0 (non-generic). The solution branch Ŝ ∗+ is never physically
meaningful because Ŝ ∗+ > Ŝ ∗1 > S ∗0. The solution branch Ŝ ∗− is physically meaningful
for τ∗ > τ∗tr. There is a pitchfork singularity at τ∗ = τ∗tr where the limit point on the
no-washout solution branch occurs on the washout solution branch.

Case 3. Ŝ ∗1 = γ−1/2 < S ∗0 (generic). The solution branch Ŝ ∗+ is physically meaningful
for τ∗max < τ

∗ < τ∗tr. It is not physically meaningful for τ∗ > τ∗tr, where Ŝ ∗+ > Ŝ ∗1 > S ∗0.
The solution branch Ŝ ∗− is physically meaningful for τ∗ > τ∗tr. There is a transcritical
bifurcation at τ∗ = τ∗tr, where the solution branch S ∗+ intersects the washout solution
branch, and a physically meaningful limit point at

(S ∗, X∗, τ∗) =

(
γ−1/2,

S ∗0 − γ
−1/2

β + k∗dτ
∗
max

, τ∗max

)
.
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F 1. The variation of the dimensionless substrate concentration S ∗ as a function of the dimensionless
residence time τ∗ and the inhibition constant in a well-stirred bioreactor. Stability is not shown.
The circles and boxes indicate the locations of limit point and transcritical bifurcations, respectively.
Parameter values: dimensionless death rate, k∗d = 0.028; dimensionless feed concentration, S ∗0 = 1; reactor
parameter, β = 1. The value of the dimensionless product inhibition constant is: (a) γ = 0.5 (generic), (b)
γ = 1.0 (non-generic), (c) γ = 2.0 (generic). Note that steady-state solutions for which S ∗ > S ∗0 = 1 are
not physically meaningful; see (3.2).

Figure 1 illustrates the three steady-state diagrams. Lines (a) Ŝ ∗1 = 1.414 > S ∗0,
(b) Ŝ ∗1 = 1.0 = S ∗0, and (c) Ŝ ∗1 = 0.707 < S ∗0 correspond to the first, second and third
cases, respectively. In this figure the circles and boxes indicate the locations of
limit point and transcritical bifurcations, respectively. Observe that in this figure
S ∗0 = 1. Consequently, steady-state solutions for which Ŝ ∗ > S ∗0 = 1 are not physically
meaningful as the corresponding steady-state concentration of the microorganisms is
negative; see (3.2).

3.3. Stability of the steady-state solutions

3.3.1. The washout solution The Jacobian matrix evaluated at the washout steady-
state solution is given by

J(S ∗, X∗) =

−
1
τ∗

−C

0 −
β

τ∗
+ C − k∗d

 , C =
S ∗0

1 + S ∗0 + γS ∗2

0

.
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The eigenvalues of this matrix are

λ1 = −
1
τ∗
< 0, λ2 = −

β

τ∗
+

S ∗0
1 + S ∗0 + γS ∗2

0

− k∗d.

It follows that the washout branch is always stable if

k∗d ≥ k∗d,max,2 =
S ∗0

1 + S ∗0 + γS ∗2

0

. (3.4)

In particular, the washout steady state is always stable when

k∗d ≥ 1, which implies kd ≥ µm.

This inequality makes sense “physically” because it shows that the washout steady
state is always stable if the death rate is greater than, or equal to, the maximum growth
rate.

If inequality (3.4) does not hold then the washout steady state is stable provided

τ∗ < τ∗tr =
(1 + S ∗0 + γS ∗

2

0 )β

S ∗0 − (1 + S ∗0 + γS ∗2

0 )k∗d
. (3.5)

Differentiating (3.5) with respect to the inhibition parameter γ,

dτ∗tr
dγ

=
βS ∗

3

0

[S ∗0 − (1 + S ∗0 + γS ∗2

0 )k∗d]2
. (3.6)

Thus, provided (3.4) does not hold, the value τ∗tr is an increasing function of the
inhibition constant. (Once (3.4) holds the critical value is infinity.) Differentiating
(3.5) with respect to the feed concentration gives

dτ∗tr
dS ∗0

=
β(γS

∗

0 − 1)

[S ∗0 − (1 + S ∗0 + γS ∗2

0 )k∗d]2
. (3.7)

Again, this equation is only valid as long as (3.4) does not hold. Thus if γS
∗

0 − 1 > 0
then τ∗tr is an increasing function of the inhibition constant, that is, an increase in the
feed concentration can lead to process instability. However, if γS

∗

0 − 1 < 0 then an
increase in the feed concentration can stabilize the process. Results (3.6) and (3.7)
were noted by Andrews [1] for the case k∗d = 0.

3.3.2. The no-washout solution The Jacobian matrix for the no-washout branch
can be written in the form

J(S ∗, X∗, ) =

− 1
τ∗
− A + B −C

A − B 0

 ,
A =

X∗

1 + S ∗ + γS ∗2 , B =
X∗S ∗(1 + 2γS ∗)

(1 + S ∗ + γS ∗2 )2
, C =

S ∗

1 + S ∗ + γS ∗2 .
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We have

trace J = −
1
τ∗
− (A − B), det J = C(A − B).

For physically meaningful solutions, C > 0. Thus the condition for a physically
meaningful solution to be stable is

A > B⇒ det J > 0, which implies trace J < 0.

After some algebra the condition A > B gives γS ∗
2
< 1.

We consider the cases from Section 3.2.

Case 1. Ŝ ∗1 = γ−1/2 > S ∗0 (generic). The solution branch Ŝ ∗+ is never physically
meaningful, whilst the solution branch Ŝ ∗− is not physically meaningful for τ∗max <
τ∗ < τ∗tr. These cases can be ignored. The solution branch Ŝ ∗− is physically meaningful
for τ∗ > τ∗tr as we have S ∗− < S ∗0. Moreover,

S ∗− < Ŝ ∗1 < γ
−1/2 which implies 1 > γS ∗

2

− .

Consequently, the solution branch S ∗− is stable when it is physically meaningful.

Case 2. Ŝ ∗1 = γ−1/2 = S ∗0 (non-generic). The solution branch Ŝ ∗+ is never physically
meaningful, whilst the solution branch S ∗− is always physically meaningful (τ∗ > τ∗tr).
We have

S ∗− < Ŝ ∗1 = γ−1/2 which implies 1 > γS ∗
2

− .

Consequently, the solution branch S ∗− is stable when it is physically meaningful.

Case 3. Ŝ ∗1 = γ−1/2 < S ∗0 (generic). The solution branch Ŝ ∗+ is physically meaningful
for τ∗max < τ

∗ < τ∗tr. It is not physically meaningful for τ∗ > τ∗tr, where Ŝ ∗+ > Ŝ ∗1 > S ∗0.
We have

S ∗+ > Ŝ ∗1 = γ−1/2 which implies 1 > γS ∗
2

+ .

Thus the solution branch S ∗+ is unstable when it is physically meaningful. The solution
branch Ŝ ∗− is always physically meaningful when it is defined, that is, provided that
τ∗ > τ∗max. We have

S ∗− < Ŝ ∗1 = γ−1/2 which implies 1 > γS ∗
2

− .

Consequently, the solution branch S ∗− is stable when it is physically meaningful.
Steady-state diagrams are shown in Figure 2. Only physically meaningful solutions
have been plotted, that is, solutions for which S ∗ > S ∗0 are not shown.

3.4. Asymptotic solutions Asymptotic solutions are presented for the cases of
residence times just above that at which the no-washout solution becomes physically
meaningful and at large residence times.
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F 2. The two generic and one non-generic steady-state diagrams. Only physically meaningful
solutions are shown. The stability of the washout solution changes at the bifurcation point. Parameter
values as in Figure 1.

3.4.1. Residence times slightly higher than that at which the no-washout solution
becomes physically meaningful (τ∗ − τ∗tr� 1) We have the following approximations
to the stable steady-state solution.

For Case 1, line (a) in Figure 1, a transcritical bifurcation occurs at

τ∗ = τ∗tr =
(1 + S ∗0 + γS

2

0)β

S ∗0 − (1 + S ∗0 + γS ∗2

0 )k∗d
,

where the washout solution branch and the no-washout solution branch intersect at the
point

(S ∗, X∗, τ∗) = (S ∗0, 0, τ∗tr).

For values of the residence time slightly larger than the value at the bifurcation point,
the concentrations along the no-washout branch are given by

S ∗− ≈ S ∗0 −
[−k∗d + (1 − k∗d)S ∗0 − k∗dγS ∗

2

0 ]2

(1 − γS ∗2

0 )β
(τ∗ − τ∗tr) + O(τ∗ − τ∗tr)

2,

X∗ =
[−k∗d + (1 − k∗d)S ∗0 − k∗dγS ∗0

2]

(1 − γS ∗2

0 )β2S ∗0
(τ∗ − τ∗tr) + O(τ∗ − τ∗tr)

2.
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For Case 2 (γ−1/2 = S ∗0), line (b) in Figure 1, a pitchfork bifurcation occurs at

τ∗ = τ∗tr = τ∗max =
(1 + 2

√
γ)β

1 − (1 + 2
√
γ)k∗d

,

where the washout solution branch and the no-washout solution branch intersect at the
point

(S ∗, X∗, τ∗) = (S ∗0, 0, τ∗tr).

For values of the residence time slightly larger than the value at the bifurcation point,
the concentrations along the no-washout branch are given by

S ∗− ≈ S ∗0 −
[S ∗0β]1/2

gβ
A(τ∗ − τ∗tr)

1/2 + O(τ∗ − τ∗tr),

X∗ ≈
A2

[S ∗0β]1.5
(τ∗ − τ∗tr)

1/2 + O(τ∗ − τ∗tr),

A = 1 − k∗d − 2k∗dS ∗0.

For Case 3 (γ−1/2 < S ∗0), line (c) in Figure 1, a limit point bifurcation occurs at

τ∗ = τ∗max =
(1 + 2

√
γ)β

1 − (1 + 2
√
γ)k∗d

.

At this point the no-washout solution branch is given by

(S ∗, X∗, τ∗) =

(
γ−1/2,

S ∗0 − γ
−1/2

β + k∗dτ
∗
max

, τ∗max

)
.

For values of the residence time slightly larger than the value at the bifurcation point,
the concentrations along the no-washout branch are given by

S ∗− ≈ γ
−1/2 −

[γ1/2β]1/2

gβ
A(τ∗ − τ∗tr)

1/2 + O(τ∗ − τ∗tr),

X∗ ≈
S ∗0 − γ

−1/2

β
A +

A2

[γ1/2β]1.5
(τ∗ − τ∗tr)

1/2 + O(τ∗ − τ∗tr),

A = 1 − k∗d − 2k∗dγ
1/2.

3.4.2. Large residence times (τ∗ � 1) Only the solution branch S ∗− is meaningful
for large residence times. We have

S ∗− ≈
1 − k∗d − A

2k∗dγ
+

1 − k∗d − A

2Ak∗2

d γ

β

τ∗
+ O

(
1
τ∗

)2

, (3.8)

X∗ ≈

S ∗0
k∗d
−

[1 − k∗d − A]

2k∗2

d γ

 1
τ∗

+ O

(
1
τ∗

)2

,

A = [(1 − k∗d)2 − 4k∗dγ]1/2.
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The substrate concentration at high residence times (3.8) is independent of the
substrate concentration in the feed (S ∗0). For small values of the inhibition constant
these simplify to

S ∗− ≈
1

1 − k∗d
+

2k∗
2

d

(1 − k∗d)3
γ +

 1
(1 − k∗d)2

+
3k∗

2

d

(1 − k∗d)4
γ

 β

τ∗
+ O(τ∗

−2
, γ2),

X∗ ≈

S ∗0
k∗d
−

1
1 − k∗d

−
k∗

2

d

(1 − k∗d)3
γ

 1
τ∗

+ O(τ∗
−2
, γ2).

This shows the increase (decrease) in substrate (biomass) concentration at high
residence times due to small inhibition.

In the following we define the limiting substrate concentration at infinite residence
time, S ∗τ∗=∞. In the case of no substrate inhibition, γ = 0, and infinite residence time,

S ∗(τ∗ =∞, γ = 0) =
k∗d

1 + k∗d
.

As the value of the substrate inhibition constant γ increases from zero, the value for
S ∗(τ∗ =∞, γ) decreases. In the case of small substrate inhibition, γ� 1, and infinite
residence time,

S ∗(τ∗ =∞, γ� 1)
S ∗(τ∗ =∞, γ = 0)

= 1 +
k∗d

(1 − k∗d)2
γ.

Thus the proportional increase in substrate concentration at high residence times,
compared to a system without substrate inhibition, is independent of the substrate
concentration in the feed.

4. Conclusion

We have investigated a reactor model for the interaction between a microorganism
and a rate-controlling substrate subject to substrate inhibition. Substrate inhibition was
modelled using the Andrews function. We considered a generalized reactor model in
which the well-stirred flow reactor is a limiting case and included a microorganism
decay coefficient.

Models of this form have been comprehensively studied in the mathematics
literature for generalized inhibition functions. However, chemical engineers use
specific reaction functions to model real systems. Thus we have revisited this problem
to fill out some “missing details”.

A scaling of the equations reveals that the key dimensionless parameter which
controls the degree of inhibition is the quotient

γ =
Ks

KI
.
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Two generic steady-state diagrams exist for this model. For low values of the feed
concentration (S ∗0 < γ

−1/2, curve (a) in Figure 2), there is only ever one stable steady-
state solution. Thus the steady-state diagram is similar to those for systems where
the specific growth rate function is a monotonic increasing function of the substrate
concentration. For high values of the feed concentration (S ∗0 > γ

−1/2, curve (c) in
Figure 2), there is a region of bistability in which the washout solution and the no-
washout solution are both locally stable and the ultimate behaviour of the system
depends upon the initial conditions.

We generalized earlier findings of Andrews [1] regarding how the critical value
of the residence time responds to changes in the substrate concentration and/or the
inhibition.

Asymptotic solutions were found in the limit of small and large values of the
inhibition constant. Knowledge of the steady-state solutions and their asymptotic
limits may be useful to estimate parameter values from experimental data.
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Appendix A. Symbols used

We denote the concentration of the substrate S and the microorganism X by |S | and
|X|, respectively. Further notation is listed in Table 1.

Appendix B. Global stability of the washout branch

Here we obtain some results which ensure that limt∗→∞ X∗ = 0, that is, that the
“washout solution” (S ∗, X∗) = (S ∗0, 0) is globally stable. We first show that if k∗d is
greater than some critical value then limt∗→∞ X∗ = 0. We then show that when the
decay parameter is lower than the critical value we have limt∗→∞ X∗ = 0 provided that
the residence time τ∗ is sufficiently low.

Consider equation (2.5):

dX∗

dt∗
= −

β

τ∗
X∗ + [µ(S ∗) − k∗d]X∗.

If k∗d ≥ µ(S ∗) then
dX∗

dt∗
≤ −

β

τ∗
X∗

and it follows that limt∗→∞ X∗ = 0.
The maximum value of µ(S ∗) occurs when S ∗ = S ∗crγ

−1/2:

µ(S ∗)max =
1

1 + 2
√
γ

;
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T 1.

Symbol Description Units

F Flow rate through the bioreactor dm3 hr−1

J Jacobian matrix —
KI Noncompetitive substrate inhibition constant |S |
Ks Monod constant |S |
S Substrate concentration within the bioreactor |S |
S ∗ Dimensionless substrate concentration S ∗ = S/Ks —
S cr The value of the substrate concentration at which the specific

growth rate obtains its maximum value
|S |

S ∗cr The value of the dimensionless substrate concentration at which
the dimensionless specific growth rate obtains its maximum
value

—

S ∗l Dimensionless substrate concentration at the limit point
bifurcation

—

Ŝ ∗ Dimensionless substrate concentration along the no-washout
solution branch

—

S 0 Substrate concentration in the feed |S |
S ∗0 Dimensionless substrate concentration in the feed S ∗0 = S 0/Ks —
V Volume of the bioreactor dm3

X Concentration of microorganisms within the bioreactor |X|
X∗ Dimensionless microorganism concentration X∗ = X/(αsKs) —
kd Decay coefficient hr−1

k∗d Dimensionless decay coefficient k∗d = kd/µm —
k∗d,max,1 A critical value of the dimensionless decay coefficient k∗d,max,1 =

1/(1 + 2
√
γ)

—

k∗d,max,2 A critical value of the dimensionless decay coefficient k∗d,max,2 =

S ∗0/(1 + S ∗0 + γS ∗
2

0 )

—

t Time hr−1

t∗ Dimensionless time t∗ = µmt —
αs Substrate yield factor, the ratio of the weight of product

produced to the weight of substrate consumed
|X||S |−1

β Reactor parameter, 0 ≤ β ≤ 1 —
γ Dimensionless substrate inhibition constant γ = Ks/KI —
µ(S ) Specific growth rate function hr−1

µm Maximum specific growth rate in the absence of substrate
inhibition

hr−1

τ Residence time hr
τ∗ Dimensionless residence time τ∗ = Vµm/F —
τ∗max A value of the dimensionless residence time

τ∗max =
(1 + 2

√
γ)β

1 − (1 + 2
√
γ)k∗d

—

τ∗tr The value of the dimensionless residence time at the

transcritical bifurcation τ∗tr =
(1 + S ∗0 + γS

2

0)β

S ∗0 − (1 + S ∗0 + γS ∗20 )k∗d
—
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see (2.6) and (2.7). Thus the washout solution is globally asymptotically stable if
k∗d ≥ k∗d,max,1 = 1/(1 + 2

√
γ).

When S ∗0 < γ
−1/2 the value of the substrate concentration at which the growth

rate function obtains its global maximum is outside the invariant region. The local
maximum of the growth rate function within the invariant region is

µ(S ∗)max =
1

1 + S ∗0 + γS ∗2

0

.

The washout branch is now globally stable if

k∗d ≥ k∗d,max,2 =
S 0

1 + S ∗0 + γS ∗2

0

.

Note that when S ∗0 = γ−1/2 we have kd,max,2 = kd,max,1. We now consider the case
when k∗d is lower than these critical values. Using an identical method it can be shown
that:

(i) If S ∗ ≥ γ−1/2 and k∗d < k∗d,max,1 = 1/(1 + 2
√
γ) then we have limt∗→∞ X∗ = 0 when

τ∗ < τ∗max =
(1 + 2

√
γ)β

1 − (1 + 2
√
γ)k∗d

.

This bound is sharp because the lower branch of the no-washout solution (Ŝ ∗−) is
locally stable when τ∗ > τ∗max.

(ii) If S ∗ < γ−1/2 and k∗d < k∗d,max,2 = S ∗0/(1 + S ∗0 + γS ∗
2

0 ) then we have limt∗→∞ X∗ = 0
when

τ∗ < τ∗tr =
(1 + S ∗0 + γS ∗

2

0 )β

S ∗0 − (1 + S ∗0 + γS ∗2

0 )k∗d
.

This bound is sharp because (3.4) shows that the washout solution is locally
unstable when k∗d < k∗d,cr if τ∗ > τ∗tr.

Appendix C. Analysis of the no-washout solution branch

The substrate concentration Ŝ ∗ satisfies the quadratic equation

G(Ŝ ∗) = aŜ ∗
2
− bŜ ∗ + c = 0,

a = (β + k∗dτ
∗)γ > 0,

b = (1 − k∗d)τ∗ − β,

c = (β + k∗dτ
∗) > 0.

(C.1)

If b < 0 then the solutions of (C.1) are non-physical because they are both negative. If
b > 0 then the solutions of (C.1) are both positive. (Recall from (3.2) that a positive
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value for S ∗ does not guarantee that the steady-state solution is physically meaningful.)
Thus a necessary condition to have a physically meaningful solution is

b > 0, which implies τ∗ > τ∗b =
β

1 − k∗d
> 0.

(From (3.1) we can assume 1 − k∗d > 0.)
The discriminant of (C.1) is given by

D = b2 − 4ac = A1(τ∗ − τ∗1)(τ∗ − τ∗2),

A1 = [1 − (1 + 2
√
γ)k∗d][1 − (1 − 2

√
γ)k∗d] > 0,

τ∗2 =
(1 + 2

√
γ)β

1 − (1 + 2
√
γ)k∗d

= τ∗max > 0, τ∗1 =
(1 − 2

√
γ)β

1 − (1 − 2
√
γ)k∗d

< τ∗2.

Hence the discriminant is positive when either τ∗ > τ∗2 or τ∗ < τ∗1. Observe that

τ∗2 =
(1 + 2

√
γ)β

1 − (1 + 2
√
γ)k∗d

>
β

1 − k∗d
= τ∗b.

Thus when τ∗ > τ∗2 the solutions of (C.1) are both positive and may be physically
meaningful. The case τ∗ < τ∗1 is only of interest when 0 < τ∗ < τ∗1. As k∗d > 0 the
conditions for the value of τ∗1 to be positive are

1 − 2
√
γ > 0 and 1 − (1 − 2

√
γ)k∗d > 0.

Assuming these conditions hold, it follows that

0 < τ∗1 <
β

1 − k∗d
= τ∗b.

Thus when 0 < τ∗ < τ∗1 the solutions of (C.1) are non-physical because they are both
negative.

We conclude that the solutions of (C.1) are positive only when τ∗ ≥ τ∗max.

Appendix D. To show that τ∗
tr
≥ τ∗max

We have

τ∗tr =
β(1 + S ∗0 + γS

2

0)

−k∗d + (1 − k∗d)S ∗0 − k∗dγS ∗2

0

=
β

A − k∗d
,

τ∗max =
(1 + 2

√
γ)β

1 − (1 + 2
√
γ)k∗d

=
β

B − k∗d
,

A =
1

1 + γS ∗0 + 1
S ∗0

=
S ∗0

1 + S ∗0 + γS ∗2

0

, B =
1

1 + 2
√
γ
.
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The question is only meaningful when both quantities are positive. Thus we may
assume that A > k∗d and B > k∗d. The statement follows if we can show that B ≥ A.

The number A is a particular value of the function

µ(S ∗) =
S ∗

1 + S ∗ + γS ∗2 .

The maximum value of this function occurs when γ = S ∗
−2

0 and is

µ(S ∗)max =
1

1 + 2
√
γ

= B.

It follows that A = B when γ = S ∗
−2

0 ; otherwise B > A. Thus τ∗cr ≥ τ
∗
max.
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