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The spreading of transmissible infectious diseases is inevitably entangled with the

dynamics of human population. Humans are the carrier of the pathogen, and the

large-scale travel and commuting patterns that govern the mobility of modern

societies are defining how epidemics and pandemics travel across the world. For

a long time, the development of quantitative spatially explicit models able to

shed light on the global dynamics of pandemic has been limited by the lack of

detailed data on human mobility. In the last 10 years, however, these limits have

been lifted by the increasing availability of data generated by new information

technologies, thus triggering the development of computational (microsimulation)

models working at a level of single individuals in spatially extended regions

of the world. Microsimulations can provide information at very detailed spatial

resolutions and down to the level of single individuals. In addition, computational

implementations explicitly account for stochasticity, allowing the study of multiple

realizations of epidemics with the same parameters’ distribution. While on the one

hand these capabilities represent the richness of microsimulation methods, on the

other hand they face us with a huge amount of information that requires the use of

specific data reduction methods and visual analytics.

In the study of the global spreading of epidemics, it is now possible to develop

models that keep track of single individuals flying on specific airline connections.

This approach allows the construction of networks characterizing the spreading of

the infection from one area of the world to another (generally, urban or census

areas). These networks identify in each microsimulation the “infector” city of each

“infected” city (Balcan et al., 2009a; Eggo et al., 2009). In other words, every time

an individual carries the disease from a city i to city j, we draw a link that shows

that the infection propagated along that connection. On its turn, each “infectee”

city can be the “infector” of another city, giving rise to a tree that characterizes the

spatial spreading of the disease at the city level, as measured from the movement of

single individuals.

Keeping track of the infection process produces a considerable amount of data

in each single microsimulation; data which are then multiplied by the number of

stochastic realizations needed to extract meaningful statistical patterns. While in

each realization one single invasion tree emerges, by repeating the microsimulation

process, each city j can have a single infector source i or several possible infector

https://doi.org/10.1017/nws.2014.5 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2014.5


End note 133

0.5

0.4

0.3
0.75

0.5
0.25

0.8 1

1

2
2

3

4
3

40

0

(a) (b)

Fig. 1. Examples of (a) an infection network, and (b) infection tree. On the network,

each directed edge weight represents the probability of the source node being

responsible for introducing the disease on the target one. The infection tree is built

by taking into account the paths with higher probability. (color online)

sources. The average of pij over all realizations will give us the resulting probability

that the infection will propagate along the connection linking city i to city j. These

averages are then used as the weight of the edge between the corresponding nodes

on the network, as shown in Figure 1(a).

Generally, the resulting networks are extremely complex as the infection of each

city j might follow alternative routes in each realization. For this reason, it is

convenient to use data reduction strategies for the geographical infection trees

that consider only the most likely transmission routes. One possible technique,

for a set of simulations sharing the same source of the outbreak, is the ex-

traction of the Directed Minimum Spanning Tree using the Chiu–Liu/Edmonds

algorithm (Chu & Liu, 1965; Edmonds, 1967). In this case, the cost of each edge wij

is given by the probability 1 − pij . This procedure results in a directed spanning tree

where every node j has no more than one incoming edge, corresponding to the most

likely infection path that leads to the outbreak at each infected node (Figure 1(b)).

Here we consider the microsimulations of global epidemic spreading generated

by the Global Epidemic and Mobility (GLEAM) model (Balcan et al., 2009a;

Balcan et al., 2010). GLEAM is an individual-based stochastic model that considers

more than 3,300 census areas in 220 countries of the world and their population

on a resolution of 15 × 15 minutes of arc. It integrates official airline data

and commuting patterns among all census areas. Within each subpopulation, a

compartmental structure models the disease spread among individuals. Individuals

can move from one subpopulation to another along the mobility network; in this

way, an outbreak originated in a seed subpopulation can lead to a global scale

epidemic. For each realization, the model tracks the infection tree at the single

individuals level and allows the construction of the epidemic tree. The detailed

algorithms for the construction of the epidemic tree in the GLEAM model can be

found in Balcan et al. (2009a). The GLEAM model has been used in the real time

analysis of the H1N1 2009 pandemic, and the calibration and the results obtained

with the model are reported in Balcan et al. (2009b) and Tizzoni et al. (2012).

We consider a hypothetical pandemic with the same parameters of the H1N1

2009 pandemic (Balcan et al., 2009b), starting in Hanoi, Vietnam. The infection tree

obtained is shown with the nodes in their corresponding geographical location in

Figure 2, along with a color code indicating the disease arrival time at each node.

From Vietnam the epidemic spreads to the main hubs in Asia – Singapore, Bangkok,

Tokyo, and Hong Kong. From those hubs the epidemic finds its way to the American

Continent, Europe, and Australia. It is interesting however to note that different
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Fig. 2. Infection tree for an outbreak from Hanoi, Vietnam, over 1,000 simulations. The size of each node is proportional to the population,

and the color corresponds to the time of disease arrival at that node from dark red (earlier) to light yellow (later). Each concentric arc on

the circular plot on the bottom right is proportional to the number of locations invaded at 30 days intervals since the outbreak. The full

circle representing 1,036 locations, which occurred in the interval between 210 and 240 days since the outbreak in Hanoi. (color online)
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Fig. 3. Network representation of the infection tree. The origin of the outbreak is

the city of Hanoi, Vietnam, colored in black. The color code for the nodes follows

the same relation as in Figure 2, with dark red meaning early arrival of the disease

and light yellow meaning a wider time gap between the outbreak in Hanoi and the

arrival on the corresponding node. The size of each node is proportional to the

degree. The labels are related to the hub at the corresponding branch. (color online)
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pathways are used by the epidemic to reach different parts of the United States or

Europe (see Fig. 3). For instance, the United Kingdom and the Southeastern US

are reached through Dubai that acts as the Middle East gateway. Noticeably, this

infection tree is indeed extremely different from the one modeled and observed in

the data concerning the actual H1N1 pandemic starting from Mexico. This implies

a sensitivity to the initial conditions of the disease that makes the study of infection

tree extremely relevant. One possibility is to create a catalog of possible infection

trees that could be used to chart the next pandemics at their very early stages of

unfolding.

It is worth stressing that by construction the minimum spanning tree algorithm

provides for each city the most likely path from the seed, but it neglects alternative

routes that might have probabilities of occurrence just slightly smaller than those

selected by the algorithm. Other algorithms, weighting scheme, and backbone filtering

schemes can thus be used to provide alternative definition of the infection tree

(Eggo et al., 2009; Serrano et al., 2009; Brockmann & Helbing, 2014). The infection

tree also lends itself to further analysis in which it is possible to evaluate the role

of each node or group of nodes in the spread as well as shed light on the global

circulation of seasonal influenza. In summary, the use of the infection tree provides

a meaningful representation of the epidemic spreading, statistically aggregating the

microsimulation results, thus proving this data reduction technique a valuable visual

tool in the mapping of the progression of epidemics in the case of scenario analysis

and pandemic preparation plans.
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