
Canad. Math. Bull. Vol. 51 (1), 2008 pp. 15–20

The Duality Problem for the Class of
AM-Compact Operators on
Banach Lattices

Belmesnaoui Aqzzouz, Redouane Nouira, and Larbi Zraoula

Abstract. We prove the converse of a theorem of Zaanen about the duality problem of positive AM-

compact operators.

1 Introduction and Notations

A regular operator T from a vector lattice E into a Banach lattice F is said to be

AM-compact if the image of each order bounded subset of E is relatively compact

in F. This class of operators was introduced by Fremlin in [4]. It is easy to see that

each regular compact operator between two Banach lattices is AM-compact, but the

converse is false in general. In fact, the identity operator of the Banach lattice l1 is

AM-compact but not compact. Whenever E is an AM-space with unit, the class of

AM-compact operators on E coincides with the class of regular compact operators

on E.

As compact operators, the subspace of AM-compact operators forms a closed two

sided ideal in the space of all operators on a Banach lattice. But in contrast to compact

operators, there exist AM-compact operators whose dual operators are not AM-com-

pact, and conversely, there exist operators which are not AM-compact but their dual

operators are AM-compact. In fact, the identity operator of the Banach lattice l1

is AM-compact, but its dual operator, which is the identity operator of l∞, is not

AM-compact. Conversely, the identity operator of the Banach lattice of all convergent

sequences c is not AM-compact, but its dual operator, which is the identity operator

of the Banach lattice c ′, is AM-compact where c ′ is the topological dual of c.

Zaanen [6, Theorem 125.6] studied the duality problem of AM-compact operators

on Banach lattices. He gave sufficient conditions for which the AM-compactness of

an operator implies the AM-compactness of its dual and conversely. More precisely,

he proved that if E and F are two Banach lattices such that F has an order continuous

norm, and if T is a regular operator from E into F, then the AM-compactness of the

dual operator T ′ from F ′ into E ′ implies the AM-compactness of T. Conversely, he

showed that if E ′ has an order continuous norm and T is AM-compact, then the dual

operator T ′ from F ′ into E ′ is AM-compact. These results are natural analogues of

Schauder’s theorem for compact operators. The proofs in Zaanen’s book are really

from scratch, not using any other previous theory. We will start our paper with an
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alternative proof of these results. Although our proof seem to be shorter, it is based

on some other non-trivial results.

The rest of the paper is devoted to studying the converse of Zaanen’s theorem [6].

More precisely, we will prove that whenever E = F, if the dual operator of each

AM-compact operator T from a Banach lattice E into itself is also AM-compact, then

E ′ has an order continuous norm. Also, if E is order σ-complete, we will establish that

if each regular operator T from E into E is AM-compact whenever its dual operator

T ′ from E ′ into E ′ is AM-compact, then E has an order continuous norm. Finally,

if the Banach lattice E is not necessary order σ-complete, we will prove that if E and

F are two Banach lattices such that each regular operator T from E into F is AM-

compact whenever its dual operator T ′ from F ′ into E ′ is AM-compact, then the

norm of F is order continuous or E ′ is discrete.

To state our results, we need to fix some notations and recall some definitions. A

vector lattice E is an ordered vector space in which sup(x, y) exists for every x, y ∈ E.

A subspace F of a vector lattice E is said to be a sublattice if for every pair of elements

a, b of F the supremum of a and b taken in E belongs to F. A subset B of a vector lattice

E is said to be solid if it follows from |y| ≤ |x| with x ∈ B and y ∈ E that y ∈ B.

An order ideal of E is a solid subspace. Let E be a vector lattice. For each x, y ∈ E

with x ≤ y, the set [x, y] = {z ∈ E x ≤ z ≤ y} is called an order interval. A subset

of E is said to be order bounded if it is included in some order interval. A Banach

lattice is a Banach space (E, ‖ · ‖) such that E is a vector lattice and its norm satisfies

the following property: for each x, y ∈ E such that |x| ≤ |y|, we have ‖x‖ ≤ ‖y‖. If

E is a Banach lattice, its topological dual E ′, endowed with the dual norm, is also a

Banach lattice. We refer to Zaanen [6] for unexplained terminology on Banach lattice

theory.

Also, a vector lattice equipped with a vector topology is said to be a locally convex

solid lattice if zero admits a fundamental system of convex and solid neighborhoods.

The topology τ of a locally convex solid vector lattice is said to be Lebesgue if each

generalized sequence (xα) such that xα↓0 in E, converges to 0 for the topology τ ,

where the notation xα↓0 means that the sequence (xα) is decreasing and inf(xα)= 0.

If E ′ is the topological dual of E, the absolute weak topology |σ|(E, E ′) is the

locally convex solid topology on E generated by the family of lattice seminorms

{P f : f ∈ E ′} where P f (x) =| f |(|x|) for each x ∈ E. Similarly, |σ|(E ′, E) is the locally

convex solid topology on E ′ generated by the family of lattice seminorms {Px : x ∈ E}
where Px( f ) =| f |(|x|) for each f ∈ E ′. For more information about locally convex

solid topologies, we refer the reader to the book by Aliprantis and Burkinshaw [1].

2 Main Results

Let us recall that if an operator T : E → F between two Banach lattices is positive (i.e.,

T(x) ≥ 0 in F whenever x ≥ 0 in E), then its dual operator T ′ : F ′ → E ′ is likewise

positive, where T ′ is defined by T ′( f )(x) = f (T(x)) for each f ∈ F ′ and for each

x ∈ E. An operator T : E → F is regular if T = T1 − T2 where T1 and T2 are positive

operators. We denote by E+
= {x ∈ E : 0 ≤ x}. It is well known that each positive

linear mapping on a Banach lattice is continuous.

A norm ‖ · ‖ of a Banach lattice E is order continuous if the locally convex solid
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topology defined by this norm is Lebesgue. For example, the norm of the Banach

lattice l1 is order continuous but the norm of the Banach lattice l∞ is not.

As we have established by examples in the introduction, the AM-compactness

property of an operator is not inherited by dual operators, and conversely. In fact,

there exist Banach lattices E and F and an operator T from E into F which is AM-com-

pact but its dual T ′ from F ′ into E ′ is not AM-compact, and conversely. Zaanen

[6, Theorem 125.6] studied this problem and he proved that with auxiliary condi-

tions on Banach lattices E and F we obtain an analogue of Schauder’s theorem for

AM-compact operators.

The following theorem is essentially due to Zaanen [6, Theorem 125.6], but we

find that its proof is long and very difficult. In the following, we give an easy and

original proof of this theorem, using arguments which are different from those of

Zaanen.

Theorem 2.1 Let E and F be two Banach lattices and T a regular operator from E

into F.

(i) If E ′ has an order continuous norm and T is AM-compact, then the dual operator

T ′ is AM-compact from F ′ into E ′.

(ii) If F has an order continuous norm, the oerator T is AM-compact whenever its dual

operator T ′ from F ′ is AM-compact.

Proof (i) Let x ∈ E+ and f ∈ F+. Since T is an AM-compact operator, the subset

T([0, x]) is norm relatively compact in F, and then relatively compact for |σ|(F, F ′).

Now, by applying [2, Theorem 1.3], we obtain that T ′([0, f ]) is relatively compact

for |σ|(E ′
, E). As the topology |σ|(E ′

, E) and the topology defined by the norm of E ′

are Lebesgue, it follows from [2, Theorem 1.4] that they are equal on order bounded

subsets of E ′. Hence, T ′([0, f ]) is norm relatively compact in E ′. This proves that T ′

is AM-compact.

(ii) Since the topology defined by the norm of F is Lebesgue, it coincides with

|σ|(F, F ′) on order bounded subsets of F [2, Theorem 1.4]. Hence, by a similar proof,

we prove that T is an AM-compact operator.

Recall that a Banach lattice E is said to be an AM-space if for each x, y ∈ E such

that inf(x, y) = 0, we have ‖x + y‖ = max{‖x‖, ‖y‖}. A Banach lattice E is an

AL-space if its topological dual E ′ is an AM-space. For example, the Banach lattice l1

is an AL-space and the Banach lattice l∞ is an AM-space.

Also, a vector lattice E is order σ-complete if every majorized countable nonempty

subset of E has a supremum.

We observe that the converse of Zaanen’s theorem is not always true whenever the

Banach lattices E and F are different. In fact, we have:

(i) If we take E to be a Banach lattice such that the norm of E ′ is not order con-

tinuous (for example l1) and F is a finite-dimensional space, then it is clear that each

operator T from E into F is AM-compact and its dual operator T ′ from F ′ into E ′ is

also AM-compact.
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(ii) If we take F be a Banach lattice such that its norm is not order continuous (for

example l∞) and E is a finite-dimensional space, then each regular operator T from E

into F is AM-compact and its dual operator T ′ from F ′ into E ′ is also AM-compact.

Now, we state the converse result of Zaanen’s theorem when E = F. In fact, we

have the following theorem.

Theorem 2.2 Let E be a Banach lattice.

(i) If, for each AM-compact operator T from E into E, the dual operator T ′ from E ′

into E ′ is AM-compact, then E ′ has an order continuous norm.

(ii) If E is order σ-complete and if each regular operator T from E into E is

AM-compact whenever its dual operator T ′ from E ′ into E ′ is AM-compact, then E

has an order continuous norm.

Proof (i) Assume that the norm of E ′ is not order continuous. Then it follows from

outlining the proof of [5, Theorem 1] that E contains a sublattice isomorphic to l1

and there exists a positive projection P from E into l1.

Consider the operator product i◦P : E → l1 → E, where i is the inclusion operator

of l1 into E. Since i ◦ P = i ◦ Idl1 ◦ P, the operator i ◦ P is AM-compact. But its

dual operator P ′ ◦ i ′ : E ′ → l∞ → E ′ is not AM-compact. If not, the operator

P ′ ◦ i ′ ◦ P ′ : l∞ → E ′ will be also AM-compact. Since l∞ is an AM-space with unit,

P ′ ◦ i ′ ◦ P ′ is compact and hence the operator P ◦ i ◦ P : E → l1 is also compact. But

its restriction to l1, which is the identity operator of l1, will be compact. This gives a

contradiction.

(ii) Assume that the norm of E is not order continuous. Since E is an order σ-com-

plete Banach lattice, it follows from (outlining) the proof of [5, Theorem 1] that E

contains a sublattice which is isomorphic to l∞ and there exists a positive projection

P from E into l∞. We know that the topological dual of l∞ is not discrete [3, Corol-

lary3.5]. Then by applying [5, Theorem 1], we obtain the existence of two operators

S and T from l∞ into E such that 0 ≤ S ≤ T with T compact and S not compact.

This implies that 0 ≤ S ′ ≤ T ′ with S ′, T ′ : E ′ → (l∞) ′ and T ′ compact. Since the

Banach lattice (l∞) ′ has an order continuous norm and T ′ is AM-compact, it follows

from [2, Theorem 1.2] that S ′ is AM-compact.

On the other hand, the operator product P ′ ◦ S ′ : E ′ → (l∞) ′ → E ′ is AM-com-

pact, but the operator S ◦ P : E → l∞ → E is not AM-compact. Otherwise, its

restriction to the Banach lattice l∞, which is S, would be AM-compact and since l∞

is an AM-space, the operator S would be compact. This is a contradiction.

Recall that a nonzero element x of a vector lattice E is discrete if the order ideal

generated by x equals the subspace generated by x. The vector lattice E is discrete if

it admits a complete disjoint system of discrete elements. For example, the Banach

lattice l1 is discrete, but C([0, 1]) is not discrete.

Now, if in Theorem 2.2(ii) the Banach lattice E is not necessarily order σ-complete,

we obtain the following result.
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Theorem 2.3 Let E and F be two Banach lattices and T be a regular operator from E

into F. If T is AM-compact whenever its dual operator T ′ from F ′ into E ′ is AM-com-

pact, then one of the following statements holds:

(i) the norm of F is order continuous,

(ii) E ′ is discrete.

Proof Assume by the way of contradiction that conditions (i) and (ii) fail. Since

the the norm of F is not order continuous, there exist some z ∈ F+ and a disjoint

sequence (zn) in [0, z] which does not admit any subsequence converging to 0 for the

norm [1, Theorem 10.1]. Also, there exist some Φ ∈ (E ′)+ and a sequence (Φn) in

[0, Φ] which converges to 0 for the weak topology σ(E ′, E), but does not converge to 0

for the absolute weak topology |σ|(E ′, E) [1, Corollary 21.13]. This implies that there

exists some y ∈ E+ and there exists a sequence (yn) in [0, y] such that Φn(yn) = 1

for each n ∈ N.

Let Ê be the completion of E for the absolute weak topology |σ|(E, E ′) and let Pn

be the principal projection on the band Bn generated by yn in Ê. We can assume that

Φn(ym) = 0 if n 6= m (if not, we replace Φn by Φn ◦ Pn).

Let T be the positive operator defined by T(x)= (
∑+∞

n=1 Φn(x)zn)+Φ(x)z. Since

(zn) is a disjoint sequence and (Φn) converges to 0 weakly, the operator T is well

defined.

We claim that T is not AM-compact. If not, the sequence (T(yn))=(Φ(yn)z+zn)

admits a convergent subsequence that we design also by (Φ(yn)z+zn). But since the

sequence (Φ(yn)) admits a convergent subsequence, it follows that (zn) admits a con-

vergent subsequence. This presents a contradiction, and hence T is not AM-compact

as claimed.

Now we prove that T ′ is AM-compact. First, the operator T ′ is defined by the

following formula:

T ′( f )(x) =

( +∞∑

n=1

Φn(x) f (zn)
)

+ Φ(x) f (z)

for each f ∈ E ′ and for each x ∈ E.

Let f ∈ (E ′)+ and ( fn) ⊂ [0, f ]. Since

+∞∑

k=1

fk(zn) ≤

+∞∑

k=1

f (zn) ≤ f (z),

( fk(zn)) ∈ l1, ( f (zn))n ∈ l1, and 0 ≤ ( fk(zn))n ≤ ( f (zn))n for each k ∈ N
∗.

On the other hand, since l1 is discrete and its norm is order continuous, it follows

from [1, Corollary 21.13] that the order interval [0, ( f (zn))n] is compact in l1. Hence,

the sequence (( fk(zn))n)k admits a convergent subsequence in l1 that we design also

by (( fk(zn))n)k.

Let ε > 0. Then there exists N ∈ N such that for each p and q ∈ N, with p, q ≥ N ,

we have ‖Φ‖
∑

n | fp(zn) − fq(zn)| + ‖Φ‖| fp(z) − fq(z)| < ε.
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Then if p, q ≥ N and x ∈ E such that ‖x‖ ≤ 1, we have

|T ′( fp)(x) − T ′( fq)(x)| ≤ ‖Φ‖
∑

n

| fp(zn) − fq(zn)| + ‖Φ‖| fp(z) − fq(z)| < ε.

This proves that (T ′( fp)) is a Cauchy sequence in E ′, and hence it is convergent.

This proves that T ′ is an AM-compact operator.

Remark In Theorem 2.3, the second necessary condition is not sufficent. In fact, if

we take E = F = c, the Banach lattice of all convergent sequences, it is clear that the

identity operator of E is not AM-compact but its dual operator, which is the identity

of the dual topological c ′, is AM-compact. However the Banach lattice c ′ is discrete.
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Départment d’Economie

B.P. 5295, Sala Eljadida

Morocco

e-mail: baqzzouz@hotmail.com

(Nouira, Zraoula)
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