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Abstract

The distributions that result from zero-truncating mixed Poisson (ZTMP) distributions
and those obtained from mixing zero-truncated Poisson (MZTP) distributions are
characterised based on their probability generating functions. One consequence is
that every ZTMP distribution is an MZTP distribution, but not vice versa. These
characterisations also indicate that the size-biased version of a Poisson mixture and,
under certain regularity conditions, the shifted version of a Poisson mixture are neither
ZTMP distributions nor MZTP distributions.
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1. Introduction

Nonnegative integer (count) data are frequently overdispersed, which means that the vari-
ability is larger than that expected under the Poisson model. This overdispersion is often a
consequence of a lack of homogeneity of the sampled population, and can be modelled through
a two-stage process in which the distribution of each count would be Poisson but with an
expected value that changes randomly from count to count. By modelling the distribution of
that expectation, one is naturally led to the use of Poisson mixture models.

Poisson mixture models frequently used in practice include finite mixture models in which the
mixing distribution has finite support, as well as infinite mixture models, such as the negative
binomial model, the generalized inverse Gaussian–Poisson model, or the Tweedie–Poisson
model. The literature dealing with these models and their applications goes back more than
fifty years and is far too extensive to be covered adequately in this introduction.

Apart from being overdispersed, count data often have a proportion of zeros that is larger
than that expected from the initial model, which leads to the need for zero-modified models.
There are also many instances where the value zero cannot be observed as a consequence of
the method of ascertainment, which leads to the need for zero truncated count models.
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When overdispersion and zero truncation appear together, it is most natural to resort to zero
truncated mixed Poisson (ZTMP) models. The characterisation of the ZTMP models is very
relevant, because these models mimic the mechanistic way in which positive integered data, such
as word or species frequency count data, are typically generated. In these instances, using mixed
Poisson models arises naturally because different words or species have different frequencies
of appearance, and the mixing distribution can be interpreted as the word or species frequency
distribution. Conditioning on the zeros not being observed, and hence truncating zero, arises
naturally from the fact that most often we do not know the total number of different words in
the vocabulary or species in the ecosystem. Using ZTMP models in these instances is what
allows us to estimate the mixing distribution and the probability at zero of the corresponding
untruncated Poisson mixture model, which are features that help characterise the vocabulary
or the population. Among many other references, in [2], [5], [11], and [19] the ZTMP models
are used to fit species frequency count data in ecology, and in [1], [8], [14], [17], and [18] they
are used in word frequency count data in stylometry and in bibliometry data.

Mixed zero-truncated Poisson (MZTP) distributions are also distributions of random vari-
ables (RVs) on the strictly positive integers that are more dispersed than expected from the
zero-truncated Poisson distributions.

The main goal of this paper is to characterise the ZTMP distributions and the MZTP
distributions by means of their probability generating functions (PGFs), and to provide tools to
help recognize whether or not a distribution belongs to any of these two families. Recognizing
which models are ZTMP and which are not is especially relevant when one intends to use them
on data generated through ZTMP mechanisms.

Böhning and Kuhnert [3] proved that when the mixing distribution is finite, the set of ZTMP
distributions and the set of MZTP distributions are equivalent. Here it is found that when
the mixing distribution is allowed to have infinite support, these two sets of distributions
are no longer equivalent. From our characterisations, it also follows that the size-biased
version of a mixed Poisson distribution and, under a certain regularity condition, the shifted
version of a mixed Poisson distribution are neither ZTMP distributions nor MZTP distributions.
Instead, an alternative transformation of mixed Poisson distributions into strictly positive count
distributions that are guaranteed to be MZTP, and which, under regularity conditions, are also
guaranteed to be ZTMP, is proposed.

This paper is organized as follows. In Section 2 we provide definitions and present a known
characterisation of mixed Poisson distributions. In Section 3 we characterise the PGFs of ZTMP
models, and in Section 4 we characterise the PGFs of MZTP models. In Section 5 we compare
these two sets of models based on the characterisations obtained, and in Section 6 we present
some consequences of these characterisations. For an application of these characterisations
to help describe a natural extension of the zero truncated Tweedie–Poisson mixture model,
see [20].

2. Background and definitions

2.1. Definitions

The Poisson distribution of parameter λ is the distribution of the number of occurrences
of a random event in a given interval of time or a given area, under the assumptions that the
events take place independently, and that the probability of one event occurring over a short
time interval is λ times the length of the interval. These hypotheses are very often too restrictive
to hold in practice.
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A common way to adapt the Poisson model in order to fit real data is to assume that its
mean parameter, λ, is a random variable instead of an unknown constant, which leads to what
is known as a mixed Poisson distribution. Let us assume that, for a given constant t , λ = �t ,
where � is a nonnegative RV with mean equal to 1 and distribution function U . Following
Grandell’s notation [7, p. 13], we say that a count RV, M , is mixed Poisson distributed with
structure distribution U , MP(t, U ), if and only if

P(M = k) =
∫ +∞

0

(lt)k

k! e−lt dU(l) for k = 0, 1, 2, . . . .

Note that if M ∼ MP(t, U ) then M|� follows a Poisson distribution of parameter �t .
The PGF of a count RV N with P(N = k) = pk , is defined as

h(s) = E[sN ] =
+∞∑
k=0

pks
k

for any s in the series convergence domain. The PGF of an RV depends only on its probability
distribution, and two RVs have the same PGF if and only if they have the same probability
distribution. Observe that any PGF is a power series verifying that h(1) = 1, h(0) = p0, and
pk = h(k)(0)/k!, where h(k)(s) denotes the kth derivative of h(s), and that if the kth factorial
moment of the corresponding RV exists then it is equal to h(k)(1).

The PGF of a Poisson distribution with parameter λ is h(s) = exp(λ(s − 1)). If M follows
an MP(t, U ) and we denote by û(v) the Laplace transform of �,

û(v) =
∫ +∞

0
e−lv dU(l), (1)

the PGF of M is
hM(s) = û(t (1 − s)). (2)

A function whose derivatives, f (n)(s), exist in an interval (a, b) is said to be absolutely monotone
in (a, b) if and only if

f (n)(s) ≥ 0 for all s ∈ (a, b) and n = 0, 1, 2, . . . , (3)

and it is said to be strictly absolutely monotone if it satisfies (3) after replacing ‘≥’ by ‘>’.
Furthermore, a function f (s) is a PGF if and only if it is absolutely monotone in (0, 1) and
f (1) = 1 (see, e.g. [6, pp. 223, 439]).

2.2. Mixed Poisson characterisation

Puri and Goldie [15] provided a characterisation of a mixed Poisson distribution based on its
PGF, which also appears in [7, Proposition 2.2, p. 24]. This result states that a nondegenerated
count RV M with PGF hM(s) is mixed Poisson distributed if and only if hM(s) is absolutely
monotone in (−∞, 1). A given function is called analytical in the neighbourhood of x = a if an
expansion of f (x) as a convergent power series in (x −a) is possible in this neighbourhood [4].
Given that a PGF is analytical, we could replace the absolute monotonicity condition by the
strict absolute monotonicity condition in this characterisation, as long as we exclude from
consideration the degenerate distribution at 0, as is done in the rest of the paper. Hence, this
result can be reformulated as follows.
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Proposition 1. A function hM(s) is the PGF of an RV M with a mixed Poisson distribution
different from the degenerate distribution at 0 if and only if

(a) hM(1) = 1;

(b) it is analytical in (−∞, 1);

(c) all the coefficients of the series expansion of hM(s) about any point s0 in (−∞, 1) are
strictly positive, or, equivalently, hM(s) is strictly absolutely monotone in (−∞, 1).

Remark 1. Equations (1) and (2) imply that the PGF of a Poisson mixture, hM(s), is nonnega-
tive. As a consequence, the limit of hM(s) at −∞ is always nonnegative. In the case where the
limit is strictly positive, the RV may be seen as a mixture of an RV degenerate at 0 and a mixed
Poisson distribution with zero limit at −∞. Hence, the PGF of a mixed Poisson distribution
either has limit 0 at −∞ or it is equal to a constant plus a PGF with limit 0 at −∞.

The PGF of the negative binomial distribution is

h(s) =
(

1 − θ

1 − θs

)α

, 0 < θ < 1, α > 0, (4)

the PGF of the logarithmic series distribution is

h(s) = ln(1 − θs)

ln(1 − θ)
, 0 < θ < 1,

and the PGF of the Hermite distribution is

h(s) = eα(s−1)+β(s2−1), α, β > 0.

In Figure 1 we present these three functions for a particular set of values for θ , α, and β.
Given that the first derivative of the PGF of the Hermite distribution takes the value 0 at a point
s0 ∈ (−∞, 1), and that the PGF of the logarithmic series distribution tends to −∞ when s

tends to −∞, these two models cannot be mixed Poisson distributions.
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Figure 1: Probability generating functions of the negative binomial distribution (solid line) with θ = 0.3
and α = 3, the logarithmic series distribution (dash–dot line) with θ = 0.75, and the Hermite distribution

(dashed line) with α = 0.5 and β = 1
20 .
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3. ZTMP distribution

The zero-truncated version of a count variable M , also known as its positive version, is the
RV with probability at any given k ≥ 1 equal to that which results from conditioning on the
fact that the original RV does not take the zero value (see, e.g. [9, pp. 181–184]).

In particular, if M is mixed Poisson distributed with a PGF as in (2) then its zero-truncated
version, N , which is a ZTMP, has a probability mass function equal to

P(N = k) = 1

1 − û(t)

∫ +∞

0

(lt)k

k! e−lt dU(l) for k = 1, 2, 3, . . . ,

where û(t) is defined in (1) and corresponds to the probability at 0 of M . The PGF of N is
equal to

hN(s) = hM(s) − hM(0)

1 − hM(0)
= û(t (1 − s)) − û(t)

1 − û(t)
. (5)

The following theorem characterises the PGF of a ZTMP distribution.

Theorem 1. A function hN(s) is the PGF of a ZTMP distribution with finite mean if and only if

(a) hN(0) = 0, hN(1) = 1, and h′
N(1) < +∞;

(b) it is analytical in (−∞, 1);

(c) all the coefficients of the series expansion of hN(s) about any point s0 in (−∞, 1) are
strictly positive except the constant term that may be negative or zero, or, equivalently,
the first derivative of hN(s) is strictly absolutely monotone in (−∞, 1);

(d) limt→−∞ hN(s) = −L, with L being a finite strictly positive number.

Proof. Assume first that hN(s) is the PGF of a zero-truncated version of a mixed Poisson dis-
tribution, as in (5). It is clear that hN(0) = 0, hN(1) = 1, and that h′

N(1)=h′
M(1)/(1 − hM(0)),

which is finite because it is equal to a constant times the mean of the Poisson mixture. That
hN(s) is analytical in (−∞, 1) is a consequence of the fact that the PGF of any Poisson
mixture is analytical in this interval. The constant term of the series expansion of hN(s) about
s0 ∈ (−∞, 1) is

hN(s0) = û(t (1 − s0)) − û(t)

1 − û(t)
,

which is positive if s0 ∈ (−∞, 0), zero if s0 = 0, and negative otherwise, since û(v) is a
decreasing function. Given that if n ≥ 1 then h

(n)
N (s0) = h

(n)
M (s0), the rest of the coefficients of

the series expansion of hN(s) at any point in (−∞, 1) must be positive because of Proposition 1.
Finally,

lim
s→−∞ hN(s) = lims→−∞ hM(s) − û(t)

1 − û(t)
= −û(t)

1 − û(t)
= −L,

where L is a finite and strictly positive real number.
To prove the reverse implication, let hN(s) be a function verifying the four conditions of the

theorem and define

h̃N (s) = hN(s) − L

1 − L
.

Clearly, h̃N (1) = 1, and given that hN(s) is analytical in (−∞, 1), h̃N (s) is also analytical
in (−∞, 1). Furthermore, hN(s) is an increasing function and, therefore, h̃N (s0) is strictly
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Figure 2: Probability generating functions of the zero-truncated versions of the negative binomial
distribution (solid line) with θ = 0.3 and α = 3, the logarithmic series distribution (dash–dot line)
with θ = 0.75, and the Hermite distribution (dashed line) with α = 0.5 and β = 1

20 . The dotted line
corresponds to the limit at −∞ of the PGF of the negative binomial distribution.

positive for any s0 in (−∞, 1). Given that h′
N(s) is strictly absolutely monotone, the derivatives

of h̃N (s) at s0,

h̃
(n)
N (s0) = h

(n)
N (s0)

1 − L
,

are also strictly positive for n = 1, 2, . . . . As a consequence, h̃N (s) is a function that verifies the
three conditions of Proposition 1 and, therefore, it is the PGF of a mixed Poisson distribution.
For this reason, if û(t) is the Laplace transform of the corresponding mixing distribution, the
positive version of that mixed Poisson distribution will have a PGF equal to

h̃N (s) − û(t)

1 − û(t)
= h̃N (s) − h̃N (0)

1 − h̃N (0)
= hN(s) − hN(0)

1 − hN(0)
= hN(s).

Hence, hN(s) is the PGF of the positive version of a mixed Poisson distribution. This completes
the proof.

From this result, it follows that the PGF of the truncation at 0 of any mixed Poisson
distribution is increasing, takes the value 0 at 0, takes negative values on the negative real
line, and has a limit at −∞ that must be negative and finite.

In Figure 2 we present the PGF of the positive versions of the negative binomial, the
logarithmic series, and the Hermite distributions presented in Figure 1. As can be seen, the last
two distributions cannot be a ZTMP distribution, because the limit at −∞ of the Hermite PGF
is positive and the limit for the logarithmic series distribution is −∞. In the logarithmic series
case, the truncated and untruncated versions are the same because this distribution takes only
strictly positive values.

4. MZTP distributions

If we assume that the parameter λ of a zero-truncated Poisson distribution is such that
λ = t�, where � is a nonnegative RV with mean equal to 1 and distribution function equal
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to U , the resulting RV, N , follows a mixture of zero-truncated Poisson (MZTP) distributions
with probability mass function equal to

P(N = k) =
∫ +∞

0

(lt)ke−lt

k!
1

1 − e−lt
dU(l) for k = 1, 2, . . .

and with PGF equal to

hN(s) =
∫ +∞

0

e−t l(1−s) − e−t l

1 − e−t l
dU(l) =

∫ +∞

0

et ls − 1

et l − 1
dU(l). (6)

The next theorem characterises the MZTP distributions by means of their PGFs. The
characterisation is analogous to the one established in Theorem 1, with the exception of
condition (d), which is no longer required since the PGF at −∞ may have an infinite limit.

Theorem 2. A function hN(s) is the PGF of an MZTP distribution with finite mean if and
only if

(a) hN(0) = 0, hN(1) = 1, and h′
N(1) < +∞;

(b) it is analytical in (−∞, 1);

(c) all the coefficients of the series expansion of hN(s) about any point s0 in (−∞, 1) are
strictly positive except the constant term that may be negative or zero, or, equivalently,
the first derivative of hN(s) is strictly absolutely monotone in (−∞, 1).

Proof. Assume first that hN(s) is the PGF of a mixture of a zero-truncated Poisson distribu-
tion as in (6). It is easy to check that hN(0) = 0, hN(1) = 1, and that h′

N(1) < +∞, because
it is assumed that N has a finite mean. Moreover,

hN(s0) =
∫ +∞

0

et ls0 − 1

et l − 1
dU(l)

⎧⎪⎨
⎪⎩

> 0 if s0 > 0,

= 0 if s0 = 0,

< 0 if s0 < 0,

and, thus, its domain contains (−∞, 1) and it is analytical in that domain. The nth derivative
of hN(s) is equal to

h
(n)
N (s0) =

∫ +∞

0

et ls0

et l − 1
(tl)n dU(l), n = 1, 2, . . . ,

and, thus, h
(n)
N (s) is always positive, because it is the integral of a positive function. As a

consequence, all the coefficients of its series expansion are positive with the exception of the
constant term that is negative for negative values of s0. Finally, note that

lim
s→−∞ hN(s) =

∫ +∞

0

1

1 − et l
dU(l),

which is finite if the expected value of (1 − et�)−1 exists, and is infinite otherwise.
In order to prove that conditions (a)–(c) are sufficient, two cases must be distinguished,

depending on whether or not the variance of N is finite.
Case 1: h

(2)
N (1) < +∞. Let us define µ = h′

N(1). It is easy to see that the function
h̃N (s) = h

′
N(s)/µ verifies the conditions of Proposition 1 and, hence, it is the PGF of a mixed
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Poisson distributed RV.As a consequence, h̃N (s) = û(t (1 − s)) for a given Laplace transform û.
Given that h′

N(s) = µû(t (1 − s)),

hN(s) =
∫ s

0
µû(t (1 − x)) dx

=
∫ s

0

(∫ +∞

0
µe−t l(1−x) dU(l)

)
dx

=
∫ +∞

0

(∫ s

0
µe−lt (1−x) dx

)
U(dl)

=
∫ +∞

0
µ

e−lt (1−s) − e−lt

t l
dU(l)

=
∫ +∞

0

elts − 1

elt − 1
µ

1 − e−lt

t l
dU(l). (7)

Given that hN(1) = 1 and (7),

∫ +∞

0

1 − e−lt

t l
µ dU(l) = 1,

and hN(s) is the PGF of a mixture of a zero-truncated Poisson distribution, as in (6) with

µ

tl
(1 − e−lt )U ′(l)

as the density function of �.
Case 2: h

(2)
N (1) is not finite. For a given value of a ∈ (0, 1), let

ha(s) = hN(as)

hN(a)
.

In what follows it is checked that ha(s) verifies the three conditions of the theorem and that
h

(2)
a (1) < +∞. Clearly, ha(0) = hN(0) = 0, ha(1) = 1, and

µa = h′
a(1) = ah′

N(a)

hN(a)
< +∞

since h′
N(s) is a strictly increasing function. Given that hN(s) verifies condition (b), ha(s) is

analytical in (−∞, 1/a) ⊇ (−∞, 1). In particular, it is analytical in a neighbourhood of 1 and,
consequently, h

(2)
a (1) < +∞. For any s0 ∈ (−∞, 1), the coefficients of the series expansion

of ha(s0) have the same sign as the coefficients of hN(s) and, therefore, condition (c) holds.
As a consequence, for any a ∈ (0, 1), ha(s) is the PGF of an RV Ya with a distribution that is a
mixture of the zero-truncated Poisson. Therefore, for any a ∈ (0, 1), there exists a distribution
function Ua such that

ha(s) =
∫ +∞

0

elts−1 − e−lt

elt − 1
dUa(l).

Taking into account the definition of ha(s) and letting r = as, we have

hN(r) =
∫ +∞

0
hN(a)

eltr/a − 1

elt − 1
dUa(l),
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which, by applying the change of variable l = ap, becomes

hN(r) =
∫ +∞

0
hN(a)

eptr − 1

epta − 1
a dUa(ap)

=
∫ +∞

0

eptr − 1

ept − 1

ept − 1

epta − 1
ahN(a) dUa(ap)

=
∫ +∞

0

ept(r−1) − e−pt

1 − e−pt
dU(p),

where

dU(p) = ept − 1

epta − 1
ahN(a) dUa(ap) ≥ 0.

Note that dU(p) does not depend on a since hN(r) does not depend on a. Given (6), we need
only to prove that U is a probability distribution function on the positive real line, but this is a
consequence of the fact that

hN(1) = 1 =
∫ +∞

0
dU(p).

Hence, hN(s) is the PGF of a mixture of the zero-truncated Poisson distribution. This completes
the proof.

The following result, which is a direct consequence of Theorem 2, provides extra tools to
help recognize PGFs of MZTP distributions and will be used subsequently.

Corollary 1. (a) A strictly positive count RV N with a finite mean, µ, and PGF hN(s) follows
an MZTP distribution if and only if h′

N(s)/µ is the PGF of a mixed Poisson distribution.

(b) A real function h(s) such that h(0) = 0, h(1) = 1, and h′(1) < +∞ is the PGF of an
MZTP distribution with finite mean if and only if h′(s)/h′(1) is the PGF of a mixed Poisson.

5. The class of ZTMP distributions as a subset of the class of MZTP distributions

If we just consider finite mixing distributions, Böhning and Kuhnert [3] proved that the class
of MZTP distributions and the class of ZTMP distributions are the same. A consequence of
Theorems 1 and 2 is that this does not hold in general, when the mixing distributions are allowed
to have infinite support, because we can find distributions that are MZTP but not ZTMP.

Given that a PGF cannot oscillate when s tends to ∞, the only difference between the PGFs
of ZTMP distributions and the PGFs of MZTP distributions is that, in this latter case, the value
−∞ is accepted as the limit of these functions at −∞.

Corollary 2. Any ZTMP distribution is also an MZTP distribution.

Corollary 3. An MZTP distribution is a ZTMP distribution if and only if its PGF has a finite
limit at −∞.

Figure 2 indicates that the zero-truncated negative binomial and logarithmic series distri-
butions are MZTP distributions but that the zero-truncated Hermite distribution is not. In the
following example we have a set of PGFs that correspond to the extended truncated negative
binomial model of [5]. In part of the parameter space of that model it is both a ZTMP and an
MZTP distribution, as described in [20], while in the rest of the parameter space, is an MZTP
but not a ZTMP distribution.
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Example 1. Let θ ∈ (0, 1), and consider the following set of PGF functions:

h(s) =

⎧⎪⎪⎨
⎪⎪⎩

1 − (1 − θs)1−α

1 − (1 − θ)1−α
with α > 0 and α 	= 1,

ln(1 − θs)

ln(1 − θ)
with α = 1.

(8)

Given that
h′(s)
h′(1)

=
(

1 − θ

1 − θs

)α

is the PGF of a negative binomial with parameters α and θ , by applying Corollary 1, we find
that, for any θ ∈ (0, 1) and any α ∈ (0, ∞), h(s) is the PGF of an MZTP distribution. Given
that

lim
s→−∞ h(s) =

⎧⎨
⎩

−∞ when α ∈ (0, 1],
1

1 − (1 − θ)1−α
when α ∈ (1, ∞),

when α ∈ (0, 1], h(s) is not the PGF of a ZTMP distribution owing to Corollary 3.

6. Some other consequences of the characterisations

Here three alternatives to the zero truncation for transforming a mixed Poisson distribution
into a strictly positive distribution are explored. From the characterisations obtained, it is
proved that the size-biased version of a Poisson mixture considered in Subsection 6.2 and, under
regularity conditions, the shifted version of a Poisson mixture considered in Subsection 6.1 are
neither ZTMP distributions nor MZTP distributions. In particular, given that they are not ZTMP
distributions, neither of these two transformations are convenient when we intend to use the
resulting model on data generated through a ZTMP mechanism, because it does not allow us to
estimate the mixing distribution or the probability at 0 of the corresponding untruncated mixed
Poisson model, which is typically of interest.

Instead, an alternative transformation of a Poisson mixture into a strictly positive count
distribution guaranteed to be MZTP and, under regularity conditions, guaranteed to be ZTMP
is proposed in Subsection 6.3.

6.1. Shifted version of a mixed Poisson distribution

The shifted version is the simplest way to transform a count RV into a strictly positive
count RV. The definition is as follows. Given any count RV M , we define the shifted version
of M to be N = M + 1, and, hence,

P(N = k) = P(M = k − 1) for all k ≥ 1.

If hM(s) is the PGF of M , the PGF of its shifted version is hN(s) = shM(s).

Proposition 2. Let N be the shifted version of a mixed Poisson distribution M with PGF hM(s),
and denote by L the limit of hM(s) at −∞. If

lim
s→−∞ s(hM(s) − L) = 0 (9)

holds then the distribution of N is neither a ZTMP nor an MZTP.

https://doi.org/10.1239/aap/1293113149 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1293113149


Truncating and mixing Poisson distributions 1023

Proof. The function hN(s) = shM(s) verifies conditions (a) and (b) of Theorems 1 and 2.
Therefore, to prove this result, it is enough to check that if (9) holds, hN(s) does not satisfy
condition (c) of Theorems 1 and 2. Given that M is mixed Poisson distributed, from (2) we
have L ∈ [0, 1).

If L = 0 we have
lim

s→−∞ hN(s) = lim
s→∞ shM(s) = 0,

and the mean value theorem indicates that there exists an s0 < 0 for which h′
N(s0) = 0 and,

thus, condition (c) is not verified.
If L > 0, M can be written as M = L+ (1−L)M∗, where M∗ is mixed Poisson distributed

with lims→−∞ hM∗(s) = 0. Moreover, given that

hM(s) = L + (1 − L)hM∗(s),

M verifies (9) if and only if M∗ verifies the same condition with L = 0, and, by condition (a)
of Theorems 1 and 2, there exists an s0 < 0 such that h

(2)
M∗(s0) < 0. Given that, for n ≥ 2, the

sign of h
(n)
M (s) is equal to the sign of h

(n)
M∗(s), it follows that condition (c) is not verified. This

completes the proof.

In what follows it is illustrated by means of a particular example that the shifted version of
a mixed Poisson distribution that does not verify condition (9) might be

(A) MZTP distributed but not ZTMP distributed;

(B) both ZTMP distributed and MZTP distributed; and

(C) neither ZTMP distributed nor MZTP distributed.

Example 2. Let M be a negative binomial distribution, which has PGF as in (4), with a zero
limit at −∞. Then the following assertions hold.

1. If α > 1, condition (9) holds and the shifted version is neither a ZTMP nor an MZTP.

2. If α < 1, condition (9) is not verified. Nevertheless, the first derivative of the PGF of the
shifted distribution is

h′
N(s) = α

1 − θ

(
1 − θ

1 − θs

)α+1

+ (1 − α)

(
1 − θ

1 − θs

)α

, (10)

which verifies condition (c) of Theorem 2 because it is a linear combination of the PGFs
of two negative binomial distributions with positive coefficients. As a consequence, the
shifted version is MZTP distributed but it is not ZTMP distributed because the limit of
its PGF at −∞ is equal to −∞ and, therefore, it constitutes an example of case (A).

3. If α = 1, the limit at −∞ of hM(s) is 0 and the limit of hN(s) is (1 − θ)/θ . Hence,
condition (9) is not verified but condition (c) of Theorem 2 is true because the first
derivative is obtained from (10) with α = 1. Consequently, the shifted version has a
ZTMP and an MZTP distribution and it constitutes an example of case (B).

To obtain an example of case (C), we consider an M with a distribution that is a mixture of two
negative binomial distributions: one with α > 1 and the other one with α ≤ 1. A mixture such
as this does not verify (9), and its shifted version is neither a ZTMP nor an MZTP.
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Figure 3: Probability generating functions for the shifted negative binomial with θ = 0.3 and α = 0.3
(solid line), the shifted negative binomial with θ = 0.3 and α = 1 (dashed line), and the shifted mixture

of these two negative binomials with weights 0.95 and 0.05 (dash–dot line).

Figure 3 presents the PGFs of two shifted negative binomial distributions and the PGF of
the distribution that results from shifting a mixture of these two negative binomials. None of
the three un-shifted distributions verifies condition (9), and their shifted versions constitute an
example of each one of the three possibilities listed above.

6.2. Size-biased version of a mixed Poisson distribution

The size-biased version of a discrete distribution is a special case of weighted distribution,
defined in [16] as the sampling distribution when the probability to select an observation is
proportional to the size of the observation; in particular, its probability at 0 is always 0. This
corresponds, for example, to the sampling scheme used when we analyse uncommon contagious
diseases or genetic characteristics; first we sample some families and then we select all the
individuals in them. See, for example, [12] for an application on wildlife populations. Recently,
in [10] the size-biased version of the negative binomial distribution was used as an alternative
to the zero-truncated negative binomial. Here it was proved that size-biased versions of mixed
Poisson distributions are not a good alternative when one intends to use them on data yielded
through a ZTMP mechanism and needs to estimate the corresponding mixing distribution.

The size-biased version of a given count RV M with finite mean µ and PGF hM(s) is the
weighted version of M with weight function w(k) = k, and, hence, probability mass function

P(N = k) = k P(M = k)

µ

and PGF

hN(s) = sh′
M(s)

h′
M(1)

. (11)

Note that N is a strictly positive RV and that if M is Poisson distributed, the shifted version
coincides with the size-biased version.

Corollary 4. The size-biased version of a mixed Poisson distribution with finite mean is neither
ZTMP distributed nor MZTP distributed.

https://doi.org/10.1239/aap/1293113149 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1293113149


Truncating and mixing Poisson distributions 1025

Proof. Let M be mixed Poisson distributed, and let N be its size-biased version. By (11),
N is the shifted version of an RV, M0, with PGF hM0(s) = h′

M(s)/h′
M(1). Given that M is

mixed Poisson distributed, M0 is also mixed Poisson distributed because its PGF verifies the
conditions of Proposition 1. Assume that N is MZTP distributed and that

lim
s→−∞ hN(s) 	= 0,

which is equivalent to
lim

s→−∞ sh′
M(s) 	= 0.

Given that hN(s) is a negative increasing function in (−∞, 0), there exists s0 < 0 and α0 < 0
such that

sh′
M(s) < α0 ⇐⇒ h′

M(s) >
α0

s
for all s, s < s0;

observe that both sides of the inequality are positive in (−∞, s0), and that integrating them
between s and s0 we obtain

hM(s) < hM(s0) − α0 ln(−s0) + α0 ln(−s).

Hence, lims→−∞ hM(s) = −∞, which contradicts the fact that M is mixed Poisson distributed.
So, if N was MZTP distributed,

lim
s→−∞ hN(s) = 0 ⇐⇒ lim

s→−∞ sh′
M(s) = 0

⇒ lim
s→−∞ h′

M(s) = 0

⇒ lim
s→−∞ hM0(s) = 0.

From the last expression we find that M0 is mixed Poisson distributed with a PGF that verifies
condition (9), and, hence, by Proposition 2, N cannot be MZTP distributed and, by Corollary 2,
it cannot be ZTMP distributed either.

6.3. On the RV with a PGF obtained by normalising an integrated PGF

Given a count RV M with PGF hM(s), we can obtain a strictly positive RV by defining N

to be the RV with PGF

hN(s) =
∫ s

0 hM(t) dt∫ 1
0 hM(t) dt

. (12)

For simplicity, N is denoted here as the integral transformation of M . By definition, hN(0) = 0
and, thus, the new RV takes the zero value with probability 0. Observe that the set of distributions
considered in Example 1 corresponds to the integral transformation of the negative binomial
model. The next result proves that, unlike the shifted and size-biased versions, the integral
transformation of a mixed Poisson distribution is always an MZTP distribution.

Proposition 3. If N is the integral transformation of a count RV M then

(a) N is MZTP distributed if and only if M is mixed Poisson distributed with a finite mean;

(b) N is ZTMP distributed if and only if M is mixed Poisson distributed and
∫ 0
−∞ hM(t) dt

is finite.
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Proof. From (12), it follows that hN(s) verifies the conditions of Theorem 2 if and only if
hM(s) verifies the conditions of Proposition 1, and, therefore, (a) holds. That (b) holds is a
straight consequence of Corollary 3.

As pointed out in Example 1, the integral transformation of a negative binomial distribution
with α ∈ (0, 1] constitutes an example of an integral transformation that is MZTP distributed
but not ZTMP distributed.

7. Conclusions

In this paper the probability models obtained by zero-truncating mixed Poisson (ZTMP) and
mixing zero-truncated Poisson (MZTP) distributions have been characterised by means of their
PGFs. Recognizing which models are in the ZTMP class and which are not helps identify the
models suitable for data generated through a ZTMP mechanism, where one is usually interested
in the estimation of features associated with the mixing distribution.

One consequence of our characterisations is that all ZTMP distributions are MZTP distri-
butions, but the opposite is not true. Furthermore, it turns out that if one needs to modify a
mixed Poisson random variable in order to make it into a strictly positive count variable, its
shifted version and its size-biased version may not be suitable options, because the resulting
distributions are neither ZTMP distributions nor MZTP distributions. On the other hand, the
integral transformation of a mixed Poisson RV is always MZTP distributed and, under a certain
condition, it is also ZTMP distributed.

It might be of interest to extend these results for distributions that are mixtures of models
for nonnegative integer data partially closed under addition (see [13]), because their PGFs have
an exponential form and the mixing parameter appears only in the exponent as a multiple of
a function of s, similarly to that for Poisson mixtures. It might also be worth trying to extend
these results to the more general left-truncated case.
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