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Abstract

Stochastic concavity of the output process with respect to buffer sizes is
established in a series of .1MIIIB queues with loss at the first node.

BLOCKING; FINITE CAPACITY QUEUES; MONOTONICITY

1. Introduction

This note is concerned with a model that has received much attention in the literature.
Consider K ·IM/1IB queues in series and denote the collection by j{= {·IM/1/Bi}~t. For
convenience, the numbering of the nodes is in the reverse order of service. This notation
means that queue i has one server with i.i.d. exponential service times and waiting room of
size B: Let the service rate in node i be denoted by u, and consider a deterministic sequence
of arrivals (an). An arriving job that finds buffer K full is lost. The server in node i idles
whenever node i-I is full. This discipline is called 'communication blocking'. Assume that
the system is initially empty and denote by (D(t»t~O the departure process from the first
node.

The aim is to show that (D(t» is stochastically concave with respect to the vector of buffer
sizes B = (B t, · .. , BK ) . This formulated with the aid of the following definition.

Definition 1. A function p :Z ~~ R is concave if for all B E Z ~, for all b = (b t, • • • , bK) E

ZK such that Ibtl, ... , IbKI, are relatively prime, and for alII, m E Z+ such that B + mB and
B - lb are in Z~,

(1) (/+ m)p(B) ~ Ip(B + mb) + mp(B - Ib).

The next result restricts the range on which (1) has to be verified.

Lemma 1. Inequalities (1) hold if for all b E ZK as described in Definition 1, and for all
BEZ~,

2p(B) ~ p(B + b) + p(B - b).

Proof. By straightforward induction on I and m.

For a vector b E ZK as required in Definition 1, denote by (D+(t» (respectively, (D-(t»)
the departure process from the first node of a network identical to j{ but with buffer size
vector B + b (respectively, B - b). Denote that network by N" (respectively, j{-). We show
that

(2) 2D(t) ~st D+(t) + D-(t).

(Recall that X~st Y if P{X ~x} ~ P{Y ~x} for all x E R.)
The proof relies on a straightforward sample path argument which by now is routinely used

in the literature in order to establish various monotonicity properties. In particular,
monotonicity properties of the model examined here are studied in [4]. A version of this note
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appeared as [1]. In the originally submitted version of this note the construction of Theorem 1
was used to prove concavity of the throughput only with respect to each buffer size. It has
since been pointed out to us that in the same construction and with a small modification of the
original proof, the throughput is seen to be concave with respect to the vector of buffer sizes
in the sense of Definition 1. Meester and Shantikumar [2] have independently obtained this
stronger result. They employ the same construction but they derive an expression for the
number of jobs that have departed from the network as a function of time. They also provide
an application of the result by proving one of the many 'folk' conjectures in optimal buffer
allocation.

Second-order properties of networks have important algorithmic implications for problems
of optimal allocation. See Shantikumar and Yao [3] and references therein for applications
and other work on stochastic convexity. Our results stop short of a characterization of the
optimal buffer allocation in a series of ·IM/1/B queues. Further research is suggested in
Section 3.

2. The main result

The proof consists in constructing the three processes corresponding to the three networks
J(, J(+ and J(-, so that (2) holds almost surely. Recall that the virtual service process of an
exponential server with rate JJ is a Poisson process with rate JJ. When the queue is not empty,
a customer departs at each point of the virtual service process. For network J( and for
i = 1, · · · , K the following quantities are defined:

s~: the nth service time in the virtual service process at node i,
N;(t): the number of jobs in the ith queue at time t.

We consider the network at the discrete time instants

1'" = O.

Also, we shall find it useful to set

Xo(t) = D(t),
k

Xk(t) = D(t) + L N;(t),
i=1

k=l,···, K.

Similar processes are defined for networks J(+ and J(-. Queueing processes in networks J(+
and J(- .are constructed by setting

(3)

(4)

n = 1, 2, ... , i = 1, ... K,

n =1,2,···

It is assumed that networks J(+ and J(- also start empty at time O.
The validity of (2) is a corollary of the following.

Theorem 1. In the construction of (3) and (4) one has, for t ~ 0,

(5) 2Xi(t) ~ X:(t) + X;(t), a.s., i = 0, 1, ... , K.

Proof Inequalities (5) are trivially true for I = 0 and assume that they hold for
I = 1, ... , n. We prove that they hold for I = n + 1. For some m > 0 we distinguish between
the following cases.

(a) 1',,+1 =S:,.. Inequalities (5) can be violated at 1',,+1 only for i = O. There are two
possibilities.

(i) 2Xo(1',,) = X;(1',,) + Xo(1',,). Then (5) can be violated only if

(6) N1(1',, ) = 0 and either N:(Tn) > 0 or N~(Tn) > O.

But this implies 2X1(1',,) < X:(1',,) + X~(1',,), a contradiction.
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(ii) 2Xo(~) =X;(~) + Xo(~) + 1. This possibility leads to a similar contradiction.
(b) Tn+ 1 = S:a+ 1

• Inequalities (5) can be violated at Tn+ 1 only for i = k. There are two
possibilities.

(i) 2Xk(~) =xt(~) + Xk(~). Then (5) can be violated in either of two situations.
First, if

(7) Nk(~) = B, and either Nt(~)< B, + b, or Nk(~) < B, - bi,

then Nt(Tn ) + Nk(.~) < 2Bk and hence 2Xk- 1(Tn ) < Xt-l(~) + Xk-l(~)' a contradiction.
Second, the situation where .

(8)

obtains a contradiction as in case (a).
(ii) 2Xk(~) = xt(~) +Xk(~) + 1. This possibility leads to a similar contradiction.

(c) T;+ 1 = am. This case is similar to case (b).
The only modification necessary in the proof of cases (a)(ii) and (b)(ii) is the replacement

of 'either· .. or' stagements in (7), (8) and (9) by 'both· .. and' statements.

Remark 1. Other types of blocking are also possible (e.g., manufacturing blocking).

3. Conclusions

If the throughput of the network considered above is denoted by p(B) then we have shown
that p(.) is concave with respect to vector B in the sense of Definition 1. It follows in
particular that p(.) is a concave function on the line E~l B; = M for any integer M. Set

p*(M) =max {P(H):~ Hi = M}.

By B1 denote the allocation that achieves the optimal throughput. One expects (Mitra,
personal communication, 1987) that

p*(M + 1) = p(B1 + e.), for some i = 1, ... , K,

where e, is the unit vector corresponding to the ith coordinate. Establishing this property
should have important algorithmic consequences.
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