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Electrical impedance tomography (EIT) is an imaging technique where the internal
electrical conductivity distribution is reconstructed using current and voltage mea-
surements on the boundary. The idea of EIT is that if parts of an object can be
distinguished by their electrical conductivity, then we are able to identify the location
of these parts using EIT. EIT is noninvasive, portable and cheap, so it has been widely
applied across a number of different applications, for example, medical, environmental
and nondestructive testing. The contributions of this thesis are largely in three
parts.

In the first part of the thesis, we present the formulation of the EIT inverse
problem using a nonconforming mesh. This is in contrast to the traditional approach
which uses a conforming mesh. The benefit of employing a nonconforming mesh
is that finer discretisation can be employed on a localised region, which can be
computationally more efficient. While extensive research has solved forward problems
using nonconforming meshes, this is the first time EIT inversion has been studied using
a nonconforming mesh. The state-of-the-art nonconforming finite element method
today is the mortar element method and is the numerical scheme used here. In this
thesis, we address the inverse problem in the statistical setting, which is natural when
there are errors in the measurements or modelling uncertainties. In particular, we
consider Bayesian statistical inference, which is the standard approach for statistically
solving inverse problems today.
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In the second part of the thesis, we focus on a situation where computational
resources are severely limited yet the solutions to inverse problems need to be
obtained quickly. Such is the case in process tomography where images need to be
reconstructed on a scale of milliseconds, using industrial computers comparable to
somewhat outdated personal computers. Given the unknown x ∈ Rn and its related
data measurement y ∈ Rm, the goal in Bayesian statistical inference is to extract
all information about x from the conditional distribution π(x|y), called the posterior
distribution. However, if x is large dimensional, that is, if n is large, then considering
standard methods in Bayesian inference such as the Markov chain Monte Carlo
(MCMC) and the computation of the maximum a posteriori (MAP) point estimate can
be practically infeasible unless, for example, heavy model reduction is implemented.
The idea presented in the thesis is to, instead, pose the Bayesian inverse problem
as a statistical forward problem via the construction of a regression model. This
means that an image can be reconstructed by solving of a single statistical-based
forward problem. A benefit of such a formulation is that it allows us to fit highly
nonlinear operators in the regression model, since a single evaluation of a relatively
complicated operator can still be achieved at a cheap price. Highly nonlinear operators
can be needed to accurately describe the statistical mapping from y to x. We construct
the regression using joint samples (x, y) ∼ π(x, y) = π(y|x)π(x) drawn from the related
likelihood function π(y|x) and prior distribution π(x). Therefore, the regression model
naturally provides us with an approximation of the posterior distribution π(x|y). In this
connection, we call such a regression model the posterior approximated regression
model.

In the third part of the thesis, we are interested in the prior modelling of discretised
non-Gaussian random fields. By far the most used type of prior distribution in Bayesian
inverse problems is the Gaussian distribution. But Gaussian priors tend to produce
smoothing effects on the MAP estimate which can lead to underestimates of the
unknowns. At the same time, however, constructing the prior model is often the most
challenging stage in implementing Bayesian inference. This is because the a priori
information we have of the unknown is typically qualitative, yet what is required is a
quantitative representation of such information. Hence, considering a wide range of
different non-Gaussian prior distributions when the unknown x is large dimensional
is, in general, a nontrivial task. A commonly used technique to simulate non-Gaussian
discretised random fields is via the transformation of Gaussian discretised random
fields. Depending on the technique used, it is possible to simulate numerically a
large family of different nondiscretised random fields. Such a technique, however, has
not yet been used to construct non-Gaussian discretised random fields as a means
for prior modelling. We investigate whether the method can be used to partially
resolve the smoothing problem in employing discretised Gaussian random fields, for
example, by fitting non-Gaussian prior distributions that are longer tailed than the
Gaussian.

The proposed formulation, method and strategy are verified via various numerically
simulated EIT problems on two-dimensional domains.
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