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Abstract

We construct, for any set of primes S, a triangulated category (in fact a stable∞-category) whose
Grothendieck group is S−1Z. More generally, for any exact∞-category E , we construct an exact
∞-category S−1 E of equivariant sheaves on the Cantor space with respect to an action of a dense
subgroup of the circle. We show that this∞-category is precisely the result of categorifying division
by the primes in S. In particular, Kn(S−1 E) ∼= S−1 Kn(E).

2010 Mathematics Subject Classification: 19D99 (primary); 18F25 (secondary)

It is a peculiar fact that rationalized algebraic K -groups have largely remained
out of reach of algebraic techniques. For example, the rationalized K -groups of a
number field F were computed by Borel [5]: for n > 2,

dim Kn(F)⊗Q =


0 if n ≡ 0 mod 2;
r1 + r2 if n ≡ 1 mod 4;
r2 if n ≡ 3 mod 4,

where r1 is the number of real places and r2 is the number of complex places of F .
But Borel’s proof depends upon a delicate analysis of invariant differential forms
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on the Borel–Serre compactification of a symmetric space. As far as we know, no
algebraic approach to this computation has appeared in the literature.

For function fields, the situation is at least as dire. For example, we have the
following.

CONJECTURE (Parshin). If X is a smooth projective variety over a finite field,
then Kn(X)⊗Q = 0 for any n > 1.

But only when the dimension of X is 0 or 1 is this assertion known.
The task of this paper is to categorify rationalization, in order to get a

more explicit grasp on rational K -theory classes. That is, we introduce explicit
categories of divisible objects whose K -theory gives the rational K -theory
directly.

More precisely, if S is a set of prime numbers, then for any exact∞-category
E (in particular, for any exact ordinary category or any stable ∞-category [2]),
we construct here an exact∞-category S−1 E such that K (S−1 E) ' S−1 K (E) as
spectra, and, consequently,

K∗(S−1 E) ∼= S−1 K∗(E)

as graded abelian groups.
When E is an idempotent-complete stable ∞-category, we can offer an

explicit—though perhaps unwieldy—characterization of S−1 E : it is an ∞-
category of what we call S-divisible objects. These are sequences {X i} of objects
X i of Ind E , indexed over the various products i of the primes in S, along with
suitably compatible identifications, when m divides n, between the object Xm and
the n/m-fold direct sum Xn ⊕ Xn ⊕ · · · ⊕ Xn , all subject to a finiteness condition.

Our main theorem goes a step still further, and identifies S−1 E as an ∞-
category of sheaves of objects of Ind E on the Cantor spaceΩ that are equivariant
with respect to a free action (Construction 4.2) of the S-adic circle

TS := S−1Z/Z

on Ω . When E is the∞-category of coherent complexes on a reasonable scheme
X , we may think of Ω as an affine scheme with its S-adic circle action, and we
prove:

THEOREM. One has an equivalence of∞-categories

S−1IndCoh(X) ' IndCohTS (X ×Ω)

between the S-divisible ind-coherent complexes on X and the∞-category of TS-
equivariant ind-coherent complexes on X ×Ω .
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Recall that the G-theory of a scheme X is by definition the K -theory of the stable
∞-category of coherent complexes on X . We therefore deduce that

S−1Gn(X) ∼= GTS
n (X ×Ω), and in particular Gn(X)⊗Q ∼= GQ/Z

n (X ×Ω);

that is, the rationalized G-theory of X is the Q/Z-equivariant G-theory of X ×Ω .
Recall also that Gn(X) ∼= Kn(X) when the scheme X is regular.

This paper is motivated by a question of Khovanov [7, 2.3 and 2.4], who
sought such a “categorification of division.” In particular, he asked for a monoidal
triangulated category whose Grothendieck group is Q, and more generally, one
whose Grothendieck group is m−1Z for an integer m. In fact, for any field k,
the stable∞-category QCohm−1Z/Z(Spec k ×Ω) of m−1Z/Z-equivariant sheaves
of complexes of k-vector spaces on Ω can be viewed as the localization of the
derived category of k away from m. The compact objects therein have not only
the desired Grothendieck group m−1Z, but one even has

m−1 Kn(k) ∼= Gm−1Z/Z
n (Spec k ×Ω).

The slogan is thus: Vector spaces with rational dimension are circle-equivariant
sheaves of complexes on the Cantor space. However, our construction does not
fully answer Khovanov’s question, because the monoidal structure on the ∞-
category QCohm−1Z/Z(Spec k×Ω) does not restrict to the subcategory of compact
objects.

Finally, though our motivation was to contemplate rational algebraic K -theory,
we must note that nowhere have we really used anything special about the functor
K , save only that it preserves finite products and filtered colimits. Any functor
with this property (for example, topological Hochschild homology) can replace
K in the assertions above. This reflects the fact that our procedure really inverts
the primes in S at the categorical level.

1. Localizations

RECOLLECTION 1.1. An abelian group E is S-local if and only if, for any
product k of primes in S, the multiplication by k map k : E E is an
isomorphism.

More generally, we have the following.

DEFINITION 1.2. Suppose C an∞-category with direct sums. For any object E
of C , and for any natural number k, write k E for the k-fold direct sum E ⊕ E ⊕
· · · ⊕ E . The composite

E k E E
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of the codiagonal followed by the diagonal deserves the name multiplication by k.
We will say that E is S-local if and only if, for any product k of primes in S, the
multiplication by k map k : E E is an equivalence.

This recovers, for example, the notion of S-locality for spectra.

NOTATION 1.3. Let ΦS denote the ordinary category in which an object is a
(positive) natural number that is a product of elements of S, and a morphism
m n is a natural number k such that n = mk.

We will show in Section 2 that every object E of an∞-category C with direct
sums determines a functor

E[S] : ΦS C

that carries every object to E and every morphism k : m n to the morphism
k : E E , as well as a dual diagram

E[S]∨ : Φop
S C

that carries every object to E and every morphism k : m n to the morphism
k : E E .

The proof of the following is easy.

PROPOSITION 1.4. Suppose C an∞-category that admits direct sums. Then the
following are equivalent for an object E of C.

• The object E is S-local.

• The functor E[S] is essentially constant.

NOTATION 1.5. If C is an ∞-category that admits direct sums and filtered
colimits, then we write S−1

: C C for the functor E colim E[S].

If E is S-local, it follows from Proposition 1.4 (and the fact that the category
ΦS is filtered and hence weakly contractible) that the natural map E S−1 E is
an equivalence.

WARNING 1.6. If C is compactly generated, it is tempting to believe that the
functor S−1

: C C is a localization onto the full subcategory spanned by the S-
local objects. This is true when C is Ab or Sp. However, it is not true in general:
see Warning 3.11. In order for S−1 E to be S-local, it is sufficient that for any
p ∈ S, there exist N > 2 such that the cyclic permutation of pN

: E E is
homotopic to the identity.
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2. The effective Burnside ∞-category and the functors E[S] and E[S]∨

We give a precise construction of the functors E[S] and E[S]∨ for any object
E of any∞-category C that admits direct sums.

To this end, let Aeff(Fin) denote the effective Burnside∞-category of finite sets
[3]. (This is in fact a 2-category.) We have shown that this is the Lawvere theory
of E∞ objects. That is, for any∞-category D with all finite products, there is an
equivalence

CAlg(D×) ' Fun×(Aeff(Fin), D),

where Fun× denotes the∞-category of product-preserving functors. Equivalently,
Aeff(Fin) can be identified with the ∞-category of free, finitely generated E∞
spaces.

Now since C has direct sums, every object is an E∞-algebra in a unique way.
That is, the forgetful functor

CAlg(C×) C

is an equivalence. Consequently, the functor

Fun×(Aeff(Fin),C) C

given by evaluation at the one-point set 〈1〉 := {0} is an equivalence. Selecting
once and for all a homotopy inverse F to this equivalence, we obtain for each
E ∈ C a product-preserving functor F(E) : Aeff(Fin) C . Now in order to
construct E[S] and E[S]∨ for any object E of C , we need only to define a functor

MS : ΦS Aeff(Fin)

that carries each natural number in ΦS to the singleton, and every map m n
given by n = mk to the span

〈1〉 〈k〉 〈1〉,

where
〈k〉 := {0, 1, . . . , k − 1}.

We then obtain E[S] as the composite F(E) ◦ MS , and we obtain E[S]∨ as the
composite F(E) ◦ D ◦ Mop

S , where D : Aeff(Fin)op ∼ Aeff(Fin) is the duality
functor.

In fact it will be useful to define a functor

M̃S : O(ΦS) Aeff(Fin),
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where O(ΦS) := Fun(∆1, ΦS) is the arrow category of ΦS , such that the
precomposition of M̃S with the inclusion ΦS ⊆ O(ΦS) sending every object to
the identity on it is the required functor MS .

To define M̃S carefully, if n = mk, then we define two maps

pm|n : 〈n〉 〈m〉 and jm|n : 〈n〉 〈m〉

by the formulas

pm|n(i) :=
⌊

i
k

⌋
and jm|n(i) := i mod m.

Now for any p-simplex

(m0|n0)|(m1|n1)| · · · |(mp|np)

of O(ΦS) (by which we mean that ms |ms+1 and nt |nt+1) in which nt = ks,t ms , the
p-simplex

M̃S((m0|n0)|(m1|n1)| · · · |(mp|np)) ∈ Aeff(Fin)p
will be the diagram

〈k0,p〉

〈k0,p−1〉 3 〈k1,p〉

. .
.

3
. . .
... 3

. . .

〈k0,2〉 3 〈k1,3〉 3 〈kp−3,p−1〉 3 〈kp−2,p〉

〈k0,1〉 3 〈k1,2〉 3
. . .
... 3 〈kp−1,p−2〉 3 〈kp−1,p〉

〈k0,0〉 〈k1,1〉 〈k2,2〉 〈kp−2,p−2〉 〈kp−1,p−1〉 〈kp,p〉

in which the backward pointing maps are all of the form

pki, j |ki+1, j ,

and the forward pointing maps are all of the form

jki, j |ki, j+1 .

It is a trivial matter to see that this assignment defines a simplicial map

M̃S : O(ΦS) Aeff(Fin),

as desired.
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3. Localizing exact ∞-categories

Now we apply the construction of Section 2 when C = Exact∞, the∞-category
of exact∞-categories [2, 3.1]. In particular, since exact∞-categories form an∞-
category with direct sums, we may form, for any exact∞-category E , the exact
∞-category S−1 E via this filtered colimit. Since the multiplication by k functor
k : E E induces the multiplication by k map k : K (E) K (E), and since
algebraic K -theory preserves filtered colimits, we deduce that

K (S−1 E) ' S−1 K (E).

The question, now, is whether our exact ∞-category S−1 E is at all
understandable. Happily, the answer is yes: we can identify S−1 E with an
∞-category of certain graded objects, not quite of E , but of a natural enlargement
thereof, where we might find suitably infinite objects for our analysis.

DEFINITION 3.1. If E is an essentially small exact ∞-category, then a large
object of E is a functor Eop Top that carries any zero object in E to a terminal
object and any admissible bicartesian square

X Y

X ′ Y ′

to a pullback square. We write P+(E) for the full subcategory of Fun(Eop,Top)
spanned by the large objects of E .

It is easy to check that P+(E) is a compactly generated, additive∞-category,
and that the Yoneda embedding of E into P+(E) carries admissible bicartesian
squares to squares that are both pushout and pullback squares. We may declare
a morphism of P+(E) to be ingressive or egressive if and only if it is a
filtered colimit of ingressive or egressive morphisms of E , respectively. With this
structure, P+(E) is an exact∞-category, and j+ : E P+(E) is exact.

Furthermore, P+(E) has the following universal property: for any additive,
presentable∞-category D, precomposition with j+ defines an equivalence

FunL(P+(E), D) ∼ FunExact∞(E, D).

EXAMPLE 3.2. When E is the ordinary category of finitely generated projective
modules over a commutative ring R, then P+(E) is equivalent to the∞-category
Ch+(R) of non-negative chain complexes of R-modules.
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EXAMPLE 3.3. More generally, when E has its minimal exact structure, so that
the only ingressive morphisms are summand inclusions, the ∞-category P+(E)
is the non-abelian derived∞-category of E .

EXAMPLE 3.4. When E is a stable∞-category with its maximal exact structure,
so that every morphism is ingressive, the∞-category P+(E) is simply Ind(E).

DEFINITION 3.5. Suppose again E an exact ∞-category and S a set of primes.
Then an S-divisible large object of E is an object of the (homotopy) limit of the
functor

P+(E)[S]∨ : Φ
op
S Cat∞.

We write DivS(P+(E)) for this homotopy limit.
More concretely, an S-divisible object is a sequence of large objects

{X i}i∈ΦS

along with equivalences
ρi, j : X i

∼ j X i j

for any i, j ∈ ΦS , which fit together to give, for every i0, i1, . . . , in ∈ ΦS , an
n-simplex

X i0
∼ i1 X i0i1

∼ · · · ∼ i1i2 · · · in X i0i1···in

of equivalences.

NOTATION 3.6. For any m ∈ ΦS , we have the projection

ωm : DivS(P+(E)) P+(E),

given by evaluation at m ∈ ΦS , and we also have its left adjoint σm .
Given an object V of E and a natural number m, we may define an S-divisible

large object
V
m
:= σm( j+(V )).

We write DivS(E) for the full subcategory of DivS(P+(E)) spanned by the objects
of the form V/m.

3.7. Note that if n = mk in ΦS , then

m
V
n
'

V
k
,

justifying our notation.
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THEOREM 3.8. Suppose E an exact∞-category and S a set of primes. Then the
exact∞-category S−1 E is equivalent to DivS E.

Proof. The∞-category S−1 E is the colimit of the diagram E[S] : ΦS Cat∞.
We consider the embedding E P+(E), which is visibly functorial in E
and lands in the subcategory of compact objects. Hence the induced functor
S−1 E S−1 P+(E) is fully faithful and exact, where S−1 P+(E) is computed
in the∞-category PrL .

Now S−1 P+(E) is by definition the filtered colimit of P+(E)[S] computed in
PrL , which is in turn equivalent to the filtered limit of the adjoint diagram in PrR ,
which is in turn the limit in Cat∞. The adjoint diagram is clearly P+(E)[S]∨,
whence we find that S−1 P+(E) ' DivS P+(E).

Now the essential image of the functor is spanned by those objects that lie in
the image of an object V of E lying in some degree m ∈ ΦS . These are exactly
the objects V/m defined above.

EXAMPLE 3.9. In the particular case in which E is an idempotent-complete
stable ∞-category, the ∞-category S−1 E ' DivS(E) is the full subcategory of
DivS(Ind(E)) spanned by the compact objects.

REMARK 3.10. If E is a symmetric monoidal exact∞-category (that is, an exact
∞-category whose underlying Waldhausen ∞-category is symmetric monoidal
in the sense of [1]), then one can show that S−1 E is naturally an E-module, and
the functors σm ◦ j+ : E S−1 E are E-module functors.

WARNING 3.11. We stress that S−1 E will not in general be an S-local exact∞-
category. In fact, it is not hard to see that the only S-local exact ∞-category is
0. Thus, even transfinite iterations of the construction E S−1 E will not be
S-local.

4. Divisible objects as equivariant sheaves

In this section we will find a more geometric description of S−1C when C is
a presentable exact category, such as P+(E), and then we will cut the resulting
large ∞-category back down to size. To begin, let us describe an action of the
S-adic circle group TS = S−1Z/Z on the Cantor space Ω .

NOTATION 4.1. For any prime number p, write

Ωp := Map(N, 〈p〉),
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equipped with the product topology. This is of course a Cantor space, as is the
product

ΩS :=
∏
p∈S

Ωp.

(Of courseΩp may be identified with the group Zp of p-adic integers, but we will
not use much of the abelian group structure.)

For any non-negative integer n, we obtain a continuous map

pn
: Ωp Ωp,

which carries r to the map given by

(pnr)i =

{
0 if i 6 n;
ri−n if i > n.

(In other words, this is multiplication by pn in Zp.) For any product m =∏
p∈S pνp(m) of primes in S, we therefore obtain a continuous map

m : ΩS ΩS.

We write mΩS ⊆ ΩS for the image of this map, which is again a Cantor space.
There is also a surjection f pn : Ωp pnΩp given by

f pn (r)i =

{
0 if i 6 n;
ri if i > n;

this extends to a surjection fm : ΩS mΩS for any natural number m.

CONSTRUCTION 4.2. Of course we have the free action of the cyclic group
C pn on 〈pn

〉. Identifying Map(〈n〉, 〈p〉) with 〈pn
〉 by means of the lexicographic

ordering, we obtain a free continuous action of Tp = colimn C pn onΩp. Moreover,
two elements x, y ∈ Ωp lie in the same orbit if and only if fpn (x) = fpn (y) for
some non-negative integer n.

These actions together provide an action of TS
∼=
⊕

p∈S Tp on ΩS , and two
elements x, y ∈ ΩS lie in the same orbit if and only if fm(x) = fm(y) for some
natural number m.

PROPOSITION 4.3. Let C be an exact presentable ∞-category (for example,
P+(E) for an exact∞-category E). Then there is an equivalence

S−1C ' ShTS
C (ΩS)

where the right hand side is the∞-category of C-valued TS-equivariant sheaves
on the space ΩS , with the S-adic circle group TS acting as above.
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Proof. The category S−1C is the colimit of a diagram ΦS PrL . We can
interpret the arrows appearing in this diagram as formed via a push–pull
construction

C
π∗

−→ ShC(〈n〉)
π∗
−→ C

, where π : 〈n〉 〈1〉 is the projection. But we can decouple the pullback and
the pushforward by employing Section 2 to define a factorization of ΦS PrL

through a functor O(ΦS) = Fun(∆1, ΦS) PrL that carries each object (m|n)
of O(ΦS) to the∞-category

ShC

(〈
n
m

〉)
.

Precisely, we compose M̃S with the unique functor ShC : Aeff(Fin) PrL that
preserves finite products and carries 〈1〉 to C (with the direct sum symmetric
monoidal structure).

Since ΦS is a filtered category, the inclusion ΦS O(ΦS) is cofinal and we
can compute

S−1C := colim
m∈ΦS

C ' colim
(m|n)∈O(ΦS)

ShC

(〈
n
m

〉)
' colim

m∈ΦS
colim

n∈ΦS , m|n
ShC

(〈
n
m

〉)
,

where in the last equality we have used that the projection O(ΦS) ΦS sending
(m|n) to m is a cocartesian fibration and so we can compute colimits fiberwise.
But, since colimits in PrL can be computed as limits in PrR , we have for any fixed
m ∈ ΦS ,

colim
n∈ΦS , m|n

ShC

(〈
n
m

〉)
= lim

n∈ΦS , m|n
ShC

(〈
n
m

〉)
= ShC(mΩS).

Here, the final identification follows from the fact that the∞-category of sheaves
on the lattice of clopen sets mΩS (that is, the union of the lattices of subsets of
〈n/m〉 as n varies through ΦS) is equivalent to the∞-category of sheaves on the
topological space mΩS , because clopen sets form a basis that is closed under finite
intersections.

So we have shown that

S−1C ' colim
m∈ΦS

ShC(mΩS),

where the maps in the diagram are given by the pushforward along the projection

jm|n : mΩS nΩS.
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But colimits in PrL can be computed as limits in PrR after replacing all the
functors with their right adjoints. Since jm|n is étale and proper, the right adjoint
of the pushforward is the pullback. Hence we can write

S−1C ' lim
m∈Φop

S

ShC(mΩS).

Now we observe that the map j1|m : ΩS mΩS is the surjection fm above. In
particular we can write

S−1C ' lim
m∈Φop

S

ShC(ΩS/Rm) ' lim
m∈Φop

S

lim
∆op

ShC(Rm ×ΩS · · · ×ΩS Rm),

where Rm is the equivalence relation given by

Rm = {(x, y) ∈ ΩS ×ΩS | fm(x) = fm(y)},

and we conclude that

S−1C ' lim
∆op

ShC(R ×ΩS · · · ×ΩS R),

where R = colimm∈ΦS Rm . Finally, by Construction 4.2, the equivalence relation
R is exactly the equivalence relation induced on ΩS by the action of TS . So

S−1C ' ShC(ΩS)
hTS ,

as desired.

REMARK 4.4. A simple analysis of this proof shows that if C is a presentably
symmetric monoidal exact∞-category, then the equivalence S−1C ' ShTS

C (ΩS)

is an equivalence of C-modules.

4.5. Note that since ΩS is a compact Hausdorff space of finite covering
dimension, it follows that the corresponding ∞-topos is hypercomplete. This
ensures that equivalences in ShC(ΩS) and ShTS

C (ΩS) can be detected on stalks.

4.6. Of course we wish to apply this to the case in which C = P+(E) for some
exact∞-category E . The full subcategory S−1 E ⊂ S−1 P+(E) can be identified
with a full subcategory

ShTS
P+(E)(ΩS)

small
⊆ ShTS

P+(E)(ΩS).

The objects V/m of ShTS
P+(E)(ΩS)

small can be described as follows. Form the
constant sheaf V on 〈m〉 with the obvious Cm action; call the result V again. Now
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V/m is the induced TS-equivariant sheaf

TS ×Cm V ∼=
⊕

g∈TS/Cm

g?V

on ΩS .
Now if E is an idempotent-complete stable∞-category, then ShTS

P+(E)(ΩS)
small

is the full subcategory of ShTS
Ind E(ΩS) spanned by the compact objects.

If E is a symmetric monoidal exact ∞-category, then one can show that the
P+(E)-module equivalence S−1 P+(E) ' ShTS

P+(E)(ΩS) restricts to an E-module
equivalence S−1 E ' ShTS

P+(E)(ΩS)
small.

We now turn our attention to the G-theory of a quasicompact quasiseparated
scheme X . (Everything will also work in the derived or spectral settings with
small modifications that are best left to the reader.) Following Illusie [4, Exposé
I], one defines the∞-category Coh(X) ⊂ QCoh(X) of coherent complexes on X
as follows:

(1) If X = Spec A is an affine scheme, then Coh(X) is defined as the full
subcategory of the derived ∞-category D(A) spanned by those bounded
complexes of A-modules M such that for any filtered diagram {Nα}α∈Λ of
A-modules, and any integer n, the natural map

colim
α∈Λ

Map(M, Nα[n]) Map
(

M, colim
α∈Λ

Nα[n]
)

is an equivalence.

(2) In general, an object of QCoh(X) belongs to the subcategory Coh(X) if
and only if its restriction to every affine open subscheme U ⊂ X belongs to
Coh(U ). We set

IndCoh(X) := Ind Coh(X).

Following Thomason [9, 3.3], one defines the G-theory of X by

G(X) := K (Coh(X)).

Now recall that ΩS can be seen as an affine scheme (precisely as the spectrum
of the ring of locally constant Z-valued functions on ΩS). Since

ShIndCoh(X)(ΩS) ' IndCoh(X ×ΩS)

we can express Proposition 4.3 in a different way:
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PROPOSITION 4.7. Let X be a quasicompact quasiseparated scheme. There is an
equivalence of stable presentable∞-categories

S−1IndCoh(X) ' IndCoh(X ×ΩS)
hTS .

Following Gaitsgory [6], we may extend the definition of IndCoh to more general
objects by stipulating that the functor X IndCoh(X), f f !, transform
colimits into limits. The quotient algebraic space

[(X ×ΩS)/TS] ' X × [ΩS/TS]

can be expressed as a colimit of schemes

colim
m∈ΦS

(X ×ΩS)/Cm

in which all maps are finite étale. Since f ! = f ∗ for such maps f , we obtain

S−1IndCoh(X) ' IndCoh([(X ×ΩS)/TS]).

As S−1IndCoh(X) is furthermore compactly generated [8, Pr. 5.5.7.6], it is
sensible to define Coh([(X × ΩS)/TS]) as the full stable subcategory of the∞-
category IndCoh([(X×ΩS)/TS]) spanned by the compact objects. Consequently,
the proposition above induces an identification

S−1Coh(X) ' CohTS (X ×ΩS) = Coh([(X ×ΩS)/TS]).

We thus obtain the desired identification of spectra (and even K (X)-modules)

S−1G(X) ' GTS (X ×ΩS).

In particular, when X = Spec A, then one has

S−1G(A) ' GTS (C(ΩS, A)),

where C denotes the ring of locally constant functions.

REMARK 4.8. We caution that the algebraic space [(X ×ΩS)/TS] is not perfect:
compact objects such as OX/1 are not dualizable in the symmetric monoidal∞-
category QCoh([(X × ΩS)/TS]), and conversely the unit object is not compact.
Hence, we cannot simply replace G-theory by K -theory in the above formulas.
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