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Let L be the total length of the edges of a convex polyhedron containing a 
unit sphere. If the number of edges is small, the edges must be, on the average, 
comparatively long. If, on the other hand, the edges are short, their number 
must be great. So the problem arises to find a polyhedron with a possibly 
small value of L. 

By a simple argument the author (5; 6) proved that L > 20 and announced 
the conjecture that L > 24 with equality only for the cube (of in-radius 1). 
The same argument shows that for trigonal-faced polyhedra L > 28. This 
supports the conjecture that for such polyhedra L > 12\/6 = 29.4 . . . , with 
equality only for the tetrahedron and octahedron. 

These results started some further investigations. Besicovitch and Eggleston 
(1) proved the above conjecture concerning the cube. Thus, of all convex 
polyhedra containing a sphere, the circumscribed cube has the least possible 
sum of the edges. Coxeter (2) considered the analogous problems in non-
Euclidean spaces, pointing out several interesting results to be expected. The 
case of non-Euclidean polyhedra with triangular faces was investigated by 
Coxeter and Fejes Tôth (4), who solved the problem for certain particular 
values of the radius of the sphere. For instance, in hyperbolic space, of all 
convex polyhedra with triangular faces containing a sphere of radius 0.828 . . . , 
the circumscribed regular icosahedron turned out to have the least possible 
total edge-length. Further results concerning this problem may be found in 
(8) and (9). 

In the present paper we shall deal with the analogous problems in four-
dimensional Euclidean space which arise by considering the total area of the 
faces, F, instead of the total length of the edges, L. The following table shows 
the exact and the approximate values of L and F for the six regular polytopes 
(3) with in-radius 1. The number r = | (5* + 1) used in this table gives the 
ratio of the golden section. 

{3,3,3} {3,3,4} {4,3,3} {3,4,3} {3,3,5} {5,3,3} 

20-10* 48 -2* 64 96-2* 1440-2V"3 2400 r~4 

63 68 64 136 481 391 

100-3* 64-3* 96 48-3* 2400 -3h~& 720-5 3 / 4T-- 1 3 / 2 

173 110.85 96 83.14 231 106 
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Our table shows that in the problem concerning L the measure polytope 
{4, 3, 3} is superseded by the simplex {3, 3, 3} and in the problem concerning 
F by the 24-cell {3,4, 3}. In the problem concerning F among the regular 
poly topes with tetrahedral cells the cross-poly tope {3, 3, 4} is the best one. 

Our results read as follows*: 

If Fis the total area of the faces of a four-dimensional convex Euclidean polytope 
containing a unit sphere, then 

F > 67.5. 

If the polytope has tetrahedral cells only, then 

F> 110.4 

and if it is bounded by octahedral cells only, then 

F> 81.6. 

Here an "octahedral cell" means a polyhedron topologically isomorphic to 
a regular octahedron. 

We denote the surface area of a 3-dimensional body b by ||6j|, its central 
projection onto the unit sphere 5 by b' and its volume simply by b. If b lies 
in a hyperplane p touching 5 at the point A, we can represent the volume b 
in the form 

b =jb>f(AP)dv, 

where dv is the volume element (surface element of S) at the point F and/(x) 
is an increasing function (independent of bf), namely 

f(x) = cosec4x. 

Let s' be a sphere in the spherical 3-space of S centred at A and having the 
same volume as b' and let 5 be the projection of s' onto p. Omitting f(AP)dv 
after the integral signs, we have, in view of the monotony of f(x), 

b — J b' = J b's' + J b'-b's' > J b's' + J s'-b's' = J s' = S. 

Thus, making use of the isoperimetric property of the sphere, ||6|| > \\s\\. 
Expressing s' and \\s\\ in terms of the radius r of s', we have 

V = s' = 2ir(r - J s in2r ) 
and 

||s|| = 47T tanV. 

This enables us to write the inequality ||6|| > \\s\\ in the form 

ll&ll > G{b'), 

where the function G(x) is defined by 

For the numerical computations I am indebted to G. Krammer. 
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G(x) = 47T tanV, x = 2r(r — \ sin 2r), 0 < r < JT . 

Obviously, this inequality continues to hold when b lies in any hyperplane not 
intersecting S. Equality holds only if b is a sphere touching S at its centre. 

The curve y = G(x) is exhibited in Figure 1. It lies above its tangent through 

y=QCx) 

/y=6.84x 

nc 

FIGURE 1 

the origin (different from the y-axis). In order to find this tangent, we have to 
solve the equation G(x)/x = G'(x), which is equivalent to 

47T tan r dG/dr Sw tan r sec r 
2ir(r — i sin 2r) dx/dr 4T sin r ' 

i.e., to 
2r = sin 2r (1 + sinV). 

This equation has for 0 < r < \-K a single root r0 ~ 0.69. Writing XQ = 
27r(fo — | sin 2r0), we have 

G(x)/x > G(x0)/xo > 6.84. 

Thus we have, for each cell c of a convex poly tope containing 5, 

IHI > 6.84 c'. 

Summing up these inequalities for all cells, we obtain the desired inequality 

2F = Z \\c\\ > 6.84 L d = 6.84-2TT2 > 135, F > 67.5. 

Turning now to the case of poly topes with tetrahedral cells, suppose that 
b is a tetrahedron lying in the hyperplane p. Instead of b > s, we have now 
the sharper inequality 

* > t, 

where t is a regular tetrahedron centred at A such that t' = b!. This means 
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that of the spherical tetrahedra with given volume the regular tetrahedron 
with centre A has the least possible projection onto p. Instead of this it is 
easier to prove the proposition, equivalent to the original one, that among 
the Euclidean tetrahedra of constant volume lying in p the regular tetra
hedron t with centre A has the greatest projection onto 5. 

We can represent the volume of the projection b' of any body b lying in p 
in the form 

V =fbg(AP)dv, 

where dv is the volume element of b at the point P and g(x) is a decreasing 
function (independent of 6), namely 

g(x) = (1 + x2) - 2 . 

Let b be a tetrahedron of prescribed volume varying in p. If the distance of 
a vertex of b from A is great, b' will be small. Therefore, in order to show the 
existence of a tetrahedron with minimal projection, we can restrict ourselves 
to tetrahedra lying in a sufficiently large sphere around A. Since, furthermore, 
b' varies continuously with the vertices of b, the existence of a best tetrahedron 
follows from the theorem of Weierstrass. 

Suppose now that b is either not regular or it is regular but its centre is not 
A. Then there is a 2-dimensional plane q orthogonal to an edge of b such that 
b is not symmetric with respect to q. Translate each chord c of b in its own 
line into a position c symmetric with respect to q. This process, called Steiner 
symmetrization, transfers b into a new tetrahedron b of the same volume. 
Observing that any inner point of the segment c — cc lies nearer to A than any 
point of c — cc, we have a volume-preserving transformation of b into b 
leaving the points of bb invariant and carrying the other ones nearer to A. 
Thus, in view of the above integral representation of b', br > b', showing that 
b cannot be extremal. This completes the proof of the inequality b > t. 

In view of the isoperimetric property of the regular tetrahedron, this 
inequality involves 

We proceed to evaluate \\t\\ in terms of tf. 
It is known (7) that in spherical 3-space (of curvature 1) the volume V 

of a regular polyhedron of in-radius r is given by 

T7 n Ca J cos ^ ( \/k2 — sm2(b \ ( -
V = 2e \r _ v _ a r c tanl — tan r ) (d<t>, 

Jo I V & 2 - s i n 2 0 V c o s * J) 
where 

_ sin(7r//2e) , 

and / , e, and v are the numbers of the faces, edges, and vertices. 
It will be convenient to deduce an alternative formula for V. For this 

purpose we use the abbreviation 
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and observe that the derivative dV/dr = h(r) can be expressed in terms of 
elementary functions: 

h(r) = 2eœ2 sinV I 
Jo 

d<j> 

cos 4> + co sin r 

0 co sin r ^ I co sin r 
= *e -777-7—2-. 2 x arc tanl —77-—:—rrrr tan a 

V ( l + co sin r) \ v ( l + w sin r) 
Hence 

F = I h(x)dx. 

For a tetrahedron, 

7 / \ 1 0 / 0 sinr \ / 6 sin r 
h(r) = 12V2 - /n , 0 . 2 x arc tan . 2 . 

V (1 + 2 sin r) v (1 + 2 sin r) 
Thus, denoting the in-radius of /' by r, we have on the one hand 

||*|| = 24 A / 3 tanV, 

and on the other hand 

V = t' = I h(x)dx. 
Jo 

Therefore, the inequality \\b\\ > ||l|| turns out to be equivalent to 

\\b\\>H(b'), 

where the function H(x) is defined by 

H(x) = 2 4 \ / 3 tanV, x = I h(z)dz, 0 < r < |TT. 
Jo 

In order to determine the minimum of H(x)/x, we have to solve the equation 

H(x) = xH'(x), 

i.e., in terms of r, the equation 

h(r) sin 

This equation has, for 0 < r < \TT, a unique root r± ~ 0.487, showing that 

H(x)/x > H(xx)/xi > 11.19, 
where 

Xi = I h(z)dz. 

Consequently, we have for each cell c of our polytope 

IHI > 11.19 c', 
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whence, in agreement with our statement, 

2F = L ||c|| > 11.19 E c ' = 2TT2-11.19 > 220.88, F > 110.44. 

Now we suppose that b is an octahedron of given volume lying in p. Among 
these octahedra we want to find the particular one that has the greatest pro
jection br. By three successive symmetrizations in planes through A orthogonal 
to its diagonals, b can be transformed into the convex hull of three segments 
mutually perpendicular to each other and bisecting one another at A. Since 
by this operation br increases, we can restrict ourselves to octahedra of this 
type. But among such octahedra there is, obviously, a best one and a further 
symmetrization in a plane through A perpendicular to an edge shows that it 
must be regular. 

It follows that b > o, where o is a regular octahedron centred at A such 
that b' = of. Now we can refer to the isoperimetric property of the regular 
octahedron (proved by Steiner) according to which, of the octahedra of con
stant volume, the regular one has the least possible surface area. Thus 

11*11 > IMI. 
i.e. 

\\b\\>K(b'), 
where 

K(x) = 12 \ / 3 tanV, x = I h(z)dz, 
Jo 

7 / N C^A s i n z j 3 sin z 
h(z) = 24 /( —. 2 x arc tan • V(2 + sin2z) V(2 + sinJs) " 

Expressing the equation K(x) = xK'(x) in terms of r, we have again 

h(r) sm2r = 4 I h(z)dz. 
Jo 

The single root of this equation being r2 ~ 0.59, we deduce that 

^M > ^M = K,( j > 8>268 where = r2
 h^dZu 

x x2 Jo 

Thus, we obtain the desired inequality 

2F = L lk|| > 8.268 £ c' = 2TT2-8.268 > 163.2, F > 81.6. 

The analogous problems in non-Euclidean 4-spaces deserve special attention. 
Here, of course, the solutions depend on the radius R of the in-sphere 5 of 
the polytope. Considering, for example, polytopes with tetrahedral cells, the 
corresponding root Xi varies continuously with R, and in hyperbolic 4-space 
there is a value of R such that Xi = 27r2/600. In this case the above method 
yields an exact inequality for F expressing an extremum property of the 600-
cell {3, 3, 5}. The details will be discussed in a sequel to this paper. 
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