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Abstract

Textual Entailment is a directional relation between two text fragments. The relation holds

whenever the truth of one text fragment, called Hypothesis (H), follows from another text

fragment, called Text (T). Up until now, using machine learning approaches for recognizing

textual entailment has been hampered by the limited availability of data. We present an

approach based on syntactic transformations and machine learning techniques which is

designed to fit well with a new type of available data sets that are larger but less complex

than data sets used in the past. The transformations are not predefined, but calculated from

the data sets, and then used as features in a supervised learning classifier. The method has

been evaluated using two data sets: the SICK data set and the EXCITEMENT English

data set. While both data sets are of a larger order of magnitude than data sets such as

RTE-3, they are also of lower levels of complexity, each in its own way. SICK consists of

pairs created by applying a predefined set of syntactic and lexical rules to its T and H pairs,

which can be accurately captured by our transformations. The EXCITEMENT English data

contains short pieces of text that do not require a high degree of text understanding to be

annotated. The resulting AdArte system is simple to understand and implement, but also

effective when compared with other existing systems. AdArte has been made freely available

with the EXCITEMENT Open Platform, an open source platform for textual inference.

1 Introduction

Textual Entailment (TE ) is a directional relation between two text fragments, one

called Text (T) and the other Hypothesis (H). The relation holds if, typically, a
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human reading T would infer that H is most likely true. As an example, consider

the following text fragments where, according to the definition of entailment, only

H1 can be inferred from T:

T: Hubble is a telescope that revolves around Earth

H1: Hubble is a scientific instrument that orbits Earth

H2: Hubble was launched into orbit in 1990

In 2004, Recognizing Textual Entailment (RTE) (Dagan, Glickman and Magnini

2005) was proposed as a generic task to capture such inferences. In its original

formulation, given two text fragments, the task consists in establishing whether the

meaning of the Hypothesis can be inferred from the Text. Many Natural Language

Processing applications can benefit from this taskshort (Dagan et al. 2009). In

summarization, for example, a summary should be entailed by the text; in question

answering and information retrieval, the answer for a query must be entailed by the

supporting snippet of text.

Using machine learning techniques for RTE is limited by the amount of available

labeled data and researchers have had to consider the issue of how the dimensionality

of the feature space should vary with respect to the sample size. Intuitively, an

imbalance between the number of features used and the number of labeled samples

can make classification more difficult. As a consequence, when working with data sets

as small as RTE-3 (Giampiccolo et al. 2007), many researchers use heuristic feature

selection methods in order to reduce the feature space and obtain good feature

combinations. The solutions that have been proposed, however, while facilitating

support with such data sets, might not work well with new data sets that consist

of many samples, for which it may be convenient to use a greater number of more

complex features.

In this paper, we present AdArte (A transformation-driven approach for RTE),

a system that combines syntactic transformations and machine learning techniques

to establish the entailment relations in T–H pairs. Unlike other existing methods,

AdArte is designed to fit well with a new kind of data sets that are larger but less

complex than data sets used in the past.

The algorithm has been tested on two data sets: the SICK data set, which was

used at SemEval-2014 Task#1, and the EXCITEMENT English data set, which is

a new data set composed of email feedback sent in by the customers of a railway

company. While both data sets are of a larger order of magnitude (higher number

of annotated samples) than RTE-3, they also present lower levels of complexity, in

different ways.

SICK consists of pairs created by applying a predefined set of syntactic and lexical

rules to its T and H pairs. The rules can preserve the meaning (e.g., turning active

sentences into passive), create contradiction (e.g., replacing words with semantic

opposites) or create unrelated pairs (e.g., switching and mixing modifiers). To clarify

these differences between SICK and RTE, consider the pair T:A man is driving

a car, H:The car is being driven by a man extracted from SICK, and the one

extracted from RTE: T:US Steel could even have a technical advantage over Nucor

since one new method of steel making it is considering, thin strip casting, may produce
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higher quality steel than the Nucor thin slab technique, H:US Steel may invest in strip

casting. It is clear that in the case of the RTE pair syntax alone is not sufficient to

determine entailment as in the case of the SICK pair, and that some degree of text

understanding is required.

The use of such a procedure for the creation of SICK means that there

is a correspondence between the rules used to produce a pair (e.g., creating

contradictions) and the entailment label assigned to the pair (e.g., contradiction).

AdArte learns a set of rules equivalent to those above in order to make an inference

judgment. In short, it models the entailment relation as a classification problem where

the individual T–H pairs are first represented as a sequence of syntactic operations,

called transformations, needed to transform the Text (T) into the Hypothesis (H),

and then used as features in a supervised learning classifier that labels the pairs

as positive or negative examples. The transformations are calculated by applying

tree edit distance on the dependency trees of the T–H pairs, while some knowledge

resources, such as WordNet, are used for recognizing cases where T and H use

different textual expressions (e.g., home versus house) that still preserve entailment.

For classification, we have used Weka (Hall et al. 2009), a collection of machine

learning algorithms that enabled us to try different classifiers, like Random Forests

and Support Vector Machines (SVM).

Unlike SICK, the EXCITEMENT English data set has not been created by

applying any specific kind of rules to its T–H pairs. However, the data set still

maintains a low level of complexity due to its short pieces of text, which do not

require a high degree of text understanding in order to be annotated.

AdArte is simple to understand and implement but also effective when compared

with the systems that took part in SemEval-2014 Task#1 (Marelli et al. 2014a), and

the ones distributed as part of the EXCITEMENT Open Platform (EOP) (Padó

et al. 2013; Magnini et al. 2014), which is an open source software platform for

RTE relations. AdArte has been made available with the EOP for research use and

evaluation.

The paper is organized as follows: Section 2 discusses the related work, while

Section 3 describes the data sets used for the system evaluation. Section 4 introduces

the transformations and Section 5 goes on to describe the system architecture.

Section 6 moves to the experimental part and finally Section 7 presents the

conclusions.

2 Related work

TE systems tend to follow the same fundamental approach, which consists in

representing the meaning of the Text (T) and the Hypothesis (H) at a certain

level and checking if the representation of the meaning of H is contained in that

of T. Generally, this is done in one of two ways: (i) purely lexical approaches

for which, in the simplest case, the likelihood of entailment is based on lexical

overlap between the words of the Text and those of the Hypothesis, (ii) deeper

proof-theoretic approaches which use deductive proof mechanisms to perform the

entailment judgment. The more successful systems for RTE can be classified into
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several different categories based on the model they use. In this section, we divide the

models into the following categories: alignment-based models, transformation-based

models and proof-theoretic models. For a more detailed analysis of the principal

techniques that have been developed so far, see Dagan et al. (2013).

The best performing system at the SemEval-2014 Task#1 was the system proposed

by the University of Illinois (Lai and Hockenmaier 2014). It combines non-

compositional features (e.g., word overlap and alignment between the fragments),

compositional features and denotational similarities.

Edit distance models can be viewed as transformation-based models with very

simple rules. They were first adopted for RTE in EDITS (Kouylekov and Magnini

2005). In this approach, the distance values calculated on the trees of the T–H pairs

in the development set are used to compute a threshold value for separating the

entailment pairs from the non-entailment ones. If the distance value between T and

H in an unannotated pair is below or equal to the calculated threshold, then there

exists entailment between T and H; the relation is non-entailment otherwise. As

opposed to this method, we use the transformations produced by tree edit distance

as features to create a feature vector for every T–H pair.

Heilman and Smith (2010) suggested an approach using transformations which has

some superficial similarities to ours; they used tree edit models to represent sequences

of tree transformations and then applied the logistic regression classification model

by Hastie, Tibshirani and Friedman (2001) on the labels and features of the extracted

sequences. Our method differs from their approach in three important aspects: (i)

They extended the three basic edit operations with additional and more complex

ones, like the operation that involves moving whole subtrees. Next, to efficiently

search for a reasonable sequence of transformations, they used greedy best-first search

and the computationally expensive Tree Kernel-based heuristic function. In contrast,

we use tree edit distance to extract three simple types of transformations (i.e.,

insertion, deletion, substitution), where the number of produced transformations is

the minimum number of transformations required to transform one tree into another.

(ii) They selected a well-defined set of 33 features that they considered to be the most

promising with the specific data set. Instead, we use all the transformations produced,

without any specific manual or semi-automatic feature selection dependent on the

data set. In addition, the feature set used is homogeneous: all the features represent

a type of transformation. (iii) While they used logistic regression for classification,

we used other classifiers that performed better on our data sets and with our feature

sets. Our method has the following advantages with respect to theirs: it appears

simpler to implement and easier to adapt to new data sets, and is more efficient

in terms of computational time. The features can be extracted by using one of the

many available implementations of tree edit distance and no feature selection is

required; there are no constraints to be set or integrated. In contrast, we think that

their method would outperform our method when tested on data sets like RTE-3.

In fact, the high number of features produced by our method, combined with the

low number of available labeled samples, would make classification more difficult

in this case.
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Transformation-based models, which are a step forward toward proof-theoretic

models, were suggested by Harmeling (2009) and Stern and Dagan (2012). Harmel-

ing’s proposal was a system for TE based on probabilistic transformation. Supposing

that there may be multiple transformation sequences (i.e., derivations) that derive

a given Hypothesis from a given Text, the derivation with the highest probability

should be selected. An entailment label for such a T–H pair can be determined by

selecting a threshold (such as p ≥ 0.5) above which entailment is considered to hold.

Our method differs in three ways from their work: (i) Harmeling defined a fixed

set of operations, including syntactic transformations, WordNet-based substitutions,

and more heuristic transformations such as adding or removing a verb or even

substituting a named entity. In contrast, in our approach, the transformations are

extracted automatically and their number and type depends on the syntactic structure

of the given pairs. (ii) He applies the transformations in a predefined order, while we

execute them in an order so as to produce a minimum number of transformations.

(iii) In Harmeling’s approach, the probability of each predefined transformation

is estimated from the development set, and the probability that a transformation

sequence is consistent with T (i.e., the entailment holds) is defined as the product of

the probability of each transformation in the sequence. Instead, our approach uses

a vector space model for representing the T–H pairs as vectors of transformations,

and machine learning-based classifiers to assign an entailment label to such vectors.

In Stern and Dagan’s proposal, they apply the transformations derived from

knowledge and linguistic resources, such as WordNet and Wikipedia, to preserve

the meaning of the text, as follows: when a transformation is applied on a text T, it

transforms it into a new text, T′. The goal is that the meaning of T′ will be entailed

from T. Then, they estimate the validity of every transformation and, consequently,

of every sequence of transformations, and decide whether T entails H based on

this estimation. There are two main differences compared to our method: (i) in

their method, the transformations are extracted from external resources whereas we

extract them from the data set. (ii) They apply the calculated transformations as

a sequence of operations in order to determine whether H can be obtained from

T while we use the transformations as features for the classifier. We believe our

method to be more reliant on the data set for capturing the relevant syntactic

phenomena that determine whether an entailment relation holds. Learning from

these transformations requires a number of annotated examples which might not

be available in some application domains. Their method appears to be able to

learn from a smaller number of examples, and might be more suitable for domain

adaptation, when the data distribution in the test domain is different from that

in the training domain. However, unlike our approach, which allows a relatively

easy adaptation to new languages (provided that annotated data is available), the

portability of their approach to languages other than English is uncertain, as the

same linguistic resources might not be available for many other languages.

More formal proof-theoretic models encode facts in a knowledge base using a

formal representation, such as propositional or first-order logic, and apply rules of

inference to determine the set of facts that can be derived from the knowledge base.
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Systems that use theorem-proving as their conceptual basis were suggested by Bos

and Markert (2005) and MacCartney (2007).

Finally, it is worth mentioning a recent study by Bowman et al. (2015) using

neural networks. Training a neural network on benchmarks such as SICK results

in poor performance due to the even larger amount of data required. To face

this issue, they trained the neural networks in a transferable way: they used the

tuned parameters calculated on a new and large data set (i.e., the Stanford Natural

Language Inference data set) to initialize the parameters of a model on the target

SICK data set. Even though the measured values are slightly divergent from the

state-of-art, they obtained the best performance yet reported for an unaugmented

neural network model.

3 Data sets

We used two data sets for the system evaluation: SICK and EXCITEMENT. SICK

is the data set used at SemEval-2014 Task#1. Its new release, of which we had a

first preview, includes additional information about the syntactic and lexical rules

used for creating its T–H pairs. This allowed us to evaluate our method while also

considering the different phenomena taking place within the data set (e.g., evaluation

on the T–H pairs where H has been created by the annotators transforming T into

passive rather than replacing its words with semantic opposites). On the other hand,

the EXCITEMENT English data set is a new data set containing email feedback

from the customers of a railway company. Details of these data sets are given in

Sections 3.1 and 3.2.

3.1 SICK data set

The SICK data set (Marelli et al. 2014b) was used at SemEval-2014 Task#1 for the

subtasks of: (i) relatedness (i.e., predicting the degree of semantic similarity between

two sentences), and (ii) entailment (i.e., detecting the entailment relation between

two sentences).

SICK consists of 9,840 English annotated T–H pairs: 4,934 as part of the

development set and 4,906 in the test set. Examples of such T–H pairs can be

seen in Table 1.

To produce the data set, the annotators randomly chose 750 images from the 8K

ImageFlickr data set1 and then sampled two descriptions from each of them, while

another 750 sentence pairs were extracted from the SemEval-2012 STS MSR-Video

Descriptions data set.2 Next, they applied a fours-step process consisting of:

• Normalization: from the original sentences (S0), new sentences (S1) were pro-

duced by excluding or simplifying instances that contained lexical, syntactic

or semantic phenomena such as named entities, dates, numbers, multi-word

expressions or normalizing the tense.

1 http://nlp.cs.illinois.edu/HockenmaierGroup/data.html
2 http://www.cs.york.ac.uk/semeval-2012/ task6/index.php?id=data
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Table 1. SICK: examples of annotated T–H pairs

Pair Entailment relations

T: Two dogs are fighting Neutral

H: Two dogs are wrestling and hugging

T: Three boys are jumping in the leaves Entailment

H: Three kids are jumping in the leaves

T: There is no biker jumping in the air Contradiction

H: A lone biker is jumping in the air

• Expansion: each of the normalized sentences (S1) was expanded in order to

obtain (i) a sentence with a similar meaning (S2) which means the overall

meaning of the sentence does not change, (ii) a sentence with contrasting

meaning (S3) and (iii) a sentence that contains most of the same lexical items,

but has a different meaning (S4).

• Pairing: S2, S3 and S4 were paired with the S1 sentence from which they

were created. Then, S2, S3 and S4 were paired with the other S1 sentences

in the original pair. Finally, sentences from different original pairs S0 were

randomly paired.

• Annotating: the pairs produced in the previous step were finally annotated

with one of three possible gold labels: entailment, contradiction (i.e., the

negation of the conclusion is entailed from the premise) and neutral (i.e., the

truth of the conclusion cannot be determined on the basis of the premise).

The fact that this procedure has been applied for the creation of the data set

means that there is a correspondence between the syntactic and lexical rules applied

to produce a pair and the entailment label assigned to the pair. The entailment label

is mostly assigned in the case of S1–S2 pairs (similar meaning), the contradiction

label in the case of S1–S3 pairs (contrast/contradiction), and the neutral label in

the case of S1–S4 pairs (lexical overlap only). However, the data set also contains a

relatively high proportion of S1–S3 pairs (and, even if to a lesser extent, of S1–S2

pairs) labeled neutral. Inspection of the neutral pairs reveals a significantly higher

incidence of pairs of sentences with subjects with indefinite papers. For example, T:A

couple is not looking at a map does not contradict H:A couple is looking at a map,

because one could imagine two different couples, one who looks at a map, while the

other one does not. In contrast, T:A person on a bike is not in the air near a body of

water contradicts H:A person on a bike is in the air near a body of water, because

in this case, the people mentioned in the two sentences were thought to be the same

person. As it is discussed in Section 6.5, this fact impacts the quality of the system’s

output. Another aspect that is worth highlighting is that the data set presents some

‘flaws’ that both non-compositional and compositional systems at SemEval-2014

Task#1, took advantage of. In particular, one of them reports that, just by checking

the presence of negative words, one can detect 86.4 per cent of the contradiction

pairs, and by combining Word Overlap and antonyms one can detect 83.6 per cent

of neutral pairs and 82.6 per cent of entailment pairs. Another participant reports

https://doi.org/10.1017/S1351324916000176 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324916000176


514 R. Zanoli and S. Colombo

Table 2. EXCITEMENT: examples of annotated T–H pairs

Pairs Entailment relations

T: Food could be better Entailment

H: Better food would be good

T: I always get the same tasteless food Non-entailment

H: Food is unhealthy

that a surprisingly helpful feature was the sentence pair’s ID. In this respect, our

approach does not make use of any rule or feature created ad hoc for that purpose.

The features used and their number is determined automatically by our method

according to the characteristics of the data set. For example, as mentioned before,

there is no doubt that the presence of a relation between a negation word and the

word it modifies is important in detecting the contradiction pairs; and it is equally

true that our method can recognize and exploit such a phenomenon for the pairs

classification. However, this must be regarded as a characteristic of our approach

that lies in the ability to learn from the various lexical and syntactic phenomena

which arise within the data set. This happens without the need for hand-written

rules, which might be designed to work on a specific data set, but might fail when

attempting to annotate new and different data sets.

3.2 EXCITEMENT english data set

In order to verify the applicability of our method to a data set other than SICK,

and to compare our results with several other existing systems, we used the

EXCITEMENT english development data set (Kotlerman et al. 2015), which is

freely available from the EOP web site.3 EXCITEMENT contains pieces of email

feedback sent by the customers of a railway company where they state reasons

for satisfaction or dissatisfaction with the company. Table 2 shows an example

of T–H pairs annotated with one of the two possible entailment relations in the

data set, i.e., entailment and non-entailment. Working with this data set is different

from annotating the RTE data sets in many aspects. As regards, the preprocessing,

capitalization and punctuation marks in the data set are often missing. Moreover,

it contains a lot of imperatives (e.g., improve the food), and noun phrases (e.g.,

Passageway too narrow), which may deteriorate the performance of methods that

use deep linguistic analysis annotations, as our method does.

The data distribution was generated manually by its annotators by organizing

the emails into groups based on the nineteen different topics they relate to, like

food choice and Internet, and then splitting them to generate four different data

sets, namely mix-balanced, mix-unbalanced, pure-balanced and pure-unbalanced.4

For these sets, the distinction between balanced and unbalanced data sets lies in

3 https://github.com/hltfbk/EOP-1.2.1/wiki/Data-Sets
4 Only the development set is available at the time we are writing.
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whether the data set contains a comparable number of examples per category or a

large amount of examples from only one category. The terms mix and pure refer

to how the T–H pairs are distributed among the data sets. In the case of the Mix

data set, the T–H pairs referring to a specific topic (e.g., food choice) are equally

distributed between the training and test data set (i.e., both the training and test

contain examples of food choice). In contrast, in the pure data set, the training and

the test set contain pairs referring to different topics (e.g., the training could contain

the examples for food choice, whereas the test, the ones for Internet).

The reason for creating this split is that it sheds light on how different RTE

systems perform under different conditions (e.g., a system might perform better on

balanced data sets, while another system could be insensitive to that).

4 Transformations

Transformations are elementary edit operations needed to transform one text into

another. The most widely used edit operations are deleting, replacing and inserting

pieces of text. In the context of TE, the transformations of a T–H pair are the edit

operations needed to transform T into H. For example, given the following T–H

pair extracted from SICK:

label: NEUTRAL

T:The girl is spraying the plants with water

H:The boy is spraying the plants with water

the transformation consisting in replacing girl with boy is just one of the possible

transformation sequences that can be applied to transform T into H. In fact, other

sequences would be equally possible, like the sequence of atomic operations that

would remove the whole content of T and add the whole content of H.

4.1 Calculating the transformations

Several approaches to RTE operate directly at the token level, generally after

applying some preprocessing, such as part-of-speech (PoS) tagging, but without

computing more elaborate syntactic or semantic representations. Another approach,

like the one adopted in the present work, is to work at the syntax level by using

dependency grammar parsers (Kubler et al. 2009). The output of a dependency

grammar parser is a tree whose nodes are the words in the sentence and whose

labeled edges correspond to the syntactic dependencies between words. Figure 1

shows the dependency trees for the Text (T) and Hypothesis (H) introduced above.

Each node in the tree consists of the word itself, the lemmatized word with its

PoS tag, and the syntactic dependency relation (dprel) with its parent node. We use

MaltParser (Nivre, Hall and Nilsson 2006) trained on parts 2–21 of the Wall Street

Journal section of the Penn Treebank to produce the dependency trees, while tree

edit distance (see Section 5.1) is applied on the resulting trees to obtain the trans-

formations needed to convert one tree into another. The tree edit distance problem
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Fig. 1. Dependency tree of the Text: The girl is spraying the plants with water (on the left).

Dependency tree of the Hypothesis: The boy is spraying the plants with water (on the right).

has a recursive solution that decomposes the trees into subtrees and subforests. The

direct implementation of this recursive solution has exponential complexity. To limit

time and space complexity, we adopt the implementation described in the paper by

Zhang and Shasha (1989) which uses dynamic programming to achieve polynomial

runtime. Regardless of the implementation used, one of the main characteristics

of tree edit distance is that it computes the minimum number of transformations

among all the possible sequences that would achieve the same result. In this context,

three different types of transformation can be defined:

• Inserting: insert a node N from the tree of H into the tree of T. When N is

inserted, it is attached with the dprel of the source label.

• Deleting: delete a node N from the tree of T. When N is deleted, all its

children are attached to the parent of N. It is not required to explicitly delete

the children of N as they are going to be either deleted or substituted on a

following step.

• Replacing: change the label of a node N1 in the source tree (the tree of T)

into a label of a node N2 of the target tree (the tree of H).

In addition to these, there is a fourth transformation, called Matching, that does

not produce any changes on the nodes (i.e., it is simply applied when two nodes

are equal), and which generally is not considered in the edit distance calculation. In

our approach, however, the transformations are used as features for the T–H pairs

classification, and the Matching transformation, which measures the overlap of the

nodes, might be considered complementary to the other transformations and useful

in estimating the similarity between the dependency trees of the fragments of text.

This concept will be further developed in Section 4.3.

In our implementation, the transformations above are defined at the level of single

nodes of the dependency tree (we can insert, remove and replace one node at a time

while transformations consisting in inserting, removing and replacing whole subtrees

are not allowed) and nodes are matched by considering both their lemma and dprel

with their parent node, i.e., two nodes are considered equivalent if and only if they

have exactly the same lemma and dprel.

4.2 Transformation form

The transformations are used by the classifier as features and one could envision

different ways of representing them. At least two elements need to be specified: the

transformation type (e.g., inserting) and the node (or nodes in the case of replacing)
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involved in the transformation itself. For the nodes, we need to set the level of

specificity/genericity; for example, the nodes could be expressed by the lemma of

the words (e.g., girl), or by combining the lemma with the PoS (e.g., girl-NN) or

combining the lemma and dprel (e.g., girl-nsubj). To avoid overfitting, we adopt a

representation in which the nodes in the transformation are only represented by

their dependency labels, i.e.,

• Replacing(T:node-dprel, H:node-dprel),

• Inserting(H:node-dprel),

• Deleting(T:node-dprel).

For our running example, this would be: Replacing(T:nsubj, H:nsubj), meaning

that a word in T has to be replaced with another word in H and that both these

words have a syntactic relation of nsubj with their respective parents.

4.3 The role of the knowledge resources

The use of resources like WordNet is crucial for recognizing cases where T and H use

different textual expressions that preserve the entailment (e.g., child versus boy). The

Knowledge Resources that we use (see Section 5.2) contain both semantic relations

that preserve the entailment relation (e.g., WordNet synonyms and hypernyms)

and that change the entailment relation (e.g., WordNet antonyms). With tree edit

distance, we use the preserving relations in the following way:

WHEN in the Knowledge Resources there exists an

entailment-preserving relation between two words, THEN those

words are matched as if they were the same word.

As an example, consider the two words toy and object in the pair T:Two

dogs are running and carrying a toy in their mouths, H:Two dogs are running and

carrying an object in their mouths. For these two words, the following matching

transformation would be produced: Matching(T:dobj, H:dobj)5. On the other hand,

the non-preserving relations are used for labeling those transformations that, when

applied on two words, do not preserve the entailment (e.g., white versus black,

leaving versus arriving):

WHEN in the Knowledge Resources there exists a

non-entailment-preserving relation between two words in a

transformation, THEN we label that transformation with the label

non-preserving entailment.

As a result, the transformation for our running example, the replacement of girl

with boy, which are antonyms in WordNet, can be represented as Replacing(T:nsubj,

H:nsubj, non-preserving entailment).

5 The transformation is produced in addition to the other matching transformations (e.g.,
Matching(T:nsubj, H:nsubj)) calculated for those words that T and H have in common
(e.g., dogs).
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Table 3. Transformations for some T–H pairs in SICK with similar meaning.
On the left, the pairs with the rules applied to produce them. On the right, the
transformations produced by our method. An index on T and H highlights the words in
the transformation, e.g., 3 (Ins(H3:auxpass)) means that the transformation regards
the word at position 3 in H (is)

Pairs Transformations

Label: ENTAILMENT 1. Rep(T2:nsubj,H2:nsubjpass)

Rule: turn active sentences into passive 2. Rep(T1:det,H1:det)

T: A man is driving a car 3. Ins(H3:auxpass)

H: The car is being driven by a man 4. Ins(H6:prep)

5. Rep(T6:dobj,H8:pobj)

Label: ENTAILMENT 1. Rep(T2:nsubjpass,H2:nsubj)

Rule: turn passive sentences into active 2. Rep(T1:det,H1:det)

T: The potato is being peeled by a woman 3. Del(T4:auxpass)

H: One woman is peeling the potato 4. Del(T6:prep)

5. Rep(T8:pobj,H6:dobj)

6. Rep(T7:det,H5:det)

Label: ENTAILMENT 1. Match(T3:nsubj,H3:nsubj)

Rule: replace words with synonyms There exists a preserving relation

T: A young boy is jumping into water between boy and kid and they are

H: A young kid is jumping into water matched as if they were the same

word.

Label: ENTAILMENT 1. Del(T2:amod)

Rule: add modifiers

T: A wild deer is jumping a fence

H: A deer is jumping a fence

Label: ENTAILMENT 1. Rep(T1:det,H1:det)

Rule: replace quantifiers

T: A surfer is riding a big wave

H: The surfer is riding a big wave

4.4 Transformations produced from SICK

As described in Section 3, the annotators have created T–H pairs with similar

meaning, contrasting meaning and pairs where the truth value of one fragment

cannot be inferred from the other fragment. Table 3 shows the transformations that

our method produces for some examples of T–H pairs with similar meaning, while

Table 4 shows the transformations for examples of the two remaining cases.

5 System architecture

We recast RTE as a classification problem in which the provided T–H pairs are

classified as positive or negative examples. Figure 2 shows the system’s architecture.

The T–H pairs are first preprocessed (Section 5.1) to produce their dependency

trees, then a set of features (i.e., the transformations) are extracted from these trees

(Section 5.3). Knowledge Resources (Section 5.2) can be used in this phase to match

words with the same or similar meaning and those with opposite meanings. Finally,
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Table 4. Transformations for some T–H pairs in SICK with contrasting meaning or
where the truth of one of its fragments cannot be inferred from the other one. On the
left, the pairs with the rules applied to produce them. On the right, the transformations
produced by our method

Pairs Transformations

Label: CONTRADICTION 1. Ins(T4:neg)

Rule: insert a negation

T: The boy is playing the piano

H: The boy is not playing the piano

Label: CONTRADICTION 1. Rep(T2:root,H4:root)

Rule: change determiners with opposites 2. Ins(H2:nsubj)

T: There is no dog walking along a snowdrift 3. Rep(T1:expl,H1:det)

H: A dog is walking along a snowdrift 4. Del(T4:nsubj)

5. Rep(T3:neg,H3:aux)

6. Del(T5:partmod)

Label: NEUTRAL 1. Rep(T2:nsubj,H2:nsubj,npe)

Rule: replace words with semantic opposites where npe means that the

T: The girl is spraying the plants with water transformation does not

H: The boy is spraying the plants with water preserve the entailment.

Fig. 2. System architecture.

a classifier uses the features produced (Section 5.4) to classify the T–H pairs to be

annotated.

The implementation of the system was developed within the EOP (Padó et al. 2013;

Magnini et al. 2014) for RTE, which is a generic architecture and a comprehensive

implementation for textual inference in multiple languages that promotes the reuse
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of software components. The platform includes state-of-the-art algorithms for RTE

relations, a large number of knowledge resources and facilities for experimenting

and testing innovative approaches.

5.1 Preprocessing

The T–H pairs are preprocessed with PoS tagging, lemmatization and dependency

parsing. The output of this phase consists of the dependency trees created for each

pair (i.e., one tree for the Text (T) and another for the Hypothesis (H)). We use

TreeTagger (Schmid 1994) for tokenization, lemmatization and PoS tagging, while

MaltParser (Nivre et al. 2006) is used for dependency parsing. As an example,

consider the pair: T:The girl is spraying the plants with water and H:The boy is

spraying the plants with water for which the preprocessing output has been reported

in Figure 1. This will be used as the running example in this section.

5.2 Knowledge resources

Knowledge resources are crucial in recognizing cases where T and H use different

textual expressions that are semantically related and can be relevant in identifying

the entailment relation (e.g., kid versus boy, home versus house). In this context, it

must be noted that the component we are using for querying the Lexical Knowledge

currently has some limitations. First of all, we cannot access the resources by a

combination of both lemma and PoS, but by lemma only. As a consequence, it

could happen, for example, that a word used as a noun in a certain context and

another word used as a verb produce a positive match only because they share

the same lemma. Second, resources like WordNet are used without any word sense

disambiguation, i.e., a word in the text fragments could be matched with its wrong

sense in the resource. In the rest of this section, we briefly report on the three

resources used, namely WordNet, CatVar, and VerbOcean, and describe how their

semantic relations (e.g., synonym) can be grouped into relations that preserve the

entailment and that do not preserve the entailment.

WordNet (Miller 1995) is a lexical database that groups words into sets of

synonyms called synsets, provides short, general definitions and records the various

semantic relations between these synonym sets. From the available relations, we use

the following ones: hypernym (e.g., leave → move), entailment (e.g., leave → go),

synonym (e.g., leave → go away) and antonym (e.g., leave → arrive). Of these, the

hypernym, entailment and synonym are considered to be preserving entailment, and

antonym is considered to be non-preserving.

CatVar (Habash and Dorr 2003) is composed of uninflected words (lemmas) and

their categorial (i.e., PoS) variants. For example, the words hunger (V), hunger (N),

hungry (AJ) and hungriness (N) are different English variants of the same underlying

concept describing the state of being hungry. The local-entailment relation present

in CatVar is considered to be an entailment-preserving relation.

VerbOcean (Chklovski and Pantel 2004) is similar to WordNet, but applies only to

verbs. VerbOcean contains lexical–semantic relations that are unique to verbs, such
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as stronger than (e.g., whisper → talk). Many of these relations indicate entailment

at the lexical-level, and are useful for covering inference relations between verbs

that do not exist in WordNet. The relations used from VerbOcean are similar, which

preserves entailment, and opposite of, which is a non-preserving relation.

5.3 Feature extraction

Feature extraction is used in order to convert each input pair into a feature set. We

represent each T–H pair as a set of binary features which are the transformations

obtained by applying tree edit distance on the dependency trees produced in the

previous phases. To limit time and space complexity, we use the implementation

described in the paper by Zhang and Shasha (1989), as said in Section 4.1.

5.4 Classification

The availability of annotated data sets makes it possible to formulate the problem

of RTE in terms of a classification task. For classification, we used Weka (Hall et al.

2009), which is a collection of machine learning algorithms for data mining tasks.

Using Weka, we decided to try different algorithms, like Naive Bayes (Rish 2001),

logistic regression (le Cessie and van Houwelingen 1992), J48 (i.e., an open source

Java implementation of the C4.5 algorithm (Quinlan 1986) in the Weka data mining

tool), Random Forests (Breiman 2001) and SVM (Vapnik 1995).

6 Experiments and results

We evaluated our approach by testing it on both the SICK and EXCITEMENT

data sets. As regards SICK, the experiments have been conducted in the same way

as the ones performed for SemEval-2014 Task#1. This means that we split the

development set into two parts: a dev-train for training the system (3,290 examples)

and a dev-test (1,644) for finding the best system configuration to be used for the

test set. Achieving the best system configuration required a number of experiments:

Section 6.1 describes the baseline and two basic system configurations that were

used as reference point to compare other tested configurations. After choosing the

best of these configurations, Section 6.2 refers to the experiments conducted using

different algorithms for the classification of the T–H pairs, while Section 6.3 refers

to the contribution of the knowledge resources to the final system performance.

Section 6.4 compares the different approaches to node matching.

With respect to the EXCITEMENT data set, each of its four data sets comes

in two parts: a dev-train that we use for training the system and a dev-test for

tuning. Given that the test data set was not available at the time we were writing, in

this section, we report the results we have obtained on the dev-test. We would like

to highlight that the same experiments conducted on SICK were also performed

on this data set to find the most promising system configurations. For reasons of

space, and considering that the fine-grain annotation of SICK allows for much more

refined conclusions, and that the EXCITEMENT test set will be released at a later
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Table 5. Accuracy measure for the baseline and the basic system configurations.
Computing time in seconds for training and for test (in parentheses)

Data set Accuracy Time(s)

Basic-system#1 (SVM) 80.4 33.9 (0.1)

Basic-system#2 (SVM w/o resources) 77.8 33.8 (0.1)

Baseline 62.1

time, for EXCITEMENT, we show only the results for a number of configurations

and this is done in Section 6.5.

Finally, Section 6.6 concludes by comparing our results on SICK with those

obtained by the participants of SemEval-2014 Task#1, while for EXCITEMENT,

the results are compared with those of the systems distributed with the EOP. For

both data sets, we run the experiments on the same hardware infrastructure.6

6.1 Baseline and evaluation measures

To measure the performance of each of the system configurations that were tested, we

created a baseline calculated by annotating all the T–H pairs in the dev-test with the

most common entailment relation in the dev-train (i.e., neutral). Then, we explored

two different basic configurations: basic-system#1 was calculated by using SVM

and a linear kernel for classification. SVM is one of the most popular classification

algorithms used in machine learning, while the linear kernel is faster than other

kernel functions and easier to optimize. WordNet, CatVar and VerbOcean were used

as resources as they are well-known, freely-available resources. Next, basic-system#2

was obtained in the same way as basic-system#1, but without using any external

resources.

In Table 5, the overall system performance over the different category labels is

measured in terms of accuracy (i.e., the percentage of predictions that are correct),

while, in the rest of the section, the classification effectiveness over the single category

is calculated in terms of the classic information retrieval notions of Precision (Pr)

and Recall (Re), together with the F1 measure.

Supervised learning methods need annotated data in order to generate efficient

models. However, annotated data is relatively scarce and can be expensive to obtain.

The learning curve plotted for our method (Figure 3) shows the accuracy on the

dev-test as a function of the number of examples in the dev-train. Acceptable results

can be obtained using only twenty per cent of the training data (980 examples).

Moreover, exceeding fifty per cent of the training examples (2,467 examples) does

not produce any significant improvements; it is the case that the new annotated

examples cannot solve the most problematic pairs, which will be examined in the

next part of this section.

6 PC Intel(R) Xeon(R) 2 GHz, RAM 8 GB, Linux Red Hat Enterprise

https://doi.org/10.1017/S1351324916000176 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324916000176


A transformation-driven approach for RTE 523

Fig. 3. Learning curve (semi-log scale) calculated with basic-system#1 (SVM).

Table 6. Values in brackets highlight improvements or deterioration in performance
with respect to values obtained by basic-system#1 (SVM). Computing time in seconds
for training and for test (in parentheses)

Accuracy t-test Time(s)

SVM (2-poly kernel) 81.2 (+0.8) (�) 111.7 (5.5)

Random Forests 80.5 (+0.1) (�) 53.9 (0.9)

J48 77.7 (−2.7) (�) 25.6 (0.1)

Logistic 77.2 (−3.2) (�) 84.4 (0.2)

Naive Bayes 72.6 (−7.8) (�) 1.0 (2.9)

6.2 Algorithms evaluation

Starting from basic-system#1 (SVM), we replaced SVM with other algorithms for

classification: Random Forests, J48, Logistic and Naive Bayes; we have chosen these

algorithms because they are frequently reported in the literature as having good

classification performance. A second degree polynomial kernel for SVM was used

in order to try to capture the complex interactions that occur among the syntactic

transformations. Table 6 reports on the results obtained when these algorithms are

trained on the SICK dev-train and evaluated on the dev-test. The annotation (�),

(�) or (∼) in the t-test field of the table indicates that a specific result is statistically

better (�), worse (�) or equivalent (∼) compared to the results of basic-system#1

(SVM) at the significance level specified (currently 0.05).

According to this test, SVM with polynomial kernel and Random Forests

performed better than SVM using linear kernel, while Naive Bayes performed poorly.

These results could also be explained by considering the presence of interactions

among the features extracted: if each of the transformations makes an independent

contribution to the output, then algorithms based on linear functions (e.g., logistic,

SVM with linear kernel, Naive Bayes) generally perform well. However, if there are

complex interactions among features, as is the case here, then algorithms such as

SVM with polynomial kernels of higher degree, decision trees or ensemble methods

using decision trees, like Random Forests, work better, because they are specifically

designed to discover these interactions.
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Table 7. One resource removed at a time

Accuracy t-test Coverage

-WordNet 77.5 (−2.9) (�) 0.02018

-CatVar 80.2 (−0.2) (�) 0.00047

-VerbOcean 80.7 (+0.3) (∼) 0.00217

6.3 Knowledge resources evaluation

To measure the impact of the knowledge resources on recognizing the entailment

relations, we started with basic-system#1 (SVM), using all the resources described

in Section 5.2 and then removed one lexical resource at a time. This is reported in

Table 7. In the table, the coverage of the resources is measured as the number of

times we find a relation in a given resource, divided by the number of accesses to

the resource.

WordNet resulted as the most important resource (−2.9 when it is not used),

CatVar (−0.2) gives a small contribution and finally VerbOcean (+0.3) seems to not

be useful. The good result of using WordNet can also be explained by considering its

coverage, which is higher than that of the other resources. Using WordNet enables,

for example, the identification the T–H pairs that had been created by replacing

words with synonyms or by replacing words with semantic opposites. Concerning

VerbOcean, but this is also true for all the other resources, we must point out once

again that the EOP component that we are currently using for querying the Lexical

Knowledge does not allow access to the resources by a combination of both lemma

and PoS, but by lemma only. As a direct consequence of this, it could happen, for

example, that, even though VerbOcean contains semantic relations only between

verbs, words used as a noun in a certain context, and those that are actually verbs,

might produce a positive match, which is used in the tree edit distance calculation.

As an example of this problem, consider the pair T:A little girl is hitting a baseball

off a tee, H:A little girl in a pink shirt is playing t-ball and taking a swing, where the

verb hit in the Text (T) and the noun swing in the Hypothesis (H) create a positive

match. The same problem can occur when accessing WordNet; for the pair T:A

monkey is pulling a dog’s tail, H:A monkey is teasing a dog at the zoo, the noun tail

in T is matched with the noun dog in H, because they are synonyms in WordNet

but with the meaning of ‘to follow’ (i.e., a verb).

6.4 Node matching evaluation

Tree edit distance computes the transformations working on the nodes in the

trees and different transformations can be produced under different types of node

matching. In basic-system#1 (SVM), two nodes are considered equivalent if and

only if they have the exact same lemma and dprel. However, other strategies for

comparing nodes are possible. Using only the lemma results in a significant drop in

accuracy (−20.1); in this case, for example, a lemma that is the subject of a Text (T),

can be successfully matched by tree edit distance against the same lemma playing
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Table 8. System accuracy for all three entailment relations. In parentheses, the
number of examples in the data set

Accuracy Pr Re F1

Contradiction (1,424) 73.2 88.8 73.2 80.2

Entailment (2,821) 71.2 80.6 71.2 75.6

Neutral (5,595) 90.4 81.9 90.4 86.0

Table 9. Confusion matrix on the SICK test set

a b c ← classified as

2,523 206 61 a = Neutral

400 999 5 b = Entailment

156 35 521 c = Contradiction

another syntactic role in a Hypothesis (H) (e.g., the object). On the other hand,

matching the nodes by only considering the syntactic relations lets tree edit distance

match nodes that have the same syntactic role in the text fragments (e.g., the subject)

but which, in fact, represent different words (e.g., man versus car, woman versus

potato); this may also explain the loss in accuracy (−12.3).

6.5 System evaluation

In the previous sections, we have reported a large number of experiments in order

to find the best system configuration on the dev-test. When using that configuration

to train our system on the whole development set and then testing it on the

test data set, we obtained 82.4 per cent accuracy. Table 8 gives details about the

system’s performance for all the three entailment relations of SICK i.e., contradiction,

entailment and neutral. Table 9 reports the confusion matrix obtained on the SICK

data set.

The confusion matrix reveals that in some cases the entailment and contradiction

relations can be confused with the neutral one. An explanation for this lies in the

higher presence in the data set of sentences with subjects that contain indefinite

articles, where the entailment judgments are subject to human interpretation. In

fact, in the data set, there are pairs annotated with neutral or contradiction labels

depending on whether the subjects of their T and H were believed to refer to the

same entity or two distinct ones.

The results, grouped into categories corresponding to the different expansion rules

that had been applied, can be found in Table 10. To obtain S2, the annotators applied

meaning-preserving rules, while to obtain S3, they used rules creating contradictory

or contrasting meaning. Finally, to get sentences S4, a set of word scrambling rules

were applied while ensuring that the resulting sentence was still meaningful. The

results in the table are only reported for those rules that generate at least ten T–H
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Table 10. System accuracy on the T–H pairs generated by applying the preserving,
negative and scrambling rules

Accuracy F1

preserving

Add modifiers S1 S2 48 92.6 96.2

S2 S1 238 97.5 98.7

Turn adjectives into relative clauses S1 S2 91 84.4 91.6

S2 S1 98 87.8 93.5

Turn compounds into relative clauses S1 S2 28 78.6 88.0

S2 S1 28 90.3 94.9

Replace words with synonyms S1 S2 481 77.4 82.6

S2 S1 365 68.6 73.5

Turn active sentences into passive S1 S2 146 82.4 83.4

S2 S1 135 87.3 93.2

Replace quantifiers S2 S1 134 96.8 98.4

Expand agentive nouns S2 S1 133 83.6 89.8

negative

Insert a negation S1 S3 204 95.2 96.3

S3 S1 215 97.2 97.4

Change determiners with opposites S1 S3 307 89.5 94.0

S3 S1 301 87.6 91.7

Replace words with semantic opposites S1 S3 468 72.5 78.5

S3 S1 465 70.0 77.3

others

Scramble words S1 S4 187 80.9 83.5

S4 S1 190 82.2 81.7

pairs in the test data set, while sentences S1, S2, S3 and S4 can appear in T and H

or vice versa. The annotation of the pairs was done using the primary configuration.

Errors in the system’s output regard the pairs that have been created by replacing

words with synonyms and with semantic opposites. Here, a major issue can be the

lack of coverage of the knowledge base used for word matching; as an example

of words for which we do not have any match in the knowledge base, consider

grass and lawn in the pair T:A brown and white dog is playing on the grass, H:A

brown and white dog is playing on the lawn. Other examples refer to words used

with opposite meaning, like playing and sleeping in T:Children in red shirts are

playing in the leaves, H:Children in red shirts are sleeping in the leaves; or the use

of partial synonyms like marsh and river in T:A monkey is wading through a marsh,

H:A monkey is wading through a river. One instance where one could expect to have

better performance is that of the pairs created by turning compounds into relative

clauses. Examples of such pairs are T:A dog is pushing a toddler into a rain puddle,

H:A dog is pushing a toddler into a puddle of rain, or pairs like T:A person is looking

at a bike designed for motocross that is lying on its side and another is racing by, H:A

person is looking at a motocross bike that is lying on its side and another is racing

by. Even though for the first pair, our approach creates simple transformations (i.e.,

replacing the noun compound rain in T with the nominal modifier rain in H; and
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Table 11. Results of different configurations for each data set of EXCITEMENT.
Precision, Recall and F1 measure are calculated on the positive class

Accuracy Pr Re F1 Configuration

Mix

Balanced 78.7 76.9 81.3 79.0 SVM (2-poly kernel)

77.7 76.0 80.2 78.0 RandomForest

75.4 73.6 78.3 75.9 basic-system#1 (SVM)

75.3 73.4 78.4 75.8 basic-system#2 (SVM w/o res)

74.7 74.4 74.4 74.4 J48

68.1 66.5 71.2 68.8 NaiveBayes

50.7 – – – baseline

Unbalanced 85.3 77.8 59.4 67.4 Random Forests

84.7 79.7 53.7 64.2 SVM (2-poly kernel)

81.6 66.7 55.6 60.6 J48

81.3 66.4 53.8 59.4 basic-system#1 (SVM)

80.7 65.3 51.5 57.6 basic-system#2 (SVM w/o res)

74.5 – – – baseline

72.8 47.2 58.1 52.1 NaiveBayes

Pure

Balanced 66.4 65.1 70.6 67.7 Naive Bayes

66.1 64.8 70.3 67.5 SVM (2-poly kernel)

65.9 63.0 76.9 69.3 basic-system#1 (SVM)

66.0 62.8 78.7 69.8 basic-system#2 (SVM w/o res)

64.4 64.0 65.7 64.8 RandomForest

63.1 62.0 68.0 64.8 J48

50.0 – – – baseline

Unbalanced 87.3 – – – baseline

77.4 19.2 24.5 21.5 RandomForest

76.9 19.2 25.5 21.9 SVM (2-poly kernel)

75.0 18.2 27.6 21.9 basic-system#1 (SVM)

74.9 18.0 27.3 21.7 basic-system#2 (SVM w/o res)

73.7 16.0 25.1 19.5 J48

70.2 19.7 43.7 27.1 Naive Bayes

then inserting a new node for the case relation of ), the second pair produces a much

larger number of transformations, which our system finds hard to process. Another

factor contributing to this result is the limited number of annotated examples for

this rule.

Regarding EXCITEMENT, we have conducted several experiments on its four

configurations. Table 11 reports the results we obtained. In the table, basic-system#1

(SVM) and basic-system#2 (SVM w/o resources) are calculated in the same way as

for the SICK experiments. The baseline was calculated by annotating all the T–H

pairs with the most common entailment relation in the data sets (i.e., non-entailment).

For this set of experiments, an important point to highlight is that the lexical

resources we used had almost no effect. As indicated by comparing basic-system#1

(SVM) (which uses the lexical resources) and basic-system#2 (SVM w/o resources).

The reason for this is that their coverage is close to zero and more specific
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domain-based resources would be necessary. Another issue that comes to light

when working on the four splits of the data set is that the performance levels of the

classifiers are relatively close to each other, meaning that the transformations can be

successfully exploited by most of the classifiers. When we consider the mix-balanced

and mix-unbalanced data sets, SVM and Random Forests algorithms perform as

well as they did for SICK. SVM, which is known to be robust to overfitting, also

obtained good performance on the pure-balanced data set. Finally, working with

the pure-unbalanced data set is a demanding task for all the classifiers because the

syntactic transformations extracted from the training data set might not accurately

represent the data in the test set. Here, a simple classifier like Naive Bayes, not so

finely tuned to contingent characteristics of the data set, performs a bit better than

the others. It should be noted that obtaining high accuracy values on this split is

trivial, since a trivial rejector, i.e., the classifier that trivially assigns all pairs to the

most heavily populated category (i.e., non-entailment) as baseline does, can indeed

achieve very high accuracy, even though there are no applications in which one

would be interested in such a classifier. In this case, F1 values can offer additional

insight. However, accuracy values are not the only factor to consider when selecting

a classifier. For example, for real-time applications, one could prefer higher values

of annotation speed, and might be willing to compromise on accuracy in order to

achieve that; in this case, SVM with linear kernel and Random Forests would be

preferable to SVM with second-degree polynomial kernel.

6.6 A comparison with other approaches

This section provides a comparison of the results obtained by AdArte with the

ones obtained by different methods. For SICK, this is done by comparing AdArte

with the Illinois-LH system (Lai and Hockenmaier 2014) and the other systems

at SemEval-2014 Task#1 (see Table 12). In addition, we compared AdArte with

systems that, when working on data set such as RTE-3, obtained state-of-the-art

results: TIE is a system which combines the outcomes of several scoring functions

into a classifier, while P1EDA uses various independent aligners to compute any

evidence for or against entailment. Given that the current implementation of these

systems does not support multi-class classification (that is required to annotate

SICK), we evaluated them on two-class entailment problem. In this case, all the

examples in SICK annotated with contradiction and neutral labels were converted

to non-entailment.

AdArte’s results are close to those of UNAL-NLP, which was ranked the first

among the systems that did not use compositional models. Purely compositional

models have lower performance; haLF obtained 69.4 per cent of accuracy, while

the system presented by Illinois, which used a combination of the two models, was

ranked first (84.6 per cent). The results of TIE (Wang and Neumann 2007) and

P1EDA (Noh, et al. 2015) can be explained by considering that these approaches

might not work well with the phenomena present in the data set, such as negations,

given that their alignment-based methods are not able to capture them. The approach

by Bowman et al. (2015) shows that the representations learned by a neural network
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Table 12. AdArte as compared with the SemEval-2014 Task#1 systems and the
Bowman’s neural network model. Below, AdArte, TIE and P1EDA are evaluated on
two-class entailment problem

Team Id Accuracy

Illinois-LH-run1 84.575

ECNU-run1 83.641

UNAL-NLP-run1 83.053

AdArte 82.4

SemantiKLUE-run1 82.322

The-Meaning-Factory-run1 81.591

Bowman-LSTM 80.8

CECL-ALL-run1 79.988

BUAP-run1 79.663

UoW-run1 78.526

UEdinburgh-run1 77.106

UIO-Lien-run1 77.004

FBK-TR-run3 75.401

StanfordNLP-run5 74.488

UTexas-run1 73.229

Yamraj-run1 70.753

asjai-run5 69.758

haLF-run2 69.413

RTM-DCU-run1 67.201

UANLPCourse-run2 48.731

AdArte 86.3

TIE 78.8

P1EDA 77.6

model on a large high-quality corpus such as the Stanford Natural Language

Inference corpus can be used to improve performance on a standard challenge

data set: 80.8 of accuracy versus 71.3 that is the accuracy when training on SICK

alone.

Concerning the EXCITEMENT data sets, our results are compared with those of

the other systems implemented within the EOP (see Table 13) (i.e., they were made

available in the EOP GitHub repository7), and with SemantiKLUE (Proisl et al.

2014), which was one of the top five systems at SemEval-2014 Task#1, and which

has also been tested on this data set.

From the table, it is apparent that in the case of the two data sets built by evenly

distributing the T–H pairs of different topics in the dev-train and dev-test (i.e., mix

data sets) our method is better than others at learning patterns and regularities

from data. In contrast, on the data sets where the examples in the training are not

representative of the examples in test (i.e., pure data sets), the difference between

7 https://github.com/hltfbk/Excitement-Open-Platform/wiki/Development-test-
suites-and-reports/3615810d0d24eef46ef34843cad10898dac19f09
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Table 13. Systems ranked by Accuracy values. A number after the systems shows their
position in the ranking when the F1 for the positive class is considered

Accuracy F1 Systems

Mix Balanced 78.7 79.0 AdArte1

76.5 74.5 SemantiKLUE2

67.0 64.8 P1EDA6

64.1 72.3 BIUTEE3

61.7 65.2 TIE-run25

61.7 64.6 EditDistance7

57.4 65.6 TIE-run14

Unbalanced 85.3 67.4 AdArte1

83.9 61.3 SemantiKLUE3

79.1 62.7 BIUTEE2

68.4 53.7 EditDistance4

62.1 30.6 TIE-run-26

48.3 32.4 TIE-run-15

Pure Balanced 66.7 69.2 P1EDA2

66.4 67.7 AdArte4

65.7 64.0 SemantiKLUE6

62.9 69.1 TIE3

62.1 71.3 BIUTEE1

55.7 66.6 EditDistance5

Unbalanced 83.4 29.2 SemantiKLUE3

80.4 39.2 BIUTEE1

77.4 21.5 AdArte5

63.2 33.4 EditDistance2

59.5 21.4 TIE-run-26

38.3 24.4 TIE-run-14

our method and the others becomes smaller. The difference is null in the case of the

pure-balanced data set, whereas on the pure-unbalanced data, systems can have good

accuracy on the majority class (i.e., non-entailment) but very poor accuracy on the

minority class (i.e., entailment) due to the influence that the majority class has on the

training criteria. In fact, many algorithms for classification are accuracy-driven. In

this sense, a system like EditDistance, but whose simple classifier can be configured

to maximize the F1 measure during training, produces, on the pure-unbalanced data

set, F1 values that are above average compared to the other systems. Good results

have been obtained on all the splits by one of the top five systems at SemEval-2014

Task#1, SemantiKLUE (Proisl et al. 2014), which, in addition, proved to be portable

to new domains. Finally, it is worth highlighting that the lack of capitalization and

punctuation marks information in the data set, and the presence of imperatives and

elliptical phrases as well, does not seem to have affected our results with respect to

other approaches based on shallow linguistic analysis, for example, the one used to

implement edit distance models.
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7 Conclusions and outlook

In this paper, we have described an approach to RTE based on tree-level transform-

ations. We have seen how the T–H pairs can be represented by their dependency

trees and how the transformations can be calculated from these trees by tree edit

distance. The transformations have then been used as features in a classifier to

label the pairs as positive or negative. Lastly, the implemented AdArte system

has been made publicly available through the EOP, a generic architecture and a

comprehensive implementation for textual inference in multiple languages. Unlike

other existing systems, AdArte is designed to work with larger data sets. The system

produces thousands of transformations and, consequently, requires that a certain

number of annotated examples be available to learn a model. In this context, we

have evaluated AdArte on two new data sets that present this feature: SICK, used

at SemEval-2014 Task#1, and EXCITEMENT, a new data set of email feedbacks.

With respect to SICK, a comparison of our results with those of SemEval-2014

systems reveals promising results: the transformations are able to capture the main

syntactic and lexical phenomena in the data set and they can be successfully used

with a variety of classifiers. This result is all the more interesting if we consider that

some systems at SemEval-2014 use approaches that would be difficult to adapt to

new domains such as the EXCITEMENT one (e.g., the denotational features used

in the Illinois system are fairly strongly tied to the SICK domain) or more complex

machine learning techniques, such as co-training used in ECNU to exploit large

amounts of unlabeled data, which are out of the scope of this work.

With regards to the EXCITEMENT data set, we have compared our method with

the systems in the EOP. In the case of the two data sets built by evenly distributing

the T–H pairs referring to different topics in the dev-train and dev-test (i.e., mix data

sets), our method appears better than others at learning patterns and regularities

from data. In contrast, on the data sets where the examples in the training are

not so representative of those in the test set (i.e., the pure data sets), the difference

between our method and the best systems in the EOP becomes smaller or void,

revealing a certain degree of overfitting. This phenomenon is even more visible when

working with pure-unbalanced data sets, where edit distance models, which learn

simple threshold values, outperform other systems.

Despite the satisfactory results, our method has two main types of limitations:

limitations regarding the size of the data set and regarding the use of the knowledge

resources. The first type of limitation is due to the approach itself, which is suitable

for data sets which consist of a sufficient number of examples to learn a model.

Possible examples of data sets for which our approach is not indicated could be

the RTE-3 data sets which consist of 800 annotated pairs. When tested on this

data set, AdArte produces lower accuracy values (58.3 per cent) than other methods

tested on the same data set. In fact on the Third PASCAL RTE Challenge (RTE-3),

participants reported accuracy values ranging from forty-nine per cent to eighty per

cent, while, for example, another system such as P1EDA obtained 67.0 per cent.

Another limitation of our approach stems from cases that cannot be solved by

comparing the syntactic structures of the T–H pairs. This is due to the fact that
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syntax alone is not sufficient to determine entailment in more complex cases that

require some degree of text understanding. As an example, consider the following

T–H pair, where the existing entailment relation between T:Carl Smith collided with

a concrete lamp-post while skating and suffered a skull fracture that caused a coma.

When he failed to regain consciousness, his parents on August 8 consented to his life

support machine being turned off, and H:Carl Smith died on August 8 cannot be

determined by merely considering the syntactic differences between them. Another

limitation of this type is the inability to deal with phrasal verbs in the current

implementation of the system. One example of such phrasal verbs would be: I am

counting on you to make dinner while I am out. In our approach, tree edit distance

can only work at the level of single nodes and, as a consequence, it cannot match

phrases such as count on with trust or go on with continue. Missing these matches

prevents us from using resources like WordNet, which would be able to identify that

go on and continue are synonyms and they should match. We are going to address

this issue by providing an additional preprocessing phase able to take as input the

dependency trees and then collapse the nodes of a phrasal verb into a single node.

The last issue refers to the component that we are using for querying the lexical

knowledge: it cannot access the resources by a combination of both lemma and PoS,

but by lemma only, and, moreover, resources like WordNet are used without any

word sense disambiguation. We will also address this issue by using a new software

component that has been made available in order to overcome these limitations.

We plan to evaluate AdArte in languages other than English, such as German

and Italian; for this purpose, we will use the OMQ and EXCITEMENT Italian data

sets8 created from manually categorized German and Italian customer requests, and

that were recently added into the EOP for evaluation.

Finally, considering the promising results, we obtained on the two data sets

tested, we are going to use AdArte in a real-world application developed within the

EXCITEMENT project. More precisely, this application aims to provide an easy-

to-use interface for analysts to gain insight from a mass of customer interactions

through TE. The application takes as input the customer interactions from various

service channels of a typical contact center (e.g., transcribed calls and emails).

Then, an automatic text fragment extraction is applied on the customer interactions

to extract meaningful text fragments such as reasons for dissatisfaction or other

customer events that could be interesting for analysis. AdArte will get the set

of relevant fragments as input to produce a structured hierarchy based on the

entailment relations that hold between these text fragments, which will then be

displayed by the application.
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Padó, S., Noh, G., Stern, A., Wang, R., and Zanoli, R. 2013. Design and realization of

a modular architecture for textual entailment. Journal of Natural Language Engineering

1(12): 1–34.

Proisl, T., Evert, S., Greiner, P., and Kabashi, B. 2014. Semantiklue: robust semantic similarity

at multiple levels using maximum weight matching. In Proceedings of the 8th International

Workshop on Semantic Evaluation (SemEval 2014), Dublin, Ireland, August. Association

for Computational Linguistics and Dublin City University, pp. 532–40.

Quinlan, J. R. 1986. Induction of decision trees. Machine Learning 1(1): 81–106.

Rish, I. 2001. An empirical study of the naive Bayes classifier. In IJCAI 2001 workshop on

empirical methods in artificial intelligence, vol. 3, no. 22, pp. 41–46.

Schmid, H. 1994. Probabilistic part-of-speech tagging using decision trees. In Proceedings of

International Conference on New Methods in Language Processing, Manchester, UK, pp.

44–9.

Stern, A., and Dagan, I. 2012. BIUTEE: a modular open-source system for recognizing textual

entailment. In Proceedings of the ACL 2012 System Demonstrations, ACL’12, Stroudsburg,

PA, USA. Association for Computational Linguistics, pp. 73–8.

Vapnik, V. N. 1995. The Nature of Statistical Learning Theory. New York, NY, USA: Springer-

Verlag New York Inc.

Wang, R., and Neumann, G. 2007. Recognizing textual entailment using a subsequence kernel

method. In Proceedings of the 22nd AAAI Conference on Artificial Intelligence, July 22–26,

2007, Vancouver, British Columbia, Canada, pp. 937–43.

Zhang, K., and Shasha, D. 1989. Simple fast algorithms for the editing distance between trees

and related problems. SIAM Journal on Computing 18(6): 1245–62, December.

https://doi.org/10.1017/S1351324916000176 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324916000176

