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Abstract

In this paper we show that a bialgebraic context which arises from a duality in a fairly general way
must arise from a duality between categories of modules. To show this, we give an elementary proof of
Mitchell's Embedding Theorem for prevarieties.
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1. Introduction

The analysis of data with non-numerical and non-statistical methods becomes more
and more important in many applications. Contributing to this domain, the theory of
Formal Concept Analysis elaborates a general understanding of data. In our paper,
we investigate a connection of this understanding of data with a particular algebraic
setting.

Formal Concept Analysis provides a set-theoretical model of concepts which math-
ematizes the philosophical understanding that a concept is a unit of thought consisting
of two parts: the extension covering all objects belonging to the concept, and the
intension consisting of all attributes abstracting from the concept (cf. [6, 11]). The
basic structure of the model is a formal context which is defined as a triple (G, M, I),
where G and M are sets and / is a binary relation between G and M. The elements of
G are interpreted as objects and those of M as attributes. For every g in G and m in
M, the relation (g, m) e I is interpreted as the object g has the attribute m. A formal
concept of (G, M, /) is a pair (C, D) where C is a subset of G and D is a subset of
M such that D consists of the common attributes of the objects in C and C consists
of all objects which have the attributes in D. Then C is called the extent and D is
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390 Keith A. Kearnes and Frank Vogt [2]

called the intent of the formal concept. The formal concepts of a formal context form
a complete lattice if they are ordered by the subconcept-superconcept relation. The
extents of a formal context form a closure system on the set G of objects whereas the
intents form a closure system on M.

After this short description of the conceptual language provided by Formal Concept
Analysis, we describe how this language can be applied in a particular area of general
algebra. In [10], it is described how this application can enrich the language of Formal
Concept Analysis by algebraic constructions for purposes of data analysis. The basic
idea is motivated by the formal context (V, V*,±), where V is a finite dimensional
vector space, V* is its dual space, and v.L(p is defined by cp(v) = 0 for all v in V and
all <p in V*. Then the following statement is a well known result in linear algebra:

The extents of the formal context (V, V*, _L) are exactly the subspaces of V and the
intents of(V, V*, JL) are exactly the subspaces ofV*.

A similar statement holds if we consider a finite abelian group G, its dual G*, and
define g±<p by <p (g) = 1. Recall that the dual of a (finite) abelian group G is the group
of all homomorphisms from G into the unit circle of complex numbers, together with
pointwise multiplication as group operation. In a general setting, we consider formal
contexts (A, B, ±) where A and B are algebras in the sense of general algebra, and ±
is an arbitrary relation between A and B. There are two closure systems on A: the
closure system of extents of (A, B, _L) and the closure system of subuniverses of A. In
general, there is no connection between these closure systems, but it may happen that
they coincide. A formal context (A, B, 1) is called a bialgebraic context if its extents
are exactly the subuniverses of A and its intents are exactly the subuniverses of B.
In a bialgebraic context, the extents (intents) can be described in two different ways:
conceptually, using the attributes in the set B (objects in the set A), or algebraically,
using the generation of subalgebras in the algebra A (B). For more detailed information
on bialgebraic contexts, see [9].

Next, we formulate what we understand by a duality for a prevariety of algebras.
We follow the general approach introduced by D. M. Clark, B. A. Davey, H. Werner,
and others (see, for example, [2, 3,4]), but we restrict to the case where the structures
in both categories are total algebras, with respect to the requirements of this paper.
Let P_ := (P, F) be an algebra of type («^\ a). By @> := ISP(£) we denote the
prevariety generated by P_. We consider & not only as a class but as a category
of algebras, that is, as the full subcategory of the category of all algebras of type
(Jf, a). Now, we introduce an alter ego for the algebra P_. A topological structure
F := (P, G, r) is called algebraic over P_ if the following conditions hold:

(i) G is a family of operations on P such that, if g e G is «-ary for n > 0, then
g : _P" —> _P is a homomorphism. Observe that this implies that [g} is a
subalgebra of _P if g is a constant.
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[3] Bialgebraic contexts from dualities 391

(ii) r is a compact topology on P such that if / e F is n-ary then / : P" —> P
is continuous with respect to the product topology on P".

Let =2 := ISCP(P) be the class of all isomorphic (that is, simultaneously algebraically
isomorphic and homeomorphic) copies of topologically closed substructures of powers
of P. Again, we may consider J a s a category of topological structures with the
continuous homomorphisms as morphisms. Now we are ready to establish a duality
between between & and J2.

For every algebra A e &>, let D(A) c PA be the set of all homomorphisms from
A into P_, endowed with the pointwise defined operations from G and the subspace
topology generated by r. For every homomorphism 6 : A —> B in 2? we define
D(0) : D(B) —> D(A) by (D(6»))(V0 := x(r o 6> for all V e D(B). Then D(A) is in
=2 and D(0) is a continuous homomorphism. Analogously, for all X e J2, we define
£(X) c /""as the set of all continuous homomorphisms from X into P, endowed
with the pointwise defined operations from F. For every continuous homomorphism
o) : X —> Y in £ let £(<y) : E(Y) —• E(X) be given by (E(co))(fi) := \i o o> for
all /i e £(F). Then £(X) is in & and £(&>) is a homomorphism.

With these definitions, D and £ are contravariant functors. It turns out that they
form a dual adjunction where the units of the adjunction are given by the natural
evaluation maps

r)A •• A —> ED(A), <j)A{a))((p) := <p(a) and

EX : X —> DE(X), (ex(x))(K) := K(X).

for all A e 0s, a e A, <p e D(A), X e £, x e X, and K e E(X). It is immediate
from the conditions concerning _P and P that rjA and ex are always injective and that
£x is a homeomorphism onto its image. Hence, r]A and ex are always embeddings. It
depends on the structure of P_ and P whether they are surjective, i. e., whether they
are isomorphisms. We say that P yields a duality on !? if r]A is an isomorphism for
every A e £?. If, additionally, sx is an isomorphism for all X e *2, the duality is
called/«//.

Pontryagin duality between discrete and compact abelian groups and Morita duality
between certain categories of left and right modules can be considered as dualities
of the type described above. The construction of the bialgebraic contexts for finite
dimensional vector spaces and for finite abelian groups which was mentioned earlier,
is closely connected to these dualities. Therefore, we can ask whether there is a
general method of construction of bialgebraic contexts using dualities. Before we can
state the result we must introduce some additional notions.

Let tf be a category of algebras (with or without topology) which has a zero object.
Let A e ^ and let i : C —> A be a morphism in ^ . Then ( is called a normal
monomorphism if it is the kernel of a suitable morphism (p : A —>• B, that is, the
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equalizer of <p and the unique zero morphism 0AB. An easy argument shows that such
an equalizer must be a monomorphism. Therefore, the pair (C, t) is a subobject of
A which, since i is normal, will be called a normal subobject. Dually, a morphism
a : A —> C is called a conormal epimorphism if it is the cokernel of a suitable
morphism <p : B —> A, that is, the coequalizer of <p and 0BA. The pair (a, C)
is called a conormal quotient object. It is not hard to show that a monomorphism
is normal if and only if it is the kernel of its cokernel and that an epimorphism is
conormal if and only if it is the cokernel of its kernel. We will call a category normal
if every monomorphism is normal and we will call it conormal if every epimorphism
is conormal. These concepts require that the category has a zero object.

Now we interpret these concepts for a prevariety &. As is common, we identify
subobjects with subalgebras. A congruence is a compatible equivalence relation. If
A e g? and 9 is the congruence associated with the kernel of a homomorphism of
A onto another member of &>, then we call 9 a relative congruence of A. If & is
a prevariety with a zero object, Z, then each A e £P has an element 0 which is the
image of 0ZA- (The element 0 does not depend on the choice of Z.) In this situation,
the normal subobjects of A correspond to subalgebras of A which equal the 0-class of
some relative congruence of A. A conormal epimorphism with domain A has kernel
9 which is a relative congruence with the following property: 9 is the least relative
congruence on A which has 0/9 as a class.

Now we can state a theorem from [9] which generalizes the construction of bial-
gebraic contexts for vector spaces and abelian groups.

THEOREM 1.1. Let F yield a duality on & such that there is a constant Oin F PiG
which is idempotent in £ {that is, g ( 0 , . . . , 0) = Ofor all g e G). For every algebra
A in 9>, let K(A) := (A, D(A), _L), where, for all a € A and <p e D(A),

aL(p if and only ifcp(a) = 0.

Then K(A) is a bialgebraic context if and only if all subalgebras of A and all subal-
gebras of D{A) are normal.

In [9], an algebra A in a category ^ is called Hamiltonian relative to "ip if every
subalgebra of A is normal.

In this paper we characterize all situations in the previous theorem where £ is finite
and DC (A) is a bialgebraic context for all finitely generated A e £?. The main result is
that & must be term equivalent to a variety of modules.

2. Varieties of modules

Our purpose in this section is to show that a general method of constructing
bialgebraic contexts from a duality must arise from a full duality between a variety
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[5] Bialgebraic contexts from dualities 393

of modules and a second category. For the main proof we do not need a deep
understanding of duality theory as it is developed in [4]. All that we need to know is
that, by a duality for the pair (&, 2) of a prevariety & and a category i? of algebras,
we mean at least the following:

(i) There is a contravariant right adjunction D : &> —>• 2 and E : £1 —> 3P.
(ii) The units of this adjunction are r) : / —> ED and e : / —>• DE and r) is a

natural isomorphism while e is a natural monomorphism.

Our assumptions will be that @* and i? satisfy these two conditions and that & is
normal and conormal. Let us explain why we make these normality assumptions.

By having a 'general method of constructing bialgebraic contexts from a duality'
we mean that we have a pair (<02\ =2} for which there is a duality and that, for 'many'
members A e &, we have that IK (A) := (A, D(A), J_) is a bialgebraic context. Since
the notion of bialgebraic contexts arises from data analysis, one realistically only
needs to consider finitely many finite members of &, although we want the freedom
to choose among many different finite members of & to select an appropriate one
for a specific problem. Hence, it is natural to restrict attention to the case where
& — ISPCP) with P_ finite and for each finite A e g? it is the case that K(A) is
bialgebraic.

LEMMA 2.1. Under the assumptions of Theorem 1.1, let & be generated by a finite
algebra P_, and let K(A) be a bialgebraic context for every finite A e &. Then 3P is
a normal and conormal quasivariety.

PROOF. By Theorem 1.1, we get that all subalgebras of finite members of £? are
normal. Since P_ is finite, 2? = ISP(_P) is a locally finite quasivariety. In particular,
& is closed under ultraproducts. Now, to show that & is normal we must show that
if A e @* and S is a subalgebra of A, then there is a relative congruence 6 such that
S = 0/0. For X c A, let Bx denote the subalgebra generated by X. Since ^>fin

is normal, for each finite X c A we have that S n Bx is the 0-class of a relative
congruence of Bx. Hence there is a homomorphism (j>x of Bx onto a member of &
where <j)x(S D Bx) = {0} while <px{b) ^Q'ifbeBx-S. If / denotes the set of
nonempty finite subsets of A, then

& := {Zx \ X e I, Zx := {Y e I \ Y 2 X}}

is a filter on / . Let ^ be an ultrafilter extending &. There is an embedding ii of
A into the ultraproduct (fixe/ Bx)/W described by //(*) = u/'W where ux = x if
x e Bx and ux = 0 if x g Bx. The composite homomorphism ((0x6/ 4>x)/^) ° M
is a homomorphism from A to a member of & which is zero on S but not zero on any
a e A — S. Hence the kernel of this homomorphism is a relative congruence whose
0-class is exactly 5. This proves the normality of 2?.
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In order to prove that & is conormal, we show first that the subcategory J?fln of finite
members of i2 is normal. Any finite B e =2 has an embedding eB : B —> DE(B).
The algebra E{B) e 2? is finite, hence K(E(B)) is bialgebraic by assumption.
Theorem 1.1 implies that the subalgebras of DE(B) are normal. Since normality
of all subalgebras is inherited by subalgebras and B is isomorphic to a subalgebra of
DE(B), the subalgebras of B are normal. This holds for all finite B e J , hence i2fin is
normal. The next step is to prove that <^fin is conormal. Since the duality for {&>, Q)
restricts to a duality for {£?&„, =2fm), it suffices to show that a duality for (<^fin, =Sfin>
where both categories are normal implies that ^ f i n is conormal. This is proved below
in Lemma 2.2. Assuming this, it is easy to see that &> itself is conormal. For if not then
some C e ^ 1 has a relative congruence /3 which is not the least relative congruence
whose 0-class is 0//3. If a is another relative congruence with 0/a = 0/y3 and fi £ a,
then there is a pair of elements (p, q) e fi — a. Let D be the subalgebra of C generated
by {p, q). Then since (p, q) G fl\D — a\D the congruences a\D and fi\D are relative
congruences of D whose 0-classes are both equal to D n (0/a) = D n (0/>S). Since
(p,q) e P\D — a ID we get that f)\D is a relative congruence of D which is not the least
relative congruence whose 0-class is 0 /^ | D . This is impossible if ^ f i n is conormal
since D e £?&„. We conclude that & is conormal if <^fin is conormal.

To prove that <^fin is conormal we must show that every epimorphism in <^fin is
the cokernel of its kernel. A minimal requirement for this is that every epimorphism
has a kernel. This holds for categories of the form <^fin when & is a prevariety with
zero, since such categories have equalizers. It turns out that this is the only special
property of prevarieties that is needed to prove that ^ f i n is conormal. Therefore, we
formulate the following lemma in a more general way.

LEMMA 2.2. Assume that D : & —> 2 and E : i? —> & is a contravariant
right adjunction between normal categories S? and £2 where the unit r\ : / — • E D
is a natural isomorphism and the unit e : / —y DE is a natural monomorphism. If
epimorphisms in £? have kernels, then & is conormal.

PROOF. The statement of this lemma would be entirely obvious if we knew e was a
natural isomorphism, since conormality is the categorical dual of normality. However,
our assumptions do not mean that & and £} are dual categories.

It suffices to prove the lemma in the case when & and £1 are skeletal categories
(that is, when the only isomorphisms are identities), and with this assumption we
get that each component of r\ is an identity. This simplifies notation a bit. For
example, if (p : U —>• V in &, then we can immediately replace the double dual
ED(<p) : ED(U) — • ED(V) with <p : U —>V.

Since D : & —> £? and E : i2 — • & is a contravariant right adjunction, both
D and E convert colimits into limits. Since zero objects are colimits and limits, both
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D and E preserve zero objects. It follows that both D and E preserve zero morphisms
(reversing direction), since these are exactly the morphisms that factor through zero
objects. Both D and E convert coequalizers into equalizers, so they convert cokernels
into kernels. The fact that both rj and e are natural monomorphisms implies that both
D and E are faithful functors. (If, for example, a, fi : A —> B and E(a) = E(/3),
then

€B o a = DE(a) o eA = DE(fi) o eA = eB o p.

Cancelling the monomorphism €B on the left yields a = p.) Using the faithfulness
of E and the fact that r\ is a natural isomorphism, it is easy to prove that D converts
epimorphisms into monomorphisms and monomorphisms into epimorphisms.

We must show that every epimorphism in & is the cokernel of its kernel. Let
o : A —> B be an epimorphism and let K : K —> A be the kernel of a (which we
have assumed to exist). If y : A —>• C is the cokernel of K, then there is a natural
morphism y' : C —> B such that y' o y = a. (y' exists since y is the cokernel of
K and a o K — 0KB. The latter holds because K is the kernel of a.) This gives us the
following diagram

K -^ A -^ C -^U B.

Our goal is to prove that y' is an isomorphism (and therefore, since our categories are
skeletal, that y' is an identity). This will prove that a (= y' o y = y) is the cokernel
of the kernel of a.

Applying the functor D to the previous situation, we get

D(B) ^X D(C) *?l D(A) ™l D(K).

D(a) = D(y) o D(y') is a monomorphism, since D converts epimorphisms into
monomorphisms. Since i2 is normal, there exists a cokernel S : D(A) —> F of
D(a). Since E converts cokernels into kernels, E(S) : E(F) —> ED(A) = A is the
kernel of a : A —> B. Kernels are unique in skeletal categories, so E(F) — K and
E(8) = K. Our diagram now looks like

D(B) ^ > D(C) ̂ l D(A) - i * F -^ DE(F) = D(K).

Taking the double dual of 8 : D(A) —>• F we get the following commutative
diagram.

D(A) —^ F

DED(A) -^U DE(F)
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Since our categories are skeletal, ED(A) = A (so DED(A) = D(A)). As observed
earlier, E(8) = K (SO DE(S) = D(K)), and E(F) = K (so DE(F) = D(K)).
Furthermore, €DW = idD(/l). The previous diagram is just

D(A) ^ U F

>

D(A) - ^ U D(K)

But now €F satisfies the definition of <$', so 8' = €F. This proves that 8' is a mono-
morphism.

Since =2 is normal and D(a) : D{B) —> D{A) is a monomorphism with cokernel
8, we get that D{a) is the kernel of 8. D{y) has the property that

OoaoDoo = D(0KC) = D(y o K) = D(K) O D(y) = 8' o 8 o D(y).

Since 8' o 8 o D(y) = 0D{C)D(K) = 8' O 0D(C)F and 8' is a monomorphism, we can
cancel 8' from the left and get that 8 o D(y) = 0D(C)F- This proves that D(y) is
contained in the kernel of 8, which is D(a), so there is a unique homomorphism
k : D(C) —> D(B) with the property that D(y) = D(a) o k. To summarize, we
have shown that

• D(a) = D(y) o
• D(y) = D(CT)OA..

• £)(<T) is a monomorphism.

The first two items imply that D(a) = D(a) o A. o D{y'). The third item allows us
to cancel D(a) on the left to obtain that idD(B) = k o D(y'). Now since D converts
cokernels into kernels, D(y) is the kernel of D(K). Hence we also have

• D{y) is a monomorphism.

A similar argument using this item and the first two from above yields that idD(C) =
D(y')ok. Hence, A. and D(y') are inverse isomorphisms. Since 2 is skeletal, we have
that D(B) = D(C) and D(y') = k = idO(B). Hence, y' = ED(y') = £(idD(B)) =
idB. This proves that a is the cokernel of its kernel.

We learn from Lemma 2.1 and Lemma 2.2, that it is reasonable to assume that g? is a
normal and conormal prevanety if we consider dualities in connection with bialgebraic
contexts. Although the discussion so far involved locally finite prevarieties, we do
not use this assumption in the remainder of this section.
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LEMMA 2.3. A normal, conormal prevariety is an abelian category.

PROOF. There are varying sets of axioms which define abelian categories. One set,
due to P. Freyd, is the following: & is abelian if and only if it is normal, conormal
and has pullbacks and pushouts. (See Theorem 1.20.1 of [8].) Clearly, any prevariety
has pullbacks and pushouts, so we are done.

THEOREM 2.4. Let & be a category of algebras. The following conditions are

equivalent.

(1) £? is a prevariety and an abelian category.
(2) & is term equivalent to a variety of modules.

PROOF. Of course, any variety of modules is a prevariety and an abelian category.
Conversely, assume that &> is a prevariety and an abelian category. We now refer to
Theorem IV.4.1 of [8] which contains a version of Mitchell's Embedding Theorem
for abelian categories. We only state the part of this theorem that concerns us:

THEOREM 2.5. The following are equivalent for a category £?:

(1) & is a cocomplete abelian category with a small projective generator.
(2) £P is categorically equivalent to a variety of modules.

If one checks the definitions of cocomplete [8, p. 46], generator [8, pp. 71-72], and
small object [8, p. 74], then one finds that any prevariety 3? is a cocomplete category
for which the free algebra F&>(1) is a small generator. Free algebras in a category of
algebras are projective if and only if epimorphisms are surjective, but in any abelian
category of algebras this is the case. Hence, any prevariety which is an abelian
category is categorically equivalent to a variety of modules.

There are many ways of proving that a prevariety which is categorically equivalent
to a a variety of modules is term equivalent to a variety of modules. For example, it is
not hard to show that a prevariety which is categorically equivalent to a variety must
itself be a variety since a variety is nothing more than an exact prevariety and exactness
is a categorical property. Furthermore, a variety which is categorically equivalent to
a variety of modules is congruence modular, abelian and has a zero object. Now
Theorem 9.16 of [5] applies to show that such a variety is term equivalent to a variety
of modules.

The proof that & is term equivalent to a variety of modules that we have given is
quite simple, except that it requires Mitchell's Embedding Theorem, which is deep.
We now proceed to give an entirely elementary proof that & is term equivalent to
a variety of modules. This second proof requires no knowledge of the structure
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of abelian categories. In particular, what follows might be viewed as saying that
Mitchell's Theorem is elementary for prevarieties.

The collection of relative congruences on B e & is closed under complete inter-
section, so it makes sense to refer to the relative congruence generated by a set of pairs;
it is the intersection of all relative congruences containing those pairs. The proof of
the following lemma is obvious from the definitions of normality and conormality.

LEMMA 2.6. (See [8, Proposition 1.14.2].) If 2? is a normal, conormal prevariety
and A € &, then the following mappings describe inverse bijections between the
subuniverses of A and the relative congruences on A.

(i) To each subuniverse S assign the relative congruence 9 generated by S x S.
(ii) To each relative congruence 0 assign S = 0/9.

For each A e £?, let A (or A^) denote the relative congruence on A1 generated
b y f l x D where D — [(x, x) \ x e A] is the diagonal of A2. One observes that the
relative congruence A is a complement to each of the coordinate projection kernels
of A2. For if n0 and it\ denote the coordinate projection kernels, then we have

\Ai = Jtj O A O TZj — 71 j V A .

On the other hand, the subuniverses of A2 corresponding to JT0, it\ and D which
are guaranteed by Lemma 2.6 are {0} x A, A x {0} and D respectively. Since
D D ({0} x A) = {(0, 0)} and {(0, 0)} corresponds to the relative congruence Q42, we
get that A A jr0 = 0^2. Similarly, A A it\ =042.

For a homomorphism cp : A —> B we define <pA : A2/A —> Z?2/A by

LEMMA 2.7. The construction A H> A2/ A, cp \-+ <pA isfunctorial.

PROOF. We defined (pA precisely so that it makes the required diagram commute.
The only thing that needs to be checked is that, if <p : A —> B, then (pA is well
defined. This requires proving that the following implication holds:

(a, b)AA(c, d) implies (<p(a), (p(b))AB(cp(c), <p(d)).

In other words, we must show that AA c. (<p x ip)"1(AB). This follows since (<p x
<p)~\AB) is obviously a relative congruence of A2 which contains the generators of
AA.

We denote by A the functor of Lemma 2.7. We now describe two natural trans-
formations to the functor A. Let / and I2 denote the identity functor and the squaring
functor, respectively. (The squaring functor is the functor A i->- A2, cp i->- <p2.)
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Let v : I2 —> A be defined by choosing the A-component of v to be the natural
homomorphism

vA : A2 —• A2/A : (a, b) t-> {a, b)/A.

Let i : / —> A be defined by choosing the A-component of i to be

LA : A —• A2/A : a H* (a, 0)/A.

LEMMA 2.8. v is a natural transformation; i is a natural isomorphism.

PROOF. TO prove that v is a natural transformation we must show that for each
morphism <p : A —> B in 0* the following diagram commutes:

B2

This is obvious from the definition of <ph.
To show that i is a natural transformation we must show that

commutes. This requires proving that for every a € A we have (<p(a), ̂ (0))/A =
(<p(a), 0)/ A. But >̂(0) = 0, since in any member of & the element 0 interprets as the
unique element which is in the image of a homomorphism from a zero object of &>.

To finish the proof of this lemma we must show that for any A e ^ the ho-
momorphism iA : A —> A2/A is an isomorphism. The homomorphism iA may be
factored as a o/5 where fi : A —• A2 : a (->• {a, 0) anda : A2 —• A2/A is the natural
homomorphism. The image of ft is a single n\ -class of A2 and A is the congruence
which is the kernel of a. As we have observed, A A nt = 0^, so A restricts trivially
to P(A) which means that the composite a o /3 is one-to-one.

Let R be the subalgebra of A2 whose universe consists of all pairs A-related to
some pair of P(A) = A x {0}. R contains {(0, 0)}, so R contains

D = (0, 0 ) / A = {(*, x)eA2\xe A } .

Of course, R also contains A x {0}. Let p be the relative congruence of A2 which
Lemma 2.6 associates with R. Since D C R and A is the relative congruence
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associated with D, we get A < p. Since n\ is the relative congruence associated with
A x {0}, we get nx < p. Therefore lA2 = A v n\ < p. This proves that p = lAi, so
the subuniverse associated with p (which is R) is all of A2. From this we learn that
every element of A2 is A-related to some element of A x {0} = fi{A). If follows that
the composite homomorphism iA : A — • A2 —%• A2/ A is surjective. Thus, iA is an
isomorphism, as claimed.

For a prevariety @> we will call any natural transformation from the n-th power
functor to the identity a natural n-ary operation. Lemma 2.8 proves that r 1 o v :
I2 —> I is a natural binary operation of &. For a fixed choice of a zero object
Z e & we may define a functor 7° by A i-> Z and <p i-> idz. One natural zero-ary
operation of 2? is the natural transformation 0 : 7° —> I whose A-component is the
unique map from Z to A. In symbols, 0A = 0ZA. We now describe all of the natural
operations of &.

LEMMA 2.9. Let 2? be a prevariety and let a be a natural n-ary operation of 2?'.
Then 2? has ann-ary term s which commutes with all terms of 2? and for each A e &
we have

aA=sA :A" —+ A.

PROOF. Let F = F&(xu . . . , xn) be the algebra in &> which is freely generated
by the set [xi,... , xn). The function aF : F" —> F is a homomorphism; so let J
be a term representing the element aF((xu ... , xn)) e F. That is, choose s so that
sF(xu ... ,xn) = oF((x\. • • • . xn))- We claim that s is the desired term.

Choose any A e &, fix any (<z,,... , an) e A" and consider the homomorphism
cp : F —> A determined by xt i->- ah Since we have a commutative diagram

<*F\ \OA

F - ^ A

we can chase the element (x\,... ,xn) e F" around both paths and obtain that

aA(au . . . ,an) = (p(sF(xu . . . ,xn)) = sA(<p(xi),... ,<p(xn)) = sA(a{,... ,an).

Hence the values of oA are identical with the values of sA for all A € 2?.
The term s commutes with all other terms of &*, since for each A e & we have

that sA = aA: A" —> A is a homomorphism.
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Lemma 2.9 proves that every natural operation corresponds to a term of the same
arity which commutes with all terms. Although we will not need the converse, it
is true: any term 5 which commutes with all terms defines a natural operation a by
setting aA = sA.

LEMMA 2.10. Let £? be a prevariety which is normal and conormal. There are
terms 0 and s which commute with all basic operations of & and satisfy the following
equations:

(1) s(x,x) = 0.
(2) s(x, 0) = x.
(3) s(s(x, y), s(z, to)) = s(s(x, z), s(y, to)).

PROOF. We choose terms 0 and s to be the terms guaranteed by Lemma 2.9 which
correspond to the natural operations 0 and rl o v. For any A e ^ w e have

sA(x,x) = i-\vA(x,x)) = i-\(x,x)/A) = t;'((0,0)/A) = 0.

Therefore (1) holds. Furthermore,

so (2) holds. Finally, since s is a term, but also a homomorphism from A2 to A, we
get that (3) holds.

THEOREM 2.11. Let 2? be a normal, conormal prevariety. Then £? is term equi-
valent to a variety of modules.

PROOF. Define x + y = s(x, s(0, y)) and — x = s(0, x). These terms commute
with all terms of &> since both 0 and 5 have that property. We claim that x + y, —x
and 0 interpret as abelian group operations on any member of &.

Clearly we have x + 0 = s(x, s(0, 0)) = s(x, 0) = x. Furthermore,

0 + x = s(0, s(0, x)) = s(s(x, x), s(0, x))

= s(s(x, 0), s(x, x)) = s(x, 0) = x.

This proves the unit laws. We have (-x) + x = s(s(0, x), s(0, x)) = 0 by 2.10(1).
The commutative law for x + y follows from the fact that x + y commutes with itself,
since then x + y = (0 + x) + (y + 0) = (0 + y) + (x + 0) = y + x. Hence -x is
both a left and a right inverse for x. Now the associative law for x + y is proved as
follows:

x + (y + z) = (0 + x) + (z + y) = (0 + z) + (x + y) = (x + y) + z.
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Therefore every member of g? has abelian group terms and these terms commute with
all other terms.

We define a ring associated to 8? as follows. Let R be a representative set of
unary terms of &. The ring multiplication will be essentially composition of terms.
Thus if r(x), t(x) € R, then (rt)(x) is defined to be the representative of r{t(x)).
Addition is defined with the binary term x + v from above: if r(x), t{x) e /?, then
(r + t)(x) is defined to be the representative of r(x) + t(x). Of course, negation is
defined by saying that (—r)(x) equals the representative of —(r(x)). We define 0 by
the representative of the term 0(;t) = 0 for all x. The ring laws follow from the fact
that x + y, —x and 0 are abelian group terms of & which commute with all unary
terms.

For each A e & we claim that A is term equivalent to the module (A; +, —,0,re
R). Clearly, this module is a reduct of A, since all the defining operations are terms
of A. To see that all terms of A are expressible with module operations, choose an
arbitrary n-ary term f(xi,..., xn). Since / commutes with xx + • • • + xn on the array

'Xi 0 ••• 0'
0 x2 ••• 0

. 0 0 ••• x n .

we get that f(xu ... ,xn) = / iOi) + h fn{xn) where /(*,) is the unary term in
R which represents / ( 0 , . . . , 0, JC,•, 0 , . . . ,0) with JC, in the /-th position. This proves
that / equals a module operation. Hence, A is term equivalent to a module.

We can finish the proof by showing that & is in fact a variety. (Any variety
whose members are term equivalent to modules is itself term equivalent to a variety
of modules as one can see by picking a generator for the variety.) Choose A € &
arbitrarily and let 9 be a congruence on A. A is term equivalent to a module. Let B
be the submodule of A whose universe is 0/9 and let 9' be the relative congruence of
A which has B as a class (Lemma 2.6). Then 0/9 = B = 0/9', so since A is term
equivalent to a module (and modules have regular congruences) we get 9 = 9'. This
proves that every congruence on A is a relative congruence, so every homomorphic
image of A belongs to &. A prevariety closed under the formation of homomorphic
images is a variety, so gP is a variety.

In order to sum up, we turn our attention back to bialgebraic contexts and the
case where P_ is finite. In the introduction, we gave a very natural construction
of bialgebraic contexts for finite dimensional vector spaces and for finite Abelian
groups. Our interest was to see for which classes of algebras we can obtain bialgebraic
contexts in a similar way. At the beginning of this section, we explained that if such
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a construction yields a bialgebraic context for all finite members of the locally finite
prevariety &1 then &* must be normal and conormal. The result above says that then
& is term equivalent to a variety of modules. Therefore, we can say that the 'nice'
construction of bialgebraic contexts for finite dimensional vector spaces and finite
Abelian groups is a very special case. With every reasonable generalization we can
not go beyond varieties of modules.

THEOREM 2.12. Under the assumptions of Theorem 1.1, let 2? be generated by a
finite algebra P_, and let K(A) be a bialgebraic context for every finite A e &. Then
& is term equivalent to a variety of modules and £2 is a subcategory of a category
which is term equivalent to a variety of modules. Furthermore, the duality between
& and £ is full.

PROOF. We prove first that the duality must be full. Since the context K(A) is
bialgebraic for all finite A in &>, the categories ^fin and =Sfin are normal. If Â  is a
subalgebra of a finite algebra Y e i2, then there is a morphism <p : Y —> £ such
that <p ^ 0Yp and <p\x = 0Xp because =Sfin is normal. Now a direct application of
Theorem 1.12 of [4] yields that the duality is full.

By Theorem 2.11 and Lemma 2.1 we know already that & is term equivalent to
a variety of modules. Since the duality is full, & and =2 are dually equivalent as
categories; especially i2 is normal and conormal. J2 is not a prevariety since it does
not contain the subalgebras which are not topologically closed. However, «Sfin =
(ISP(_jP))fin, and with the same arguments as for 2? in Lemma 2.1 we can conclude
that the prevariety ISP(P) is normal and conormal. Thus, it is term equivalent to a
variety of modules, and 2. is a subcategory of this variety.
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