Adv. Appl. Prob. **19**, 743–745 (1987) Printed in N. Ireland © Applied Probability Trust 1987

ON THE INTENSITY OF CROSSINGS BY A SHOT NOISE PROCESS

TAILEN HSING,* University of Illinois at Urbana-Champaign

Abstract

The crossing intensity of a level by a shot noise process with a monotone response is studied, and it is shown that the intensity can be naturally expressed in terms of a marginal probability.

Consider the shot noise process

$$X(t) = \sum_{\tau \leq t} h(t-\tau), \qquad t \in \mathbb{R},$$

where the τ 's are the points of a stationary Poisson process η on \mathbb{R} with mean rate $\lambda > 0$, and h, the impulse response, is a non-negative function on $[0, \infty)$ such that

(i) h is non-increasing,

(ii) h is finite except possibly at 0,

(iii) $\int_{u}^{\infty} h(x) dx < \infty$ for some large u.

By Theorem 1 of Daley (1971), the conditions (ii) and (iii) ensure that $X(t) < \infty$ almost surely for each t.

Observe that the sample function of X increases only at the points of η . Thus it is clear to define that X upcrosses the level u at t, where $u \ge 0$, if $X(t-) \le u$ and X(t) > u. For $u \ge 0$, write N_u for the point process (cf. Kallenberg (1976)) that consists of the points at which upcrossings of level u by X occur. Thus for each Borel set B, $N_u(B)$ denotes the number of upcrossings of u by X in B. N_u is a stationary point process, which may be viewed as a thinned process of η . The purpose of this communication is to derive the following result.

Theorem 1. For each $u \ge 0$, $\mathscr{C}N_u(B) = \lambda m(B)P[u - h(0) < X(0) \le u]$ for each Borel set B, where m is Lebesgue measure.

To prove Theorem 1, first enumerate the points of η in $(-\infty, 0)$ by letting ρ_i be the *i*th largest point of η to the left of 0 for $i = 1, 2, 3, \cdots$. The ρ_i are almost surely well defined, and $-\rho_1, \rho_1 - \rho_2, \rho_2 - \rho_3, \cdots$ are independent and identically distributed random variables. The following result is useful.

Lemma 2. For each $i = 1, 2, \dots, P[X(\rho_i -) = \sum_{j \ge i+1} h(\rho_i - \rho_j)] = 1$ where $X(\rho_i -)$ denotes the left-hand limit of X at ρ_i . From this it follows immediately that $X(\rho_i -)$ is independent of ρ_i , and $X(\rho_i -)$ has the same distribution as X(0).

Received 15 April 1986; revision received 9 December 1986.

^{*} Postal address: Department of Statistics, University of Illinois at Urbana-Champaign, 101 Illini Hall, 725 South Wright Street, Champaign, IL 61820, U.S.A.

Research partially supported by the Air Force Office of Scientific Research Grant No. AFOSR F49620 82 C 0009.

Proof. Let $i \ge 1$ be fixed. Since h is monotone, it is almost everywhere continuous. Using the continuity of $\rho_i - \rho_j$, $j \ge i + 1$, we obtain

$$\lim h(\rho_i - \rho_j - \varepsilon) = h(\rho_i - \rho_j) \quad \text{a.s. for } j \ge i + 1.$$

Also by the monotonicity of $h, h(\rho_i - \rho_j - \varepsilon) \leq h(\rho_{i+1} - \rho_j)$ for $0 < \varepsilon < \rho_i - \rho_{i+1}$, $j \geq i+2$, where $\sum_{j\geq i+2} h(\rho_{i+1} - \rho_j)$ is almost surely finite since it has the same distribution as X(0). Thus it follows from dominated convergence that almost surely

$$\lim_{\epsilon \downarrow 0} X(\rho_i - \varepsilon) = \lim_{\epsilon \downarrow 0} \sum_{j \ge i+1} h(\rho_i - \rho_j - \varepsilon) = \sum_{j \le i+1} h(\rho_i - \rho_j).$$

Proof of Theorem 1. By stationarity, it apparently suffices to show that $N_u(B)$ equals $\lambda m(B)P[u-h(0) < X(0) \le u]$ for each Borel set B in $(-\infty, 0)$, where m(B) denotes the Lebesgue measure of B. Since

$$X(\rho_i) = h(0) + \sum_{j \ge i+1} h(\rho_i - \rho_j),$$

Lemma 2 implies that almost surely

$$N_u(B) = \sum_{i\geq 1} 1(u - h(0) < X(\rho_i) \le u, \ \rho_i \in B),$$

where $1(\cdot)$ is the indicator function. Applying the facts that $X(\rho_i)$ is independent of ρ_i and $X(\rho_i-)$ is equal in distribution to X(0), we get

$$\mathscr{E}N_u(B) = \sum_{i \ge 1} \mathscr{E}1(u - h(0) < X(\rho_i -) \le u) \mathscr{E}1(\rho_i \in B)$$
$$= P[u - h(0) < X(0) \le u]\lambda m(B).$$

We mention the following for completeness.

(a) By stationarity, the downcrossing intensity of a level by X is also given by Theorem 1.

(b) We assumed, for simplicity of illustration, that the impulse response h is deterministic. Lifting this restriction, it is readily seen that Theorem 1 continues to hold if the impulse responses brought about by the points of η are independent of η , and are independent and identically distributed.

(c) For methods of obtaining the marginal distribution of X see Gilbert and Pollak (1960).

(d) The crossing intensities of some other shot noise processes were studied by Rice (1944), and Bar-David and Nemirovsky (1972). A result in the latter paper can be reduced to one which is similar to Theorem 1. However, our assumptions on h are considerably simpler.

Acknowledgement

I am grateful to the referee for his comments.

References

BAR-DAVID, I. AND NEMIROVSKY, A. (1972) Level crossings of nondifferentiable shot process. *IEEE Trans. Inform. Theory* 18, 27–34.

DALEY, D. J. (1971) The definition of a multi-dimensional generalization of shot noise. J. Appl. Prob. 8, 128-135.

GILBERT, E. N. AND POLLAK, H. O. (1960) Amplitude distribution of shot noise. Bell System Tech. J. 30, 333-350.

KALLENBERG, O. (1976) Random Measures. Akademie-Verlag, Berlin: Academic Press, New York.

RICE, S. O. (1944) Mathematical analysis of random noise. Bell System Tech. J. 24, 46-156.